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Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain
processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability
to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular
tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal
approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying
hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalo-
graphy (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply
envelope correlation and coherence techniques to source space projected MEG signals. We show that
beamforming provides an excellent means tomeasure FC in source space usingMEG data. However, caremust
be taken when interpreting these measurements since cross talk between voxels in source space can
potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We
show good spatial agreement between FC measured independently using MEG and fcMRI; FC between
sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data
are filtered into the β band. This finding helps to reduce the potential confounds associated with each
modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about
by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI
measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond
what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend
those from previous studies and add weight to the argument that neural oscillations are intimately related to
functional connectivity and the BOLD response.
(M.J. Brookes).

 license.
© 2011 Elsevier Inc. Open access under CC BY license.
Introduction

In recent years, the importance of measuring connectivity between
spatially separate but functionally related brain areas has become of
key interest in the study of brain function. Recruitment of multiple
brain regions to form networks is thought to be integral to the way in
which the brain processes information (Schnitzler and Gross, 2005;
Uhlhaas and Singer, 2010) and abnormal recruitment of brain areas is
thought to be implicated in pathologies such as schizophrenia
(Friston, 1999; Phillips and Silverstein, 2003; Stephan et al., 2009).
The study of functional connectivity (FC) is therefore of great
importance to the field of neuroimaging. In most neuroimaging
studies, the term functional connectivity has been used to indicate
correlation between signals observed in spatially separate brain
regions. Much progress in this area has evolved from the study of
spontaneous fluctuations in blood oxygenation level dependent
(BOLD) functional magnetic resonance imaging (fMRI) signals.
Spontaneous BOLD fluctuations are observed during the resting
state (Biswal et al., 1995) and superimposed onto task driven
responses (Fox et al., 2006). The timecourses of resting state signals
from spatially separate areas have been shown to be correlated in
time (Biswal et al., 1995), the implication being that activity in these
areas is linked, even in the absence of external stimuli. Such
measurements have been termed functional connectivity MRI
(fcMRI) and a number of data driven analysis techniques (e.g. seed
based correlation and independent component analysis) have been
applied to fcMRI data revealing the spatial signature of a number of
resting state networks (Fox and Raichle, 2007; Laufs, 2008).

Improvements in fcMRI measurement have been shown to result
from the use of ultra high (7T) magnetic field. The BOLD response
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becomes more closely related to microvasculature as field strength is
increased (Yacoub et al., 2001). Further, BOLD contrast to noise ratio
(CNR) also increases with field and a recent study has shown that at
7T, fcMRI yields network measurements with improved spatial
resolution and sensitivity (Hale et al., 2010). Unfortunately, all BOLD
measurements (including those at ultra high field) are to some degree
confounded since they are indirect assessments of brain activity; they
relate to blood flow and not to electrical processes and are therefore
limited by poor temporal resolution due to the protracted hemody-
namic response. In addition, fcMRI is affected by non-neuronal
physiological signals, e.g. the cardiac and respiratory cycles (Wise et
al., 2004; Birn et al., 2006, 2008). Such artifacts worsen with field
strength and add structured interference to fcMRI, potentially leading
to spurious FC. Most importantly, the indirect nature of fcMRI means
that the electrical mechanisms that mediate FC cannot be elucidated.
As the importance of FC grows, the introduction of non-hemodynamic
metrics and our ability to develop a complete understanding of brain
network activity and connectivity will become a key goal in
neuroscience.

Neural oscillations have an established role in coordinating neural
activity both in local networks (Gray et al., 1989; Womelsdorf et al.,
2007) and over longer distances (von Stein et al., 2000). Such
oscillations are thought to be intimately involved in network activity.
Insight into the relationship between oscillatory processes and fcMRI
network measurements has been gained from concurrent electroen-
cephalography (EEG) and fMRI (Laufs, 2008). Some studies have shown
that spontaneous fluctuations inα (8–13 Hz) band power (measured at
an EEG electrode) is negatively correlated with BOLD signal changes in
occipital and parietal cortices; other studies have reported positive
correlations between α power and BOLD in the thalamus (Goldman
et al., 2001; Moosmann et al., 2003; Mantini et al., 2007). Laufs et al.
(2003) and Mantini et al. (2007) demonstrated that fronto-parietal
network activity is associated with ongoing modulation of α power,
implying that a single EEG frequency band can be associated with
multiple brain areas. Further, Mantini et al. (2007) have shown that
electrical activity in the β band is associated with resting state motor
network activity identified using fcMRI. Unfortunately, most EEG/fMRI
studies focus on EEG data in sensor space. It is well known that the
inhomogeneous conductivity profile in the headmeans that patterns of
electrical potential measured at the scalp are diffuse, and can be
distorted. This makes the EEG signal at a single electrode an average of
electrical activity across a large volume of tissue. Further, a single sensor
most affected by a source doesn't necessarily directly overlay that
source. It is therefore difficult to pinpoint the location of electrical
oscillators using EEG. Most importantly, it is hard to disentangle two
spatially separate sources that may exhibit FC since the same channels
can be affected by both sources. Finally, EEG measurements at high
magnetic field are limited by poor signal to noise ratio (SNR) and
interference causedby theMR scanner. These effects combined limit the
utility of concurrent EEG/fMRI.

Magnetoencephalography (MEG) is a non-invasive technology in
which the magnetic fields induced by neuronal current flow in the
brain are measured above the scalp (Cohen, 1972). MEG has been
shown to be an excellent means to measure neural oscillatory
processes. Furthermore, unlike electric fields, magnetic fields are not
distorted by inhomogeneous conductivity in the head. This, coupled
with the high number of sensors (~300 in modern systems) and
advanced source reconstruction algorithms (Robinson and Vrba,
1998; Zumer et al., 2007; Wipf et al., 2010), makes MEG data more
appropriate for projection into source space. MEG studies performed
in this way can exhibit vastly improved spatial resolution compared to
EEG. For FC measurement, projection is advantageous (Schoffelen and
Gross, 2009) since: 1) It limits the effect of field spread (a single
source affecting multiple sensors) making results easier to interpret
and allowing spatial comparison between FC maps generated
independently using fcMRI and MEG; 2) The improved spatial
resolution allows separation of signals originating from spatially
separate brain locations; and 3) Projection allows for increased signal
to noise ratio (SNR) (see for example Brookes et al., 2008a,b, 2009,
2010). These facts make MEG the most attractive non-invasive means
to measure electrodynamic FC. However, care must be taken when
making these measurements (Schoffelen and Gross, 2009) since the
magnetic field induced from a single current source will affect
multiple MEG sensors, and the ill posed nature of the inverse problem
means that, while spatial resolution is improved compared to EEG,
signals originating from spatially separate voxels in source space are
not necessarily independent. Cross talk (or signal leakage) between
voxel timecourses can therefore generate spurious connectivity
measurement. Additionally, MEG is susceptible to interference from
environmental noise which may also affect FC metrics.

Despite difficulties a number of studies have employed MEG to
measure FC in both sensor and source space and a variety of
methodologies have been described. Dynamic imaging of coherent
sources (Gross et al., 2001) is an elegant technique in which a
frequency domain beamformer is employed to project MEG data;
coherence between brain regions is subsequently measured. Other
studies (e.g. Guggisberg et al., 2008) have employed time domain
beamforming and imaginary coherence (imaginary coherence
excludes coherent sources with zero time lag and therefore eliminates
the effect of field spread and cross talk). Other metrics include phase
lag index (Stam et al., 2007) (which quantifies asymmetry in the
phase lag distribution (field spread and cross talk would cause a
symmetric distribution and is therefore eliminated)) and synchroni-
zation likelihood (Stam and van Dijk, 2002) (which takes two
separate electrical signals and looks for isochronous recurrence to a
certain part of their (individually different) attractors). Interestingly,
in a recent paper (Liu et al., 2010) Liu and colleagues employed a MEG
sensor space ‘envelope correlation’ metric to show that inter-
hemispheric connectivity (observed by fcMRI) is mirrored by inter-
hemispheric neuromagnetic correlation (though no direct compari-
son was made). In the envelope correlation technique, data are
frequency filtered to the band of interest and correlations between
power envelopes of oscillatory timecourses from spatially separate
brain areas are sought. The findings of Liu et al. are in agreement with
papers showing that task driven changes in hemodynamics are
related to fluctuations in the envelope of band limited oscillatory
power (Singh et al., 2002; Brookes et al., 2005; Stevenson et al., 2011;
Zumer et al., 2010). However, since measurements were made in
sensor space, the spatial structure of connectivity inferred was
unclear. In contrast to sensor space analyses, de Pasquale et al.
(2009) used source space reconstructions with minimum-norm
techniques and showed that the dorsal attention and the default
mode networks, commonly observed using fMRI, are also observable
in MEG, particularly using non-lagged correlations in short temporal
windows. However, minimum-norm techniques are known to have
poor spatial resolution and large reconstruction errors in time-course
estimation. Nevertheless, these papers represent some of the first
demonstrations of similarity between hemodynamic and electrical
resting state FC measurements which we further investigate here.

In this paper, we investigate techniques to measure resting state
functional connectivity (defined as correlation or coherence between
signals from spatially separate brain regions) using MEG. We compare
our results to those gained from fcMRI measurements in the same
subjects. In fcMRI, we exploit the advantages afforded by ultra high
(7T) magnetic field. In MEG, we apply envelope correlation and
coherence techniques to brain space reconstructions of neuronal
activity generated using adaptive beamformers and examine the
relationship between the reconstructed neuronal activity and fcMRI.
Our study has three specific aims: 1) To investigate the applicability of
beamforming as a source space projection algorithm for FC measure-
ment; 2) To compare multiple MEG metrics including envelope
correlation, coherence and imaginary coherence; and 3) To compare



1084 M.J. Brookes et al. / NeuroImage 56 (2011) 1082–1104
the consistency in the spatial signature of motor network FC
measured independently using fcMRI and MEG and to test the
hypothesis that neural oscillatory processes are intimately related to
hemodynamic FC. In what follows, the Methods section describes in
detail our processes for measuring FC using MEG data, and testing the
validity of those measurements. In the Results section we address
individually each of the three aims stated above and we show that
MEG represents a useful modality with which to investigate FC, with
good agreement between measurements generated using these two
disparate modalities. Finally, in the discussion, we examine the nature
of the electrical effects that underlie hemodynamic FC.

Methods

Data acquisition

Six healthy right handed subjects took part in the MEG experi-
ments. Five of those six subjects took part in the fMRI experiments.
The study was approved by the University of Nottingham Medical
School ethics committee.

MEG
MEG data were recorded using the third order gradiometer

configuration of a 275 channel CTF MEG system at a sampling rate
of 600 Hz. The scanner is housed inside a magnetically shielded room
(MSR) and a 150 Hz low pass anti-aliasing hardware filter was
applied. All subjects underwent a single experiment which comprised
two contiguous phases, a resting state phase and a localizer task.
During the resting state phase, subjects were asked to lie in the
scanner with their eyes open and relax while 300 s of resting state
data were acquired. The localizer task comprised a total of 10 trials. A
single trial comprised 30 s of left index finger movement, 30 s of right
index finger movement, 30 s during which both left and right index
fingers were moved together, and 30 s of rest. The movement itself
comprised abductions and extensions of the index finger. The motor
task was cued visually via projection through a waveguide in the MSR
onto a back projection screen located 40 cm in front of the subject.
During data acquisition the location of the subject's head within the
scanner was measured by energizing coils placed at 3 fiducial points
on the head (nasion, left preauricular and right preauricular). If any
subject moved more than 5 mm during the experiment, data from
that subject was discarded. Following data acquisition, the positions of
the coils were measured relative to the subject's head shape using a
3D digitizer (Polhemus isotrack). AnMPRAGE structural MR imagewas
acquired using a Philips Achieva 3T MRI system (1 mm3 isotropic
resolution, 256×256×160 matrix size, TR=8.3 ms, TR=3.9 ms,
TI=960 ms, shot interval=3 s, FA=8° and SENSE factor=3). The
locations of the fiducial markers and MEG sensors with respect to the
brain anatomy were determined by matching the digitized head
surface to the head surface extracted from the 3T anatomical MRI.

fMRI
fMRI data were acquired using a Philips Achieva 7T system. All

subjects underwent a resting state and a localizer experiment (note,
these data have previously been published in a study by Hale et al.
(2010) comparing 3T and 7T fcMRI). In the resting state experiment,
subjects were asked to lie in the scanner with their eyes open and
relax while 300 s of BOLD data were acquired. The localizer
experiment involved a visually cued finger movement. A single trial
comprised 12 s of movement followed by 18 s rest. The experiment
comprised 10 trials; during even numbered trials the subject moved
their left index finger and during odd numbered trials the subjects
moved their right index finger allowing both the right and left motor
cortices to be identified. Echo planar images (matrix size 144×144,
TE=25 ms, SENSE factor=3) were acquired with a voxel size of
1.5 mm×1.5 mm×3 mm. The TRwas 2 s for the localizer, but reduced
to 1.5 s for the resting state experiment to increase temporal degrees
of freedom and therefore improve characterization of temporal
correlation. To ensure a homogeneous B0, a parcellated shimming
procedure (Poole and Bowtell, 2008) was employed. The flip angle
was set to the Ernst angle (70°). 24 axial slices were acquired with
whole brain coverage. During all experiments the respiration and
vector-cardiogram were recorded. Subject head motion was mea-
sured during post processing and if any subject moved more than the
smallest voxel dimension (1.5 mm) during the experiment, data from
that subject were discarded.

Data analysis

Analysis of localizer data
fMRI localizer data were motion corrected (SPM5), corrected for

physiological artifact using RETROICOR (Glover et al., 2000), and
smoothed spatially using a 3 mm FWHM Gaussian kernel (SPM5). In
order to identify areas exhibiting significant BOLD change during
finger movement, data were processed using the general linear model
implemented in SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Robust
statistically significant (pb0.05 FWE corrected) activation was
observed in all subjects in the left and right sensorimotor cortices.
The peak in BOLD activity in the right sensorimotor cortex was used to
define a seed location for subsequent fcMRI analyses. The 7T EPI
localizer data and associated functional images were co-registered to
the 3T anatomical MPRAGE image of each individual subject using the
fMRIB linear image registration tool (FLIRT) in FSL (http://www.fmrib.
ox.ac.uk/fsl/). Functional images were then co-registered to the
standard brain (i.e. MNI space), using FLIRT.

Synthetic aperture magnetometry (Robinson and Vrba, 1998) was
applied to the MEG localizer data in order to localize left and right
sensorimotor cortices. An ‘active’ time window was chosen as the
period during which subjects moved both their left and right index
fingers. A ‘control’ window was defined as the rest period for each
trial. Pseudo-T-statistical functional images were constructed by
contrasting beamformer projected oscillatory power in the active
window with that in the control window (regularization parameter
μ=4; for definition of μ, see below). This resulted in a volumetric
image showing the spatial distribution of oscillatory power change. In
agreement with previous literature (see e.g. (Stevenson et al., 2011)
robust task induced loss in β (13–30 Hz) band oscillatory power was
found localized to primary sensorimotor cortices. These locations
were later used to define locations of interest in the left and right
sensorimotor cortices for MEG FC analysis. MEG localizer images were
co-registered to the MNI brain using FLIRT.

Analysis of resting state fcMRI data
Resting state fMRI data were motion corrected (SPM5), corrected

for non-neuronal physiological artifact using RETROICOR (Glover
et al., 2000), and smoothed spatially (SPM5) using a 3 mm FWHM
Gaussian kernel. A seed based correlation technique (as described in
Biswal et al., 1995) was employed to assess resting state connectivity.
An average BOLD seed timecourse was derived from the peak voxel in
right sensorimotor cortex, defined from the localizer experiment, and
its 26 nearest neighbors. The Pearson correlation coefficients between
the seed timecourse, and all voxels in the brain were computed
resulting in a volumetric image of correlation coefficients. Correlation
coefficient images were thresholded at a value corresponding to
pb0.05 Bonferroni corrected for multiple comparisons (Hale et al.,
2010). Again, the 7T EPI data and BOLD FC images were co-registered
to the 3T anatomical MPRAGE image of each individual subject, and to
the standard MNI brain, using FLIRT.

Analysis of resting state MEG data
MEG data were mean corrected and frequency filtered into seven

bands of interest using a finite impulse response filter in NUTMEG
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(http://nutmeg.berkeley.edu) (Dalal et al., 2004). The frequency
bands used were δ (1 Hz–4 Hz), θ (4 Hz–8 Hz), α (8 Hz–13 Hz), low
β (13 Hz–20 Hz), high β (20 Hz–30 Hz), low γ (30 Hz–40 Hz) and
high γ (40 Hz–70 Hz). FC was measured using a three step process:
A) application of spatial filters to project data into source space;
B) application of the FC metric; and C) weights correlation
computation and simulation to assess the statistical significance of
the FC metric used. These three steps are described in detail in the
following three sections.

A) Application of spatial filters

Frequency filtered MEG data were projected into source space
using a scalar beamformer. The electrical source amplitude, Q̂θ tð Þ at a
predetermined location was estimated as:

Q̂θ tð Þ = WT
θm tð Þ ð1Þ

where m(t) is the vector of magnetic field measurements made at M
MEG sensors at time t. Wθ is a vector of weighting parameters tuned to
location and orientation θ=[r,δ], where r represents location, and δ is
the angle of the source with respect to the azimuthal direction. Wθ

was computed based on minimization of output signal variance, with
a linear constraint that signal power originating at θ remains in the
output signal (Van Drongelen et al., 1996; Van Veen et al., 1997;
Robinson and Vrba, 1998), mathematically:

WT
θ = LTθ C + μσI½ �−1Lθ

h i−1
LTθ C + μσI½ �−1 ð2Þ

where Lθ represents the lead fields, C represents the M×M data
covariance matrix, μ is the matrix regularization parameter, σ is an
estimate of uncorrelated noise power and I is the identity matrix. The
lead fields Lθ were computed using a multi-sphere head model
(Huang et al., 1999) and the forward calculation described by Sarvas
(1987). The angle δ was found independently at each r using a non-
linear search to compute the orientation of maximal variance. The
noise estimate (σ) was computed as the minimum singular value of
the covariance matrix and μ = 4 in all cases. The channel level data
covariance matrix Cwas computed in two ways: in the first case, only
those data acquired during the resting state phase of the experiment
were used. In the second case, data from the entire experiment were
used. It is well known that the spatial resolution of beamformer
imaging is inhomogeneous across the head, with the highest spatial
resolution being in regions of high power (Barnes and Hillebrand,
2003). During the resting state phase, brain areas may exhibit little
power and undergo no modulation, meaning that spatial resolution
may be low and homogeneous. However, using covariance computed
over the entire experiment, spatial resolution would be expected to
improve, partly due to increased amount of data (Brookes et al.,
2008a,b), but also particularly in the motor network which will
undergo power change due to the localizer task. This implies that
covariance computed over longer windows is advantageous; however
in doing this one necessarily assumes that sources of interest are
stationary throughout the whole experiment. Beamformer weights
Wθ

T and associated timecourses Q̂ θ tð Þ were computed for locations
placed at the vertices of a regular 5 mm grid spanning the entire brain.
A separate set of beamformer weights was computed for each
frequency band in order to optimize beamformer sensitivity to effects
of interest in that band (Brookes et al., 2008a,b, 2009, 2010).

B) Resting state functional connectivity metrics

Having projectedMEG data into the brain, the second step involves
application of FC metrics. In the following description, the beamfor-
mer weights (and therefore estimation of δ for each voxel) were
computed from the entire dataset (thus allowing optimal spatial
resolution). However, in all cases FC metrics were only applied to data
acquired during the resting phase (i.e. first 300 s) of the MEG
experiment, meaning that we only compute resting state connectivity
between brain regions. For all computations, a seed voxel was chosen
in the right sensorimotor area, as defined individually for each subject
using the MEG localizer results.

Four separate FC metrics were applied; two based on envelope
correlation—termed Average Envelope Correlation (AEC) and Corre-
lation of Averaged Envelopes (CAE); and two based on coherence
termed coherence (Coh) and Imaginary Coherence (ICoh). In all cases,
connectivity was measured between the projected signal at the seed
voxel, and that from all other (test) voxels in the brain. The four
connectivity metrics were computed as follows:

1. AEC: The timecourses of bandpass filtered electrical activity at the
seed and test voxels were Hilbert transformed to obtain the
analytic signal. The absolute value of the analytic signal was then
determined in order to give the envelope of oscillatory power in
the frequency band of interest. This we term the Hilbert envelope
and this technique has been used extensively in previous MEG
studies (for a mathematical description see Brookes et al., 2004).
The Hilbert envelopes for the seed and test voxels were divided
into n time segments of equal length Δ. The Pearson correlation
coefficient between seed and test Hilbert envelopes was computed
within each segment. This gave n correlation values, one for each
time segment. These were then averaged across segments yielding
a single average value which we term Averaged Envelope
Correlation (AEC).

2. CAE: The timecourses of electrical activity at both the seed and test
voxels were Hilbert transformed and the Hilbert envelopes comput-
ed. The Hilbert envelopes were divided into n time segments of
equal length Δ and the average value of the envelope computed
within each time window. This resulted in two new temporally
averaged Hilbert envelope timecourses, each comprising n points
(we term these the ‘averaged envelopes’). The Pearson correlation
between these averaged envelopeswas then computed as ameasure
of FC which we term Correlation of Average Envelopes (CAE).

3. Coh: The filtered projected electrical timecourses (not the Hilbert
envelopes) from the seed and test voxels were divided into n time
segments of equal length Δ. Coherence between seed and test
timecourses was computed within each segment giving n values,
one for each time segment. These were then averaged across
segments yielding an average coherence value (Coh). (Coherence
within a single segment, k, was computed as CXY fð Þ =
Xk fð ÞYk � fð Þð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk fð Þj j2 Yk fð Þj j2

q����
���� for a single frequency bin (f)

where Xk(f) and Yk(f) are the Fourier transformed segment (k) of
the virtual time series and * indicates the complex conjugate.
Coherence values for frequency bands were computed from the
sum of autospectra and cross spectra in the corresponding
frequency bins (Guggisberg et al., 2008)).

4. ICoh: As above, the projected electrical timecourses (not the Hilbert
envelopes) from the seed and test voxels were divided into n time
segments of equal length Δ. The imaginary part of coherence
between seed and test timecourses was computed within each
segment. The absolute value of imaginary coherence was then
computed and averaged across segments (ICoh). (Imaginary
Coherence within a single segment was computed as IXY fð Þ =
Im Xk fð ÞYk � fð Þð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk fð Þj j2 Yk fð Þj j2

q� �����
���� and values for frequency

bands were computed from the sum of autospectra and cross
spectra in the corresponding frequency bins (Guggisberg et al.,
2008). The absolute value of imaginary coherence was computed
since we were interested in the magnitude of FC, not the
directionality).

As mentioned above, previous work (Singh et al., 2002; Brookes
et al., 2004; Winterer et al., 2007; Stevenson et al., 2011; Zumer et al.,

http://nutmeg.berkeley.edu
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2010) has shown a close relationship between task driven fluctua-
tions in oscillatory power and the hemodynamic response. Further,
papers investigating MEG FC and its relationship to fcMRI (de
Pasquale et al., 2009; Liu et al., 2010) have both employed amplitude
envelope based measurements. This motivated the use of the AEC
methodology described above. CAE employs MEG time series that are
temporally collapsed. This makes correlation results less sensitive to
phase jitter in the Hilbert envelope, and to noise. The CAE
measurement is also similar to that used by de Pasquale et al.
(2009) however it does sacrifice some temporal resolution. Coherence
and imaginary coherence have been applied in previous MEG studies.
Here they are employed as a comparison to amplitude envelope based
measurements, and to investigate the nature of electrodynamic
connectivity. For example, strong agreement between Coh and AEC
might imply that phase locking between large cell populations was
underlying changes in oscillatory amplitude and driving amplitude
based FC measurements. High ICoh values would show that an
observable phase lag was apparent between network nodes. Variation
ofΔ and computation of FC timecourses enable important information
about the time scale FC to be generated. Use of the metrics in this way
was therefore expected to exploit the direct nature of MEG and
provide information on the electrical processes mediating FC.

C) Weights correlation, simulation and statistical significance

Source reconstruction of MEG data limits the effect of field spread
since it enables visualization of FC in source space. However, the
inverse problem is ill posed and the estimated timecourses of
electrical activity at separate MEG voxels are not necessarily
independent. In other words, it is possible to get signal leakage
between spatial filters. Independence of two spatial filters can be
assessed by examining correlation between beamformer weights. If
the weights for two spatially separate voxels are correlated (as is
likely to be the case for nearby voxels) then the projected signals will
also be correlated and this may appear as spurious FC in the
beamformer based FC images. If, however, the beamformer weights
for two voxels are completely independent, but the timecourses from
those voxels are highly correlated, it is more likely that genuine FC
exists between those two brain locations. In order to assess the
weights correlation problem, correlation coefficients between beam-
former weights at the seed location, and all other voxels in the brain
were computed in order to create volumetric images of weights
correlation. These were constructed for all subjects and all frequency
bands (note, the absolute value of weights correlation was computed
in all cases). Correlation between beamformer weights was compared
to correlation between lead field patterns in order to assess the
advantages of beamforming over non-adaptive algorithms (e.g. dipole
fitting) inwhich lead fields are used directly for source reconstruction.
Both weights correlation and lead field correlation were plotted
against distance between the seed and test voxel in order to examine
the extent of spurious connectivity around the seed region.

While weights correlation is a useful metric for visualization of
signal leakage, it cannot be used to assess directly the statistical
significance of FC and for this purpose, simulated MEG data were
generated. On each iteration of the simulation, two dipolar sources
were simulated in the brain, the first at the seed location, and the
second at a test location. The timecourses for these two sources
comprised Gaussian random noise which was colored by frequency
filtering to the band of interest. No significant correlation existed
between simulated seed and test timecourses. The source orientations
and the variance of the source timecourses were equivalent to those
derived by application of the beamformer to the real MEG data for the
same subject, location and frequency band. The simulated time-
courses were multiplied by lead fields for the two locations/
orientations and 300 s of simulated MEG data were constructed
(taking into account the third order gradiometer sensor configura-
tion). 300 s of MEG data were acquired (using the third order
gradiometer configuration of the 275 channel system at a sampling
rate of 600 Hz) with no subject in the scanner. These noise data were
added to the simulated data resulting in a simulated MEG dataset.

The simulated data were used repeatedly in order to assess
statistical significance of measured FC values throughout this paper.
On each repetition of this simulation, different seed and test
timecourses were employed. Simulated MEG data were projected
into the brain using the same beamformer weights derived from and
applied to the real MEG data. Since our simulated data were designed
to be similar to the real resting state data, beamformer reconstruction
of the simulated source timecourses was successful. However no
correlation between simulated sources was introduced, meaning that
following beamformer projection, if FC analysis of simulated data
implied high levels of FC between sources, this was entirely spurious
and could be due to either weights correlation, field spread between
the two sources or real correlated noise across MEG sensors.

Two separate strategies were employed to identify areas of
statistically significant FC in MEG images; the first technique was
applied to individual subject data and the second to group data. In
both cases, volumetric images containing simulated FC values were
employed and for every FC image created using real MEG data, an
equivalent simulated FC image was created. (Note: in creating the
simulated FC image, on each iteration of the simulation, the test voxel
was moved to a different location, meaning that a single MEG dataset
was simulated for every voxel.)

In order to derive statistical significance in a single subject the
following process was employed: 1) voxels were binned according to
their weights correlation (bin width 0.05) and the mean value of
simulated FC was computed within each bin; 2) The mean simulated
FC values within each bin were subtracted from values derived from
real and simulated data on a voxel by voxel basis—the result being two
corrected images, one based on real data, the other on simulated data;
and 3) The distributions of corrected simulated FC values across all
voxels were computed and used to threshold corrected FC images
derived from real data. Only those voxels in the upper fifth percentile
of the corrected simulated distribution were said to exhibit statisti-
cally significant FC.

In order to assess statistical significance of FC across the subject
group, FC imageswere co-registered to the standard brain using FLIRT.
Following co-registration, in a single frequency band, for every voxel
in MNI space, six real and six simulated FC values were available (one
value per subject). These two sets of numbers were averaged, and the
statistical significance of the difference between them was computed
using a non-parametric Wilcoxon signed rank test, implemented in
Matlab (Mathworks). Under a null hypothesis, one would expect no
significant difference between the real and the simulated data. Voxels
in which a statistically significant (pb0.05) difference between the
real and the simulated images was observed were said to exhibit
significant FC at the group level.

Investigating electrodynamic connectivity
FC between the left and right motor cortices is a well known effect

in fcMRI. For this reason, investigation into the nature of inter-
hemispheric connectivity was undertaken by measurement of FC
between 2 locations; a seed in the right motor cortex and a test voxel
in the left motor cortex. Both locations were defined independently
for each subject based on the results of the MEG localizer analysis.
Beamformer spatial filters were derived for both locations and resting
state data were projected into the brain. AEC, CAE, Coh and ICoh were
computed between locations in left and right motor cortex (as
described above). This was done independently for all frequency
bands and subjects;Δwas varied, taking values of 0.5 s, 1 s,4 s, 6 s and
10 s.

To test the significance of FC between the two locations, 100
simulated MEG datasets were constructed (as described above) with
simulated seed and test sources in the right and left motor cortices
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respectively. (Again this was done for each frequency band and
subject, with source orientation and amplitudes matched to those
measured from real data.) Simulated datasets were projected through
the same spatial filters as those used for real data and 100 simulated
values of AEC, CAE, Coh and ICoh were derived (again for varying Δ).
The mean of the simulated values was subtracted from values derived
from real data on a subject by subject basis yielding corrected AEC, CAE,
Coh and ICoh values. These corrected values were then averaged
across subjects and standard error computed. Finally, the simulated
values were mean corrected (on a subject by subject basis) and
concatenated (across subjects) to create a distribution comprising 600
points for each of the four connectivity measures and each of the
seven frequency bands. The 95% confidence limit was computed and
used to assess statistical significance of the measured FC. Using the
null hypothesis, one would expect no significant difference between
AEC, CAE, Coh and ICoh values derived using real and simulated data.

Previous results (de Pasquale et al., 2009) have shown that the
time at which FC is measured can have an important effect on the
results obtained. In their paper de Pasquale et al. show that cross
hemisphere FC was better observed in carefully selected short time
windows than it was using their entire MEG dataset. In order to assess
this effect in our study, the timecourses of FC between left and right
sensorimotor corticeswere assessed. As described above, AEC, Coh and
ICohwere computed within n time windows of length Δ. This enabled
visualization of the timecourse of FC, with temporal resolution
determined by Δ. The AEC, Coh and ICoh timecourses were plotted
in order to gage the variation of the FC metric. In addition, FC
timecourses enabled an interesting comparison between our metrics
since agreement (or disagreement) between metrics would provide
valuable information about the relationship between, for example,
envelope correlation and coherence. For this reason, the correlation
between FC timecourses measured using AEC, Coh and ICoh was
computed allowing a numerical measure of the similarity between
metrics and enabling us to probe the relationship them.

Cross modal comparison
A comparison between fcMRI and fcMEG was undertaken by

assessment of the similarity of FC images derived using the two
Fig. 1. Results of the MEG and fMRI localizer experiments. A) β band power decrease i
B) corresponding increase in BOLD contrast in bilateral motor cortex (single subject). C)
D) corresponding increase in BOLD also averaged across subjects. All images are shown acc
decrease.
modalities. Initially, a visual comparison was made between FC
images generated using fcMRI and MEG. The locations of statistically
significant correlated areas were recorded, and the similarity between
peak locations measured. This was undertaken for each of the 7
frequency bands used in MEG analysis and allowed a visual
comparison of those MEG frequency bands most closely related to
FC measured using fcMRI.

In order to obtain a numerical value for the spatial similarity
between MEG and fcMRI, a spatial correlation coefficient metric was
introduced. Initially, the fcMRI maps (in MNI space) were smoothed
using a Gaussian smoothing kernel (FWHM 8 mm) (this was to
account for the intrinsic differences in image smoothness between
MEG and fcMRI measurements) and averaged across subjects. The
mapwas then reshaped into a one dimensional vector. Unthresholded
MEG FC maps (also in MNI space) were reshaped into one
dimensional vectors and the Pearson correlation coefficients between
fcMRI and MEG derived vectors were computed to give a numerical
measure of the spatial similarity betweenmaps. Thismetric, whichwe
term spatial correlation, was calculated for all frequency bands on a
subject by subject basis. Values were averaged across subjects and
plotted as a function of frequency. The motivation for this measure-
ment was to see which MEG frequency band best represented the
spatial signature of BOLD connectivity. In order to assess significance,
the same spatial correlation metric was repeated using FC images
derived using simulatedMEG data and statistical significance between
spatial correlation values computed using real and simulated datawas
assessed

Finally, the spatial overlap of significantly connected regions,
derived from thresholded fcMRI and fcMEG images was computed as
a function of frequency.

Results

The Results section is split into 5 parts. In the first part, we
investigate spatial correspondence between fMRI and MEG localizers.
In the second part, we address the confounds of MEG FCmeasurement
due to signal leakage between voxels in source space. In the third part
we use MEG data to investigate electromagnetic FC between the left
n bilateral motor cortex in response to the finger movement task (single subject);
β band power decrease averaged across subjects and overlaid onto the MNI brain;

ording to the radiological convention. Cross hairs are placed at the peak β band power
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and the right sensorimotor cortices. In the fourth part, we undertake a
quantitative spatial comparison between fcMRI and fcMEG. In the
final part, we address limitations of our simulation approach to
eliminating spurious FC.
Localizer analysis

Fig. 1 shows the results from the MEG and fMRI localizer analyses.
Fig. 1A shows decrease in β band power in the left and right motor
cortices in response to the finger movement task, for a single
representative subject. Fig. 1B shows the corresponding increase in
BOLD signal, again in a single subject, which also highlights left and
right sensorimotor cortices. Figs. 1C and D show equivalent results
averaged across the subject group; panel C shows β band power
decrease while panel D shows corresponding BOLD increase.
Fig. 2. Signal leakage in beamformer spatial filtering: A) Correlation between lead fields at the see
images of correlation between beamformerweights at a seed location (cross hairs) and all other te
(μ=4;13 Hz–20 Hzband; single subject); C)weights computedusing resting state data only (μ=4
of lead field correlation, highlighting the non-linear relationship between the twometrics (all freq
fromthe seed location. F)Beamformerweights correlation (weights computedusing all data; μ=4
field correlation (blue) between left and right motor cortices (locations identified from localizer a
average and standard error across subjects shown; 13 Hz–20 Hz band).
Note that good spatial agreement is observed between β band
power loss and increased BOLD signal. The average MNI coordinates
for the peaks in β band power loss were (−41±3,−25±6,49±9)
mm (left motor cortex) and (34±8,−31±10,49±9) mm (right
motor cortex). The average locations of the peaks in BOLD response
were (−41±4,−21±8,53±6) mm (left motor cortex) and (42±
8,−19±10,51±9) mm (right motor cortex). (Note that all mea-
surements are quoted as mean±standard deviation across subjects.)
Given the error bounds quoted, the spatial location of the peak BOLD
and β band responses were not significantly different. The mean
Euclidean distance between β band and BOLD peaks was 17±7 mm.
This level of spatial correspondence is in agreement with previously
published work (Brookes et al., 2005;Winterer et al., 2007; Stevenson
et al., 2011). Discrepancies could be the result of inaccurate
coregistration, inaccuracies in MEG inverse modeling, or they may
reflect genuine spatial differences brought about by the fundamental
d location (cross hairs) and all other brain voxels (result for a single subject). B–C) Volumetric
st voxels in the brain. B)Weights computed using contiguous resting state and localizer data
; 13 Hz–20 Hzband; single subject);D)beamformerweights correlationplotted as a function
uencies; results for a single subject). E) Lead field correlation plotted as a function of distance
)plottedas a functionofdistance fromthe seed location. G)Weights correlation (red) and lead
nalyses (Fig. 1)) plotted as a function of frequency (weights computed using all data; μ=4;

image of Fig.�2


Fig. 3. Cross hemisphere connectivity measurement: A) Hilbert envelope timecourses extracted from the left (blue) and right (red) sensorimotor cortices of a single subject. The three panels show three separate (Δ=10 s) segments that are
used (alongside 27 others) in an averaged envelope correlation computation. B) Averaged Hilbert envelope timecourses (Δ=0.5 s) extracted from the left (blue) and right (red) sensorimotor cortex of a single subject. These two timecourses
are used to obtain the correlation of averaged enveloped (CAE) metric. C) Corrected AEC (Column 1), CAE (Column 2) Coh (Column 3) and ICoh (Column 4) values, plotted as a function of frequency. In all cases the red line shows the result
from real data (average and standard error across subjects) while the green line shows the 95% confidence limit derived from simulations. In the case of ICoh, the blue line shows the 90% confidence limit. The five rows in Fig. 3C show results
for Δ=0.5 s, 1 s, 4 s, 6 s and 10 s respectively. Gray shading indicates statistical significance (pb0.05) across the subject group.
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differences between these two disparate measurements. For the
connectivity results that follow, seed locations for MEG FC analysis
were based on each individual's MEG localizer analyses; seed
locations for fcMRI were based on each individual's fMRI localizer
analyses. In all cases, seed locations were in the right sensorimotor
cortex.

Spatial filter properties

As stated above, beamformer spatial filters, derived for spatially
separate brain locations, are not necessarily independent and cross
talk between voxels could cause spurious FC measurement. It is
therefore important to determine accurately the properties of spatial
filters prior to FC computation. Fig. 2A shows a volumetric image of
Pearson correlation between lead fields at the seed location (at the
cross hairs) and lead fields at all other source space voxels. This is
shown for a single subject, with the source orientation for each voxel
derived as the orientation of maximum signal variance. Pearson
correlation coefficients are thresholded at 0.5 for visualization.
Figs. 2B and C show volumetric images of correlation between
beamformer weights at the seed location and at all other voxels in the
brain. (Weights correlation images are computed using 13 Hz–20 Hz
filtered MEG data.) Fig. 2B shows weights correlation in a case where
covariance is based on all available MEG data (i.e. contiguous resting
state and localizer data); Fig. 2C shows weights correlation in a case
where covariance is based on resting state data only. Images are
thresholded at 0.5. Notice here that weights correlation is far less
widespread than lead field correlation, an effect of the adaptive nature
of beamforming which shows that, even if lead fields are correlated,
beamformer weights can remain independent.

Demarcation between lead field and weights correlation is
confirmed in Fig. 2D which highlights (for all frequency bands) the
non-linear relationship between the two. Again, this shows that high
correlation between lead fields does not necessarily imply high
correlation between beamformer weights. This effect is affected by
signal power; the beamformer is able to separate two voxels with
overlapping lead fields only if significant signal power originates at
those two voxels. This has been addressed in previous work (Barnes
and Hillebrand, 2003; Brookes et al., 2008a,b, 2009, 2010). It is
important to note that using covariance based on all data (i.e. resting
state and localizer data), the total volume of cortex with weights
correlated at rN0.25 was 126±15 cm3; this was compared to 155±
17 cm3 when weights were computed using resting state data only
(results given as average and standard error across subjects). This
highlights the advantage of judicious selection of a time frequency
window for weights computation and shows that inclusion of data
recorded during a task driven change in signal power can improve the
spatial resolution of the beamformer. Figs. 2E and F show lead field
correlation and weights correlation as a function of distance from the
seed location respectively. Note the improved spatial resolution of
weights correlation with respect to lead field correlation that is also
apparent in Figs. 2A and B. (Note also that separate lead field
correlations for different frequency bands appear because the source
orientation (δ) is computed independently for each frequency band.
Lead fields themselves do not change with frequency.)

The ability of the beamformer to construct independent weighting
parameters, even in the case of correlated lead fields, makes it
advantageous compared to non-adaptive source localization algo-
rithms which rely only on lead fields to reconstruct source space
signals. This is true of all beamformer applications, but is particularly
important for FC measurement since high values of FC will necessarily
result from correlation between weights. Here, we are interested
specifically in connectivity between the left and right motor cortices
and, in all subjects, weights correlation did not extend from the seed in
the right motor cortex to the left motor cortex. This is shown in Fig. 2G
where weights correlation between locations of interest in left and
right sensorimotor cortices is plotted as a function of frequency
(average±standard error across subjects). Notice that correlation
between left and right sensorimotor cortices is low (~0.1) and shows
no significant change across frequency bands. The graph also shows
lead field correlation between the left and right motor cortices
which also remains low for all frequencies. (Note again that the
small variation in lead field correlation across frequencies is due to the
slight difference in the estimation of δ for the frequency bands
studied.)

Investigating electrodynamic connectivity

The results above show that beamforming is an effective source
localization algorithm and further that since weights derived for the
left and right sensorimotor cortices are independent, measurement of
high FC metrics is likely to result in real, not spurious FC
measurement. In this section we present the results of our
investigation into electrodynamic connectivity between the left and
right motor cortices. We exploit the direct nature of MEG, and the
multiple FC metrics described, to investigate the electrodynamic
processes that underlie FC.

Fig. 3A shows an example of the Hilbert envelopes derived from
locations of interest in the left (blue) and right (red) sensorimotor
cortices. These timecourses were taken from a single subject; the
locations were derived based on that subject's localizer analysis and
the three panels show three separate 10 s segments of data. Fig. 3B
shows an example of the averaged Hilbert envelope timecourses
(Δ=0.5 s) extracted from the left (blue) and right (red) sensorimotor
cortex. Again this result is derived from a single subject and all 300 s of
resting state data are shown. In both Figs. 3A and B, data have been
filtered to the low β frequency band.

Fig. 3C shows corrected AEC, CAE, Coh and ICoh, applied to signals
extracted from the left and right motor cortices. Note in all cases that
the locations of interest were derived individually for each subject
based on the localizer analysis. The left hand column shows corrected
AEC between the left and right motor cortices, plotted as a function of
frequency. To derive the corrected value, the average AEC from
simulated data was subtracted from that derived from real data, on a
subject by subject basis. (In order to improve visualization of the
characteristic frequency response, for this analysis, the high-γ
frequency band (40–70 Hz) was split into two, 40–50 Hz and 50–
70 Hz.) A threshold was derived using the statistical distribution of
AEC values from simulated data (see Methods section) and corrected
AEC values above a threshold corresponding to p=0.05 were taken to
be significant. (These regions are shaded in gray.) The 5 rows of Fig. 3C
show the case for Δ=0.5 s, 1 s, 4 s, 6 s and 10 s respectively. The
second column of Fig. 3C shows corrected CAE between the left and
right motor cortices as a function of frequency (again Δ=0.5 s, 1 s,
4 s, 6 s and 10 s are shown and correction is performed in the same
manner as for AEC). The third column shows corrected Coh values
between the left and right motor cortices and the final column shows
corrected ICoh values. In all cases the red line shows the result
(average and standard error across subjects) while the green line the
95% confidence limit based on simulations. In the case of ICoh, the
blue line shows the 90% confidence limit, based on simulation. Raw
values of AEC, CAE, Coh and ICoh, applied to real and simulated MEG
data, are shown in Appendix 4.

Results show that the group average AEC values derived from real
data (Δ=1 s, 4 s, 6 s and 10 s) are significantly larger than those
derived from the simulated data, implying significant connectivity
between the left and right motor cortices. The group average CAE
values derived from real data (all Δ) also exhibit statistical
significance. For both AEC and CAE, a clear frequency band response
is observed with the highest FC metrics observed in the low β band
(13–20 Hz). This is not surprising since oscillatory effects in the β
band are well known to play a fundamental role in the motor network



Fig. 4. Investigating a relationship between envelope correlation and phase coupling.
A) The timecourse of FC measured using ICoh (upper panel), and AEC (lower panel) for
(Δ=10 s). B) Correlation between ICoh and AEC derived FC timecourses for Δ=1 s, 4 s,
6 s and 10 s. Red line shows result derived using real MEG data while black line shows
result from the simulations.
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and these effects have been previously reported (Mantini et al., 2007;
Liu et al., 2010). Interestingly, the size of the effect observed depends
on the time scale (Δ) on which the measurements of correlation are
made. This effect provides information on the time scale of functional
connectivity and this is addressed in more detail in the discussion
below. The Coh measurements showed no significant effect in any
frequency band. ICoh values were extremely small in magnitude, and
did not reach significance (p=0.05). However, the frequency
signature of ICoh mirrored that shown by the AEC and CAE metrics
with the highest ICoh being observed in the β band. In addition (for
Δ=4 s), ICoh values exceeded a 90% confidence limit.

The results shown in Fig. 3C represent FC averaged over a 300 s
window. However, recent interest has grown in dynamic FC
measurements (Chang and Glover, 2010). Fig. 4 shows that dynamic
measurements of electrodynamic FC can be obtained using our ICoh
and AEC techniques. For both metrics, n FC measurements are made
using n time windows, enabling a timecourse of FC to be derived
whose temporal scale is determined by Δ. Fig. 4A shows two such
timecourses, the upper panel shows ICohwhile the lower panel shows
AEC (Δ=10 s in both cases and 13 Hz–20 Hz filtered data are used).
Notice that the ICoh values, peaking at around 0.07, are much smaller
than the AEC values which peak around 0.4. Notice also that there is a
large variation in FC over time, with AEC values ranging from 0 to 0.4.
Fig. 4B shows correlation between ICoh and AEC FC timecourses as a
function of frequency for Δ=1 s, 4 s, 6 s and 10 s. The red line shows
the result for real data while the black line shows the result derived
from simulated data. Notice that for ΔN4 s, a peak is observed in the β
frequency band which is only apparent for real data. These peaks do
not reach statistical significance (p=0.05 derived using the simulated
data) across the subject group. However, the trend observed does
imply that, in the β band, a degree of similarity exists between AEC
and ICoh and that coherent activity (with a non-zero time lag) may
underlie envelope correlation.

Cross-modal comparison

A comparison between resting state FC measured using fcMRI and
MEG was undertaken based on the similarity between FC images
derived from the two modalities. Since our CAE metric yielded the
highest temporal correlation coefficients, this metric was used
exclusively for the cross-modal comparison. Fig. 5 shows FC images
acquired in a single subject. Fig. 5A shows the fcMRI result, with a seed
in the right motor cortex yielding significantly (pb0.05) correlated
voxels in left primary sensorimotor cortices and supplementarymotor
area (SMA). The strongest correlation was in left primary sensorimo-
tor cortices. Fig. 5B shows an equivalent result derived using MEG.
Here CAE (Δ=0.5 s) is applied to low β band filtered MEG data. As
with fMRI, a seed in right sensorimotor cortex yields significant
correlation with voxels in the left primary sensorimotor area
(pb0.05). In Fig. 5B, the red–yellow overlay shows raw correlation
values while the green overlay shows those correlation coefficients
that are significantly higher than equivalent correlation values
computed in simulation. Note that the highly correlated diffuse
region around the seed in right sensorimotor cortex is a result of
signal leakage between voxels and can be explained by weights
correlation; the region in left sensorimotor cortex cannot be explained
by leakage and therefore represents genuine connectivity. Given the
fact that no a-priori fcMRI based information was used in the MEG
source reconstruction, or connectivity analyses, the level of spatial
agreement between these images is compelling.

A high level of spatial agreement between FC images was observed
across the subject group in both the low β and the high β MEG
frequency bands. Table 1 shows the MNI coordinates of the highest
peaks in the left sensorimotor area derived from fcMRI and fcMEG
images. Note that since the best spatial agreement between fcMRI and
fcMEGwas observed in the β band, results are shown for the 13–20 Hz
and the 20–30 Hz bands only. These results are averaged across
subjects and mean±standard deviation is reported. The localizer
results are also shown for comparison.
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Fig. 5. Comparison between fcMRI and fcMEG in a single subject. A) Statistically significant (pb0.05) correlation between a BOLD timecourse at the seed in the right motor
cortex, and all other voxels. B) Correlation between averaged Hilbert envelopes at the seed and all other voxels for MEG data filtered to the low β band (13 Hz–20 Hz). The
green overlay shows voxels achieving statistical significance (pb0.05). Note good agreement between the location of the peak in the left motor cortex for fcMRI and fcMEG.
All images are shown according to the radiological convention.
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The spatial agreement, highlighted in Table 1, is also shown in Fig. 6.
Fig. 6A shows the groupaverage FCmapderived from fMRI (thresholded
at a correlation coefficient of 0.2). Figs. 6B–H show CAE analysis
(Δ=0.5 s) applied toMEGdata for all frequencybands: B: 1 Hz–4 Hz; C:
4 Hz–8 Hz; D: 8 Hz–13 Hz; E: 13 Hz–20 Hz; F: 20 Hz–30 Hz; G: 30 Hz–
40 Hz; and H: 40 Hz–70 Hz. In all fcMEG images, the green overlay
shows voxels in the left hemisphere exhibiting statistically significant
(p=0.05) correlation with the seed in the right hemisphere. Note that
significance is assessed across the subject group employing simulated
data and a non-parametric Wilcoxon signed rank test. For all of the
images shown, the cross hairs are at the same location in MNI space
(−40, −26, and 52) mm. Functional images are not corrected for
multiple comparisons. Significant left hemisphere connectivity is
observed in the θ, α, β and low γ bands, however the best spatial
agreement between fcMRI and fcMEG is seen in the β band, with the
most focal region of high correlation observed in the high β (20–30 Hz)
frequency band. Note that connectivity in the θ band is spatially distinct
and does not overlap with that observed using fcMRI.
Table 1
Locations, in MNI coordinates, of the peaks in the left motor cortex identified using the
fMRI localizer, the MEG localizer, the fcMRI analysis and the fcMEG analysis. Results for
CAE in the β band are shown. All results are given as mean±standard deviation across
subjects.

Modality x y z

fMRI-localizer −41±4 mm −21±8 mm 54±6 mm
MEG-localizer −41±3 mm −25±6 mm 49±9 mm
fcMRI −47±7 mm −28±7 mm 54±5 mm
fcMEG—13–20 Hz −50±9 mm −32±5 mm 44±9 mm
fcMEG—20–30 Hz −37±6 mm −25±5 mm 51±6 mm
Fig. 7 shows results of a quantitative comparison of the similarity
between fcMEG and fcMRI images. Fig. 7A shows the spatial
correlation coefficient derived between the unthresholded fcMEG
images and the unthresholded average fcMRI image for each
frequency band studied. The red line shows spatial correlation
between CAE images derived from real MEG data and fcMRI, while
the blue line shows spatial correlation between CAE images derived
using simulated data and fcMRI. Here, spatial correlation has been
computed on a subject by subject basis and the result averaged across
subjects. Note that in the low β band, images derived from real data
exhibit significantly (p=0.0312) higher spatial correlation than those
derived using simulated data. In addition, spatial correlation between
fcMEG and fcMRI derived using the 13 Hz–30 Hz band data is
significantly (pb0.05) higher than equivalent spatial correlations
derived using the 1 Hz–4 Hz and 40 Hz–70 Hz MEG data. Fig. 7B
shows the volumar overlap between significant connectivity in left
hemisphere identified using fcMRI and fcMEGwith overlap peaking in
the low β band. In general, deriving active cortical volumes based on
beamformer based images is confounded since beamforming is unable
to provide an accurate measure of source extent. Here we use this
metric to show that while overlap is observed in theα and β bands, no
overlap is observed in δ, θ or γ. These quantitative results are in
agreement with the images in Fig. 6, and show that the best
agreement between FC images derived using fcMRI and fcMEG occurs
when MEG data are frequency filtered into the β band. This point will
be addressed further in the discussion.
Remaining issues

There are 2 key questions that remain to be addressed in regarding
the results of this study. Firstly, how does the frequency content of the
Hilbert envelope affect FC metrics? Secondly, how does interference
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Fig. 6. Group results. A) Functional connectivity MRI results averaged across 5 subjects. B)–H) Correlation of averaged envelope results in the 1 Hz–4 Hz, 4 Hz–8 Hz, 8 Hz–13 Hz, 13 Hz–20 Hz, 20 Hz–30 Hz, 30 Hz–40 Hz and 40 Hz–70 Hz
frequency bands respectively. The green overlay shows voxels in the left hemisphere exhibiting statistically significant (p=0.05) correlation across the subject group. Notice that in the β band there is good spatial agreement between fcMEG
and fcMRI results. All images are shown according to the radiological convention.
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Fig. 7. Quantitative comparison of fcMRI and fcMEG images. A) Spatial correlation
coefficients between unthresholded fcMEG images and the unthresholded average
fcMRI image as a function of frequency. Red line shows real MEG data while the blue
line shows the case for fcMEG images derived using simulated data. A significant
(pb0.05) difference between these two measurements occurs in the low β frequency
band. B) Spatial overlap between significant connectivity in left hemisphere identified
using fcMRI and fcMEG. Note in both cases a peak in the β band.
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from other biomagnetic sources, either in the brain or elsewhere,
affect FC metrics? These issues are dealt with in Appendices 1–3; The
key results are given here.

A potential limitation of our simulations lies in the generation of the
source timecourse data. The white noise data employed for timecourse
simulation contains no temporal structure in its envelope. The Hilbert
envelopes of the true β band data may therefore contain frequency
components that are not contained in the simulated data. As a result, the
differences between real and simulated data in Fig. 3C could be
interpreted as true bivariate coupling, or alternatively a difference in
univariate data statistics. If the latter was the case, then the results
presented in Figs. 5, 6 and 7 would suggest that those differences
(temporal structure vs. no temporal structure) are not a general cortical
phenomenon, but only occur in themotor cortices and occurmaximally
in the β band, making this interesting in itself, but not truly reflective of
FC. This ambiguity can however be lifted by a modification to the
simulations whereby the frequency content of the real and simulated
Hilbert envelope data is matched. In Appendix 1 we undertake this
measurement; we show that when the frequency content of envelope
signals is matched, FC values are largely unaffected suggesting that the
effects observed in Fig. 3 reflect true bivariate coupling.

Our simulation approach to removing spurious connectivity, while
effective and more conservative than other approaches, does not
represent a perfect solution to eliminate all spurious connectivity. The
simulations account for spurious FC resulting from beamformer
weights correlation (i.e. cross talk between spatial filters), field
spread between the two sources of interest or external interference
correlated across sensors. The simulations do not account for
interference from other biomagnetic sources; for example, it is
possible that a third source (located in the brain and not accounted
for in simulation) may interfere with both the seed and test sources
and thus cause spurious connectivity. It is also possible that non brain
sources (e.g. cardiac/respiratory sources) may also interfere and lead
to spurious FC. We assume that these additional biomagnetic sources
are eliminated by the beamformer. Previous work (Sekihara et al.,
2004, 2006; Brookes et al., 2008a,b, 2009, 2010) has shown that
beamforming represents an effective interference suppression tool
and so this assumption is reasonable. In Appendix 2, we apply a
simple modification to our simulations to examine the effect of a third
brain source located midway between the left and right motor
cortices; results show that beamforming does effectively suppress this
source and FC results are unaffected. In Appendix 3 we also show that
interference due to the cardiac cycle is dramatically reduced by the
use of a beamformer spatial filter.

Discussion

In this paper, we have described methodologies for measurement
of resting state functional connectivity in the brain using MEG data.
We have shown that it is possible to reconstruct resting state
connectivity patterns using MEG that mirror those results obtained
using fcMRI. From a MEG methodological point of view, we have
shown that beamforming provides an excellent means to measure FC
in source space. However, care must be taken when making such
measurements since cross talk between voxels can potentially lead to
spurious connectivity and this effect must be taken into account in all
studies of this type. The spatial agreement between FC measured
using MEG and fcMRI has shown that β band effects are implicated in
inter-hemispheric motor cortex connectivity. This spatial agreement
helps to reduce the potential confounds associated with each
modality alone: while it helps reduce the uncertainties in spatial
patterns generated by MEG (brought about by the ill posed inverse
problem), addition of an electrodynamic metric confirms the neural
basis of fcMRI measurements. Finally we have demonstrated the
application of multiple MEG FC metrics (CAE, AEC, Coh, and ICoh).
Thesemethods should not be considered as competing techniques but
rather complementary methodologies that outline the potential of
MEG as a tool to move beyond hemodynamic responses and gain a
better understanding of the electrical nature of brain FC.

Beamformer methodology and FC measurement

The technique described for MEG based FC measurement is
centered on the application of a beamformer spatial filter. The
suitability of beamforming for FC measurement has been highlighted
in studies involving DICS (Gross et al., 2001). A distinct advantage of
beamforming is that it is an adaptive source localization algorithm
and signals that do not originate from the brain (i.e. those signals
whose spatial profile at the sensor level cannot be explained by a
dipolar source inside the head) are suppressed. This gives beamform-
ing an interference rejection property which is not mirrored by non-
adaptive algorithms. Interference rejection has been discussed in
previous papers (e.g. Brookes et al., 2009, 2010). In Appendix 3 of this
paper we highlight a single example showing rejection of cardiac
interference. Using channel level analyses, spurious FC measurement
could result directly from cardiac interference since the artifact affects
a large number of sensors. However, correlation between beamformer
projected MEG data and the ECG is small showing that cardiac
interference is greatly reduced and so unlikely to affect left–right
sensorimotor cortex connectivity. This example represents only one of
a number of interference fields; including low frequency respiratory
artifacts, the magnetomyogram and environmental noise. All

image of Fig.�7
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interference fields are actively suppressed by beamforming and this
makes it a more attractive artifact rejection technique than alternative
methods such as ICA which are subjective since noise components are
often manually selected and eliminated.

A major difficulty in measurement of source space FC comes as a
result of cross-talk (or signal leakage) between voxels in source space.
The ill posed nature of the inverse problem means that voxels are
not necessarily independent and as a result, signals from spatially
separate brain locations can become correlated even if no genuine
connectivity exists. Here, we highlight this by examining both lead
field correlation and beamformer weights correlation. If the beam-
former weights from spatially separate voxels are correlated, then the
reconstructed signals from those voxels will also be correlated (see
Eq. (1)) and this will lead to spurious FC. Fig. 2 shows examples of
both lead field and weights correlation images. Notice the anisotropic
nature of the spatial profile of correlation in both cases; highly
correlated regions appear that are distal to the seed location and could
easily be mistaken for spatially separate connected brain areas.
However, the beamformer weights correlation affects significantly
less cortical volume than lead field correlation; this demarcation
between lead field and weights correlation is highlighted in the non-
linear relationship between the twometrics shown in Fig. 2D. The fact
that independent weights can result from correlated lead fields gives
beamforming its distinct advantage when compared to non-adaptive
algorithms.

Weights correlation can be minimized by judicious paradigm
design. Beamformer spatial resolution inhomogeneous, with highest
spatial resolution achieved around areas of high signal (Barnes and
Hillebrand, 2003). Here weights were constructed using covariance
based on 300 s of resting state data and contiguous data recorded
during the finger movement paradigm. The increased amount of data,
coupled with the high power changes induced in sensorimotor
cortices during the finger movement allowed optimal spatial
resolution in brain regions identified with the motor network.
However, it should be pointed out that evenwith optimized paradigm
design, weights from a significant volume of brain tissue remained
correlated with the seed and such effects must be taken into account
in future studies (systematic evaluation of nulling beamformer
approaches (Dalal et al., 2006) may be of some value here). It also
should be appreciated that in constructing weights based on the
entire dataset we make the critical assumption that sources in regions
of interest are stationary, meaning that source orientation does not
change between the resting state and the task. Finally, we should note
that while weights correlation has been used here as an informative
measure of spatial specificity, this is not the only means to make such
measurements. The resolution kernel (see Sekihara et al., 2005 for a
complete description) is a means to assess the contribution of distant
sources to the estimated activity at a predetermined location. This
makes it potentially useful for investigation of signal leakage and
hence for future studies addressing new methodology for FC
measurement in MEG.

While weights correlation can test the independence of spatial
filters, it cannot be used to test directly the validity of FC
measurement. It is important to note that weights correlation is
certain to result in high FC values, however low correlation between
weights does not guarantee complete elimination of spurious FC.With
this in mind, in order to test the validity of FC measurement in this
paper we employed simulations. In our approach, dipolar sources
were simulated at the seed and test locations. These simulated sources
had equivalent orientation and amplitude to those measured using
the real data; however, their timecourses were random and
uncorrelated. Simulated MEG data from these two sources were
added to genuine noise data; the resulting sumwas projected through
the same spatial filters as used to project the real data, yielding
beamformer reconstructions of the simulated sources. Connectivity
between the seed and test locations was measured using our
simulated data. High levels of FC measured using simulated data
would be entirely artifactual and a result of either: 1) signal leakage
due to correlated beamformer weights; 2) spatial spread of magnetic
field induced by current at the two source locations (i.e. the magnetic
field from the first source overlapping with sensors used to
reconstruct the second source, or vice versa); or 3) correlated MEG
noise at the sensor level. All of these effects could result in spurious FC
measurement in real MEG data.

The accuracy of our simulations is shown to some degree by Fig.
A7; notice the good agreement between the real and simulated data in
frequency bands, metrics and at time scales (Δ) not exhibiting FC.
However, there are potential limitations to our simulation approach.
Firstly, simulating data is computationally demanding and while it
proved possible for 300 s resting state studies, the approach may be
impractical for longer studies. Secondly, since no subject was present
during the MEG noise recording, our simulations account for
environmental noise, but not for interference from non-neuronal
physiology or other brain sources; such effects must therefore be
assumed to be attenuated by beamforming (see also Appendix 2).
Thirdly, simulated timecourse data were based on white noise
meaning that the frequency content of the simulated Hilbert envelope
data may differ from that of the real data (see also Appendix 1). There
are alternative approaches to testing statistical significance and these
usually involve construction of surrogate data directly from the real
data. For example, an attractive technique involves randomizing the
phase of MEG data acquired at each sensor. This results in a set of
surrogate MEG signals with the same power spectrum as the real
signals, but randomized phase means that all genuine FC will be
destroyed. Projecting these surrogate data through the beamformer
spatial filters will result in a methodology for measurement of
spurious connectivity. However, this technique, and those that
involve switching segments of data in time, necessarily assumes
that MEG noise is uncorrelated across sensors. Further the effects of
field spread are not taken into account. Therefore, while this approach
is potentially useful, it should be investigated before being used to
assess the significance of resting state FC and it is likely that our
simulation approach is more conservative. For studies investigating a
change in connectivity between two or more conditions, computing
the difference of connectivity values between conditions may negate
the need for simulation. However, FC changes can also be affected by
SNR (Schoffelen and Gross, 2009) and care must be taken in using
such an approach.

Investigating electrodynamic connectivity

The utility of MEG as a means to measure FC lies in its ability to
assess the nature of electrodynamic connectivity. In this work we
considered 4 different metrics for FC measurements, two based on
envelope correlation, and two based on coherence. Our primary aim
was to assess whether electrodynamic FC underlies fcMRI based
metrics; envelope correlation is conceptually more similar to fcMRI
than coherence based methodologies and results showed that
correlation between left and right sensorimotor cortices peaks in the
β frequency band (although significant correlation was also observed
at higher frequencies (up to 40 Hz)). Interestingly, the time scale (Δ)
on which connectivity is measured appears to be of some importance.
Results in Fig. 3 show that AEC measured in 0.5 s time windows
exhibits no significant correlation; significance increases withΔ and is
maximum for a 10 s time window. Conversely, when computing CAE,
segmenting envelopes into 10 s time windows resulted in significant
inter-hemispheric correlation in the low β band only. Significancewas
increased as Δ was reduced and was maximal for Δ=0.5 s. This
provides information on the time scale of the correlation observed and
these results are in agreement with those previously published by Liu
et al. (2010) who, using channel space measurements, show that
coherence between Hilbert envelope signals from opposite
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hemispheres peaks in the 0–0.1 Hz range. These analyses implicate a
similar time scale to that of the fMRI BOLD response and thiswarrants
further investigation. We should however state that as Δ is reduced,
the reliability of correlation (and coherence) measurements is also
reduced and caremust be taken in interpretation of these results (see
below). In general the CAE approach elicited higher correlation
metrics than AEC; this is unsurprising since CAE effectively amounts
to a low pass filter on the Hilbert envelope data, this elevates the
signal to noise ratio and thus increase correlation coefficients
measured.

Our inter-hemispheric measures of coherence and imaginary
coherence between beamformer projected signals in the left and
right sensorimotor areas yielded no values above our chosen 0.05
significance level. This could be to be due to the nature of coherence
and the way in which it was measured. It is unlikely that electrical
signals from two brain areas will remain coherent for long periods of
time. Brain regions are more likely to exhibit transient coherence
(Varela et al., 2001; Hadjipapas et al., 2004). In this work, we compute
coherence averaged across a 300 s time window. It is therefore
unsurprising that resulting values are small. Conversely our envelope
correlation based approaches yielded much higher connectivity
values (N0.4 for CAE; N0.08 for AEC compared to ~0.02 for ICoh). A
likely reason is that envelope correlation approaches are less affected
by noise, external interference and temporal jitter inMEG signals (this
is particularly true of CAE), making them amore stable FC metric than
coherence based approaches. Amplitude correlation metrics should
not however be considered an improvement over coherence
approaches since the latter are likely to be less sensitive to third
party and common mode modulations. For example, given two
systems with similar characteristic time scales, they are unlikely to
appear as phase locked without being truly coupled. However, slower
fluctuations in the amplitude may be caused by third party
modulation or common mode effects. We therefore stress that
envelope correlation and coherence based approaches are comple-
mentary and are likely to represent fundamentally different under-
lying physiological processes.

In Fig. 4 we show the time evolution of AEC and ICoh FC metrics
and it is interesting to note a marked change in FC over 5 minute
resting state recordings. Recently, interest has grown in dynamic FC
measurements made using fcMRI (Chang and Glover, 2010) and
interpreting large FC changes offers the potential for a better
understanding of how these effects affect behavior. The current
paper is limited since all FC measurements were made in the resting
state, making FC change hard to interpret (see also below). However,
Fig. 4 shows that dynamic FC measurements are possible using
electromagnetic data; such measurements complement dynamic
fcMRI metrics and this offers exciting opportunities to measure the
time evolution of task induced change in FC.

Finally, there was some agreement between imaginary coherence
and amplitude correlation metrics. Figs. 3 and 7 show that ICoh
measurements peak in the β band, and at its maximum exceeds a
threshold corresponding to pb0.1. Fig. 4B shows correlation mea-
sured between dynamic ICoh and AEC metrics; with quantitative
analysis showing that correlation is strongest in the β band.Wemight
then speculate that amplitude correlation is driven by coherent bursts
of synchronized activity in spatially separate cell assemblies. Since the
imaginary part of coherence is implicated, this is known to exhibit a
non-zero phase lag. In all ICoh measurements the absolute value of
imaginary coherence was computed and no agreement was found
without this step. The phase of coherent bursts may therefore change
in different time windows leading to positive and negative imaginary
coherence values. That said, correlation between ICoh and AEC
timecourses was small (and did not reach statistical significance). It
therefore remains likely that these measurements generate comple-
mentary information and that both should be considered in future
studies.
Cross-modal comparison

The cross hemisphere correlation results were supported by our
cross modal comparison. The spatial agreement between FC measure-
ments made using MEG and fMRI data is compelling. Results showed
that the spatial signature of motor network connectivity can be
measured independently using MEG and fMRI, and further that the
location of peaks in correlation measured using fcMRI were similar to
those measured using CAE applied to MEG data. (Note, AEC yielded
similar peak positions, but due to the larger correlation coefficients
observed, CAE results were presented.) Significant left hemisphere
connectivity was observed in the θ, α, β and low γ frequency bands
with the best spatial agreement in the β band. This is shown in Fig. 6
and supported by our quantitative analyses where spatial correlation
between MEG and fcMRI derived FC maps is maximal in the β band.
While some degree of overlap between FC measurements was
observed for the α, β and low γ bands, the theta band showed FC
that was spatially distinct from that in fcMRI. This could be a result of
mislocalization (spatial filters are constructed independently for each
frequency band and their accuracy depends on SNR. The θ band SNR is
low potentially leading tomislocalization) or it could be indicative of a
spatially distinct network mediated by θ oscillations. This warrants
further investigation. It is unsurprising that β oscillations were most
strongly implicated in motor cortex FC. Previous work (Salmelin et al.,
1995; Stancak and Pfurtscheller, 1995; Pfurtscheller et al., 1996; Toma
et al., 2000) has highlighted the role of β oscillations in the motor
system and a close spatial relationship between β oscillations and the
BOLD response has also been observed (Stevenson et al., 2011). Our
results are in good agreement with other published work employing
both concurrent EEG/fMRI and MEG (Mantini et al., 2007; Liu et al.,
2010) and add further weight to a growing body of literature
suggesting a close relationship between neural oscillations and BOLD.

The strong agreement between the spatial signature of FC
measured using MEG and fcMRI acts to reduce confounds associated
with either techniquewhen used alone. The spatial accuracy of MEG is
known to be limited by the ill posed inverse problem and the spatial
similarity observed helps to validate the beamformer spatial filter
approach. However, of more importance is validation of the observed
BOLD correlations. Our data show that there is a sound electrophys-
iological basis for BOLD correlation between the left and right motor
cortices. Such correlation could alternatively be due to one (or a
combination) of the many possible sources of common mode
influences on hemodynamics (for example, overlap of capillary
beds, draining veins, pulsation and breathing). The fact that there is
agreement in MEG suggests a neuronal and not a hemodynamic basis
to fcMRI. It remains to be seen whether FC observed using fcMRI in
other brain networks (e.g. the default mode, attention and salience
networks) can also be substantiated using MEG.

Limitations and future study

The measurement of functional connectivity using MEG is an
interestingfield that has potential to overcomemany of the limitations
of hemodynamic approaches. However, it remains a complex
methodological problem and a complete solution is beyond the
scope of a single paper. Here we present compelling evidence for the
existence of electrophysiological FC, but these results must be taken at
face value; they are validwithin the limitations of the techniques used.

It is well known that the SNR of MEG changes with frequency and
is low for frequencies in the high γ band. Thismeans that the FC values
computed could be affected since high correlation or coherence in the
gamma band may be masked by poor SNR. Here signal to noise ratio
peaked in the alpha and β range (e.g. in left motor cortex signal
variance was 18±4 nA m, 31±9 nA m, 29±6 nA m, 24±5 nA
m and 7±1 nA m for the θ,α, low-β, high-β and the low-γ frequency
ranges respectively). There was some demarcation between FC results
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and SNR since, while SNR was high in the α-band, there was little
spatial agreement between fcMEG and fcMRI measurements (Fig. 7B).
However, the fact that FC metrics will be more accurate in bands
exhibiting high SNR remains a potential confound.

Despite the effectiveness of our simulations to test for spurious
connectivity, some limitations remain. In our appendices we show that
the beamformer effectively attenuates interference from a third brain
source. However this was limited since only a single location for that
source was chosen. It is conceivable that, had a different location been
chosen, FCmight have been affected.We also show effective attenuation
of cardiac interference, however results presented do not prove
categorically that the ECG or respiration has no effect on FC. In future
studies,we advisemeasurement of physiological parameters (i.e. cardiac
and respiratory cycles) alongside MEG. This would enable correlation of
physiological parameters withMEGHilbert envelopemetrics in order to
quantitatively assess the contribution of such interference. The
simulation approach is flexible and it is possible to include interference
sources in the simulation model; for example it may be possible to
construct simulated data based on singular value decomposition of the
real covariance matrix. However, this would rely on the explicit
assumption that spatially separate sources exhibiting real FC would be
represented by separate singular vectors in the SVD. An alternative
approach would be to employ ICA; one might expect real functional
networks and spurious networks elicited by interference to be separated
by ICA, if they have an uncorrelated spatio-temporal signature. Judicious
selection of independent components would thus eliminate spurious
connectivity. These extensions should be the topic of future.

The way in which data were segmented for computation of FC
should also be addressed. The reason for segmenting data was to
investigate the time scale of connectivity and our results show
similarity with previous work. The segmentation strategy also
enabled us to examine the time evolution of FC and enabled
comparison of envelope correlation and imaginary coherence FC
metrics (Fig. 4). However there is bias in our segmentation strategy.
For our AEC metric, the accuracy of the correlation coefficient is
dependent on the time-frequencywindow inwhich themeasurement
is made, and the number of measurements averaged; error in the
correlation coefficient is therefore dependent on the duration (Δ), the
number of segments, n, and the bandwidth of the Hilbert envelope
signal. For our Coh/ICoh metrics, coherence and imaginary coherence
were computed within each segment (i.e. the cross-spectrum was
measured for each segment and then averaged over segments). This
technique is also known to exhibit bias for small data segments. Our
real and simulated data are processed in the same way, and so
differences between AEC, Coh and ICoh values for real and simulated
data (Fig. 3) are not affected by bias due to data segmentation.
However, Δ does change for separate rows in Fig. 3C and so, as stated
above, the reader must exercise caution when interpreting the time
scale of connectivity. For example, AEC for Δ=0.5 s exhibits no
significant results; this could mean that no correlation is observed on
that time scale or it could result from poor estimation of correlation
coefficients using data segmented within a 0.5 s window. Future work
should aim to employ multi-taper spectral methods; these techniques
do not rely on data segmentation and therefore do not exhibit the
same bias as conventional the more spectral analysis used here.

Throughout this manuscript, we only measure resting state FC and
this has proved interesting to compare MEG and fcMRI based metrics.
However, future work should look to task driven changes in order to
gain a more complete understanding of how FC changes with activity,
and the relationship between metrics. For example, a direct compar-
ison of the time evolution of imaginary coherence and envelope
correlation between regions (as presented in Fig. 4) would be more
meaningful if one knew that those brain areas were undergoing
modulation. I.e. the peaks in the timecourses of FC (Fig. 4) could be
better interpreted if they could be linked with a specific event (e.g.
movement). However, care must be taken in using such measure-
ments. Introducing a task will cause marked changes in cortical
oscillatory power. Such changes, which occur in multiple brain areas,
will illicit correlation between envelope signals from those areas. This
would appear as an increase in FC, but could be due entirely to task
driven change in separate unimodal brain regions. This is a limitation
associated with all correlation approaches including those used in
fcMRI. (Although such effects can be minimized by judicious selection
of the time over which FC is measured (i.e. Δ).) In addition, changes in
cortical oscillatory power cause changes in signal to noise ratio that
can also result in spurious metrics of connectivity change (Schoffelen
and Gross, 2009) (e.g. coherence measures become more reliable as
SNR is increased and so an increase in SNR can appear as increased
coherence, hence FC). Again such effects must be carefully considered
in future studies examining task related FC changes.

Finally, the term ‘functional connectivity’ has been used to
describe temporal correlation or coherence between signals from
spatially separate brain areas. However, the fact that two signals are
correlated does not necessarily mean that the brain areas from which
they originate are functionally related. For example correlation could
be driven by a third brain region and could be caused by changes in
attention or arousal. In fact, work in monkey LFP (Leopold et al., 2003)
concluded that envelope correlations most likely do not represent
functional communication but common modulation due to sponta-
neous fluctuations in the arousal and attention systems. It is possible
that the fluctuations observed in the present paper result from similar
underlying mechanisms to those observed in monkey and this could
be investigated further using task positive paradigms.

Conclusion

In recent years,measurement of FC using fMRI has become a popular
and important research area and to date has revealed the spatial
signature of a number of hitherto unknown neural networks. However,
the technique is fundamentally limited since fMRI is an indirectmeasure
of brain activity. If the electrodynamic mechanisms underlying
hemodynamic connectivity are to be elucidated, a multi-modal
methodology will be key. In this paper, we have investigated resting
state FC using fcMRI and MEG. We have shown that beamforming
provides a suitable means to investigate FC in source space using MEG
data. However, care must be taken when interpreting these measure-
ments since cross talk between voxels in source space can potentially
lead to spurious connectivity and this effect must be taken into account
in all studies of this type. We have shown good spatial agreement
between FC measured using MEG and fcMRI; FC between sensorimotor
cortices was observed using both modalities, with the best spatial
agreement when MEG data are filtered into the β band. This finding
helps to reduce the potential confounds associated with each modality
alone: while it helps reduce the uncertainties in spatial patterns
generated by MEG (brought about by the ill posed inverse problem),
addition of electrodynamic metric confirms the neural basis of fcMRI
measurements. Finally, we have shown that multiple FC metrics can be
applied toMEGdata in order to investigate thenature of electrodynamic
connectivity. Our results further those from previous studies and add
weight to the argument that neural oscillatory processes are intimately
related to both functional connectivity and the BOLD response. The
clinical utility of MEG recordings has been highlighted in a number of
recent papers (for example see Guggisberg et al., 2008; Stoffers et al.,
2008) in which resting state measurements provide a protocol to
differentiate patient groups. Here, we present a framework of doing
source localization and FCmeasurement under resting state conditions.
This could have great impact in future clinical work.
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Appendix 1. Frequency spectra of Hilbert envelope data

A possible limitation of our simulated data approach is that white
noise is employed to generate the simulated seed and test time-
courses. These white noise data are frequency filtered into bands of
interest (α, β etc.) and the Hilbert envelope of the beamformer
reconstructed source timecourses is used to test for spurious
correlation. White noise by construction has no temporal structure
whereas temporal structure may exist in Hilbert envelopes derived
from real data. It is therefore possible that the differences in FC
measured between the real and simulated data (Fig. 3) are not due to
bivariate signal coupling between locations of interest, but are due to
univariate temporal structure that exists in the genuine Hilbert
envelope data that is not present in the simulated Hilbert envelope
data.

To examine this in detail we first consider the frequency
composition of the Hilbert envelopes, derived from real and simulated
beamformer reconstructed (BFR) data. Fig. A1 shows BFR Hilbert
envelope power spectra (HEPS) for all six subjects. The blue line
shows the HEPS derived from real data; the red line shows HEPS for
simulated data (averaged over all iterations of the simulations); the
black lines show the averaged simulated HEPS plus/minus the
standard deviation computed across iterations. Data show HEPS
derived in the low-β band only. While the simulated spectra are a
reasonablematch for spectra derived from real data, it is interesting to
note that the two measurements diverge in the 0 Hz–0.5 Hz range;
this is particularly apparent for subjects 1, 5 and 6. This divergence
potentially indicates temporal structure in the real envelope that is
Fig. A1. Hilbert envelope power spectra derived from real and simulated BFR MEG data for a
sensorimotor area.
not present in the simulated envelope data and therefore warrants
further investigation.

In order to test whether the differences in FC measurement
between real and simulated data, observed in Fig. 3, are due to
bivariate coupling, or are a result of the low frequency differences
between the real and simulated spectra shown in Fig. A1, we
recomputed a new set of simulated MEG data. These new simulations
were undertaken for the β band only and were based on a two step
process:

1) Construction of a surrogate envelope: The Hilbert envelope from real
data was computed and Fourier transformed to give.

HF fð Þ = A fð Þ exp iϕ fð Þð Þ ðA1Þ

Where HF(f) represents the Fourier transformed Hilbert enve-
lope; A( f) represents the amplitude of each frequency component
and ϕ( f) represents the phase of each frequency component.
Surrogate envelope data were then computed in frequency space
as:

HFSurrogate fð Þ = A fð Þ exp iϕnew fð Þð Þ ðA2Þ

Where ϕnew is a random number between−π and π. Maintaining
the amplitude of frequency components ensures that the
surrogate Hilbert envelope has the same power spectrum as
that derived from real data. However, phase randomization
ensures that the temporal profile of the surrogate Hilbert
envelope is not correlated with that of the real Hilbert envelope.

2) Construction of the simulated dataset: White noise data were
generated and frequency filtered into the β band (as previously)
to yield a simulated source timecourse. This is then multiplied
(element by element) with the surrogate Hilbert envelope.
ll six subjects. In all cases spectra are computed in the seed location in the left primary



Fig. A3. AEC (Δ=10 s) (top panel) and CAE (Δ=0.5 s) (bottompanel) computed in the β band.Within each of the four quadrants the left hand plot shows the raw FCmetrics computed
using real (red) and simulated (blue) data. In the right hand plot the red bar shows the corrected FC metric while the blue bar shows the correlation value required to reach statistical
significance. A) SimulatedMEGsources based onwhite noise (i.e. equivalent to themainmanuscript). B) SimulatedMEG sourcesbased ona surrogateHilbert envelope as explained above.

Fig. A2.Hilbert envelope power spectra derived from real data, and simulatedMEG data employing surrogate Hilbert envelopes. In all cases spectra are computed in the seed location
in the left primary sensorimotor area.
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Fig. A4. Fig. A4 Lead field patterns taken from a single representative source. A) Source in the left motor cortex. B) Interfering third source midway between the left and right motor
cortices. C) Source in the right motor cortex.
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Multiplication in this way ensures that the temporal structure of
the simulated source envelope is similar to that of a real source
envelope. Simulated source timecourses were multiplied by the
lead fields and real MEG noise added in order to construct
simulated datasets. Both the white noise and the phase
randomization were different for each iteration of the simulation.
Fig. A5. AEC (Δ=10 s) (top panel) and CAE (Δ=0.5 s) (bottom panel) computed in the β
computed using real (red) and simulated (blue) data. In the right hand plot the red bar sho
reach statistical significance. A) The third source has zero amplitude (i.e. result equivalent to
left and right motor cortex sources.
Simulated data were projected through the same spatial filters as
those used to project the real data, resulting in beamformer
reconstructions of the simulated left and right motor cortex sources.
Simulated reconstructed sources were then Hilbert transformed to
derive the BFR Hilbert envelopes. Fig. A2 shows the BFR HEPS
derived from real data (blue) and our newly simulated data (red
band. Within each of the four quadrants the left hand plot shows the raw FC metrics
ws the corrected FC metric while the blue bar shows the correlation value required to
those in Fig. 3). B) Third source has amplitude equal to themean of the amplitudes of the
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line). The black lines show plus/minus standard deviation for the
simulated data. Notice now that the HEPS derived from real data are
better encompassed by the new simulated spectra than in the
original case (Fig. A1) where simulated sources were based on white
noise only.

Connectivity between the seed and test locations was measured
using both the averaged envelope correlation (AEC) (Δ=10 s) and
the correlation of averaged envelope (CAE) (Δ=0.5 s) techniques.
Fig. A3 shows results of both metrics in the β band; original FC values
(computed with white noise simulated data) are compared to the
modified FC values (computed using the surrogate Hilbert envelope
simulations).

As shown in Fig. A3, simulating MEG sources based on surrogate
Hilbert envelopes had little effect on the overall FC result. AEC and CAE
values computed in simulation showed a small increase using a
surrogate envelope approach, however this effect was small and
correlation between signals in the left and right motor cortices remains
significant. The outcome of these simulations implies that the β band
effects observed in the manuscript are due to bivariate coupling
between locations of interest, and are not a result of differences in the
temporal structure of real and simulated timecourse data.

Appendix 2. The existence of an interfering brain source

The simulation approach that we employ to test for spurious
connectivity does not represent a perfect solution to eliminate all
Fig. A6. Rejection of cardiac interference with spatial filtering. A) The measured ECG and th
interference plotted for each frequency band of interest. C) Correlation between MEG and EC
affected by a source in left primary motor cortex; the green line shows correlation with
D) Equivalent to (C) but shown for the right motor cortex. Notice the significant drop in EC
spurious connectivities. It is possible that a third brain source (not
accounted for by our simulations) may interfere with both the seed
and test sources and thus cause spurious connectivity between them.
In order to examine the effects of such interference, here we
undertake an extension to the simulations described above.

As previously, dipolar sources were simulated at the seed and test
locations in the right and left motor cortices respectively. These
sources had equivalent orientation and amplitude to those measured
using real data; however, their timecourses were random and
uncorrelated. In addition, a third source was added: The location of
the third source was the mid-point of a vector joining the left and
right motor cortices. This was computed on a subject-by-subject basis
and chosen since it was the most likely location for a source that
would interfere with both locations of interest. The orientation of the
third source was set according to that measured using real data
(computed on a subject-by-subject basis). The lead fields for all three
sources are shown in Fig. A4. The third source timecourse was not
correlated with either of the other simulated sources. The amplitude
of the third source was varied: in the first case it was set to zero (to
give a result equivalent to that in Figs. 3 and A7); in the second case it
was set as the mean measured amplitude of the left and right motor
cortex sources. SimulatedMEG data were added to genuine noise data
in order to construct the simulated datasets. Note that all measure-
ments were limited to the low β frequency band.

Simulated data were projected through the same spatial filters as
those used to project the real data resulting in beamformer
e magnetic field from a single MEG sensor. B) The channel space topography of cardiac
G plotted as a function of frequency; the blue line shows correlation with sensors most
the beamformer reconstructed timecourse for the same source in left motor cortex.
G correlation with application of the spatial filter.
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reconstructions of the simulated left and right motor cortex sources.
Connectivity between the seed and test locations was measured using
both AEC (Δ=10 s) and CAE (Δ=0.5 s). Results are shown in Fig. A5.

Results in Fig. A5 show that a source placedmidway between the left
and right motor cortices has little effect on the FC values measured in
simulation. The implication is that the beamformer spatial filters
(derived from the real data) act as an effective means to suppress this
third source.

Appendix 3. The existence of an interfering non-brain source

In a single subject, the electrocardiogram (ECG) was acquired
concurrently with MEG data by placing three electrodes on the
subject's chest. ECG data were acquired specifically to assess the
contribution of electrical interference from the heart to the MEG. In
order to assess the effect of non-neuronal physiology on raw and
beamformer projected MEG data, the level of cardiac interference in a
single subject was measured. The ECG was filtered into the same
frequency bands as those used for MEG analysis. The Pearson
correlation coefficient between the filtered ECG and the filtered
MEGwas assessed at eachMEG sensor, resulting in amap showing the
topographical distribution, in sensor space, of cardiac interference for
each of the seven frequency bands. Note that Pearson correlation
values were computed for the data acquired during the resting state
phase of the experiment only. MEG data were then projected into the
brain. (To ensure optimized spatial resolution, the beamformer
weights were based on covariance computed using the entire
dataset.) Beamformer projected timecourses were extracted from
two locations of interest in the left and right sensorimotor areas (as
defined by the MEG localizer experiment) and the Pearson correlation
coefficients between the ECG and the two projected timecourses
(again for the resting phase of the experiment) were computed. These
correlation values were compared to equivalent values computed at
the MEG sensors most affected by the motor cortex sources (i.e. those
Fig. A7. Fig. A7 AEC, CAE, Coh and ICoh metrics applied to real (blue curve) and simulated (bl
four separate FC metrics and the 5 rows show different values of delta.
MEG sensors with a lead field greater than 80% of the maximum
absolute lead field at any sensor).

Fig. A6 shows an example of the interference rejection properties
of the beamformer. As alluded to in the introduction, a confound of
fcMRI is that results can be affected by non-neuronal physiological
interference caused by, for example, the cardiac cycle, changes in the
cardiac cycle, respiration or changes in respiration rate. Here we show
that MEG can also be affected by similar confounds since it is
susceptible to interference from non-neuronal sources, in this case the
electrical signal from the heart. Fig. A6A shows the ECG plotted
alongside the MEG signal from a single sensor. Fig. A6B shows the
Pearson correlation between the frequency filtered ECG and the
frequency filtered channel space MEG signals. Note that cardiac
interference affects a large number of MEG sensors and, unless
adequately dealt with, could lead to spurious connectivity measure-
ment, particularly when using channel space metrics. Figs. A6C and D
highlight the artifact rejection properties of the beamformer. In both
cases the blue line shows Pearson correlation between the ECG and
the MEG sensors most affected by sources in the left (C) and right (D)
sensorimotor cortices. The green line shows correlation between the
ECG and the beamformer reconstructed timecourses from the peak
voxel of interest in the left (C) and right (D) sensorimotor cortices.
Notice that for sensor space data, high correlation with the ECG is
observed, and further that correlation is inhomogeneous with respect
to frequency. However, following application of the spatial filter,
correlation is significantly reduced and is less than 0.05 in all
frequency bands.

Appendix 4. The existence of an interfering brain source

In Fig. 3C, AEC, CAE, Coh and ICoh measurements extracted from
real data have been corrected by subtraction of the equivalent metrics
applied to simulated data. In Fig. A7, for completeness, we show the
AEC, CAE, Coh and ICoh metrics applied to real and simulated data
ack curve) data extracted from left and right motor cortices. The four columns show the
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separately. In all cases the black line shows the metrics applied to
simulated data while the blue curve shows the metrics applied to real
data. The four columns show the four separate FC metrics and the 5
rows show 5 different values of delta.

References

Barnes, G.R., Hillebrand, A., 2003. Statistical flattening of beamformer images. Human
Brain Mapping 18, 1–12.

Birn, R.M., Diamond, J.B., Smith, M.A., Bandettini, P.A., 2006. Separating respiratory
variation related fluctuations from neuronal activity related fluctuations in fMRI.
Neuroimage 31, 1536–1548.

Birn, R.M., Murphy, K., Bandettini, P.A., 2008. The effect of respiration variations on
independent component analysis results of resting state functional connectivity.
Hum. Brain Mapp. 29, 740–750.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echo planar MRI. Magn. Reson. Med. 34,
537–541.

Brookes, M.J., Gibson, A.M., Hall, S.D., Furlong, P.L., Barnes, G.R., Hillebrand, A., Singh, K.D.,
Holliday, I.E., Francis, S.T., Morris, P.G., 2004. A general linear model for MEG
beamformer imaging. Neuroimage 23, 936–946.

Brookes, M.J., Gibson, A.M., Hall, S.D., Furlong, P.L., Barnes, G.R., Hillebrand, A., Singh, K.D.,
Holliday, I.E., Francis, S.T., Morris, P.G., 2005. GLM-beamformermethod demonstrates
stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response
in visual cortex. Neuroimage 26, 302–308.

Brookes, M.J., Mullinger, K.J., Stevenson, C.M., Morris, P.G., Bowtell, R., 2008a.
Simultaneous EEG source localisation and artifact rejection during concurrent
fMRI by means of spatial filtering. Neuroimage 1090–1104.

Brookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.P., Barnes, G.R.,
Hillebrand, A., Morris, P.G., 2008b. Optimising experimental design for MEG
beamformer imaging. Neuroimage 39, 1788–1802.

Brookes, M.J., Vrba, J., Mullinger, K.J., Geirsdottir, G.B., Yan, W.X., Stevenson, C.M.,
Bowtell, R., Morris, P.G., 2009. Source localisation in concurrent EEG/fMRI:
applications at 7T. Neuroimage 45, 440–452.

Brookes, M.J., Zumer, J.M., Stevenson, C.M., Hale, J.R., Barnes, G.R., Vrba, J., Morris, P.G.,
2010. Investigating spatial specificity and data averaging in MEG. Neuroimage 49,
525–538.

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain
connectivity measured with fMRI. Neuroimage 50, 81–98.

Cohen, D., 1972. Magnetoencephalography: detection of the brains electrical activity
with a superconducting magnetometer. Science 5, 664–666.

Dalal, S.S., Zumer, J.M., Agrawal, V., Hild, K.E., Sekihara, K., Nagarajan, S.S., 2004.
NUTMEG: a neuromagnetic source reconstruction toolbox. Neurol. Clin. Neuro-
physiol. 52, 1479–1489.

Dalal, S.S., Sekihara, K., Nagarajan, S.S., 2006. Modified beamformers for coherent
source region suppression. IEEE Trans. Biomed. Eng. 53, 1357–1363.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, A.,
Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., Corbetta, M., 2009. Temporal
dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. U. S.
A. 107, 6040–6045.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711.

Fox, M.D., Snyder, A.Z., Zacks, J.M., Raichle, M.E., 2006. Coherent spontaneous activity
accounts for trial to trial variability in human evoked brain responses. Nat.
Neurosci. 9, 23–25.

Friston, K.J., 1999. Schizophrenia and the disconnection hypothesis. Acta Psychiatr.
Scand. Suppl. 395, 68–79.

Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction
of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44,
162–167.

Goldman, R.I., Stern, J.M., Engel, J., Cohen, M.S., 2001. Tomographic mapping of alpha
rhythm using simultaneous EEG/fMRI. Neuroimage S1291.

Gray, C.M., Konig, P., Engel, A.K., Singer, W., 1989. Oscillatory responses in cat visual
cortex exhibit intercolumnar synchronization which reflects global stimulus
properties. Nature 338, 334–337.

Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R., 2001.
Dynamic imaging of coherent sources: studying neural interactions in the human
brain. Proc. Natl. Acad. Sci. U. S. A. 98, 694–699.

Guggisberg, A.G., Honma, S.M., Findlay, A.M., Dalal, S.S., Kirsch, H.E., Berger, M.S.,
Nagarajan, S.S., 2008. Mapping functional connectivity in patients with brain
lesions. Ann. Neurol. 63, 193–203.

Hadjipapas, A., Hillebrand, A., Holliday, I.E., Singh, K.D., Barnes, G.R., 2004. Assessing
interactions of linear and nonlinear neuronal sources using MEG beamformers: a
proof of concept. Clin. Neurophysiol. 116.

Hale, J.R., Brookes, M.J., Hall, E.L., Stevenson, C.M., Zumer, J.M., Francis, S., Morris, P.G.,
2010. Comparison of functional connectivity in default mode and sensorimotor
networks at 3 and 7T. Magn. Reson. Mater. Phys., Biol. Med. 23, 339–349.

Huang, M.X., Mosher, J.C., Leahy, R.M., 1999. A sensor-weighted overlapping-sphere
head model and exhaustive head model comparison for MEG. Phys. Med. Biol. 44,
423–440.

Laufs, H., 2008. Endogenous brain oscillations and related networks detected by surface
EEG-combined fMRI. Hum. Brain Mapp. 29, 762–769.

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., Krakow, K.,
2003. EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463–1476.
Leopold, D.A., Murayama, Y., Logothetis, N.K., 2003. Very slow activity fluctuations in
monkey visual cortex: implications for functional brain imaging. Cereb. Cortex 13,
422–433.

Liu, Z., Fukunaga, M., de Zwart, J.A., Duyn, J.H., 2010. Large-scale spontaneous
fluctuations and correlations in brain electrical activity observed with magne-
toencephalography. Neuroimage 102–111.

Mantini, D., Perucci, M.G., Del Gratta, C., Romani, G.L., Corbetta, M., 2007. Electrophys-
iological signatures of resting state networks in the human brain. Proc. Natl. Acad.
Sci. U. S. A. 104, 13170–13175.

Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., Taskin, B.,
Obrig, H., Villringer, A., 2003. Correlates of alpha rhythm in functional
magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20,
145–158.

Pfurtscheller, G., Stancak Jr., A., Neuper, C., 1996. Post-movement beta synchronization.
A correlate of an idling motor area? Electroencephalogr. Clin. Neurophysiol. 98,
281–293.

Phillips, W.A., Silverstein, S.M., 2003. Convergence of biological and psychological
perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–82.

Poole, M., Bowtell, R., 2008. Volume parcellation for improved dynamic shimming.
Magn. Reson. Mater. Phys., Biol. Med. 21, 31–40.

Robinson, S., Vrba, J., 1998. Functional neuroimaging by synthetic aperture
magnetometry. In: Yoshimoto, T., Kotani, M., Kuriki, S., Karibe, H., Nakasato,
N. (Eds.), Recent Advances in Biomagnetism. Tohoku Univ Press, Sendai, Japan,
pp. 302–305.

Salmelin, R., Hamalainen, M., Kajola, M., Hari, R., 1995. Functional segregation of
movement-related rhythmic activity in the human brain. Neuroimage 2, 237–243.

Sarvas, J., 1987. Basic mathematical and electromagnetic concepts of the biomagnetic
inverse problem. Phys. Med. Biol. 32, 11–22.

Schnitzler, A., Gross, J., 2005. Normal and pathological oscillatory communication in the
brain. Nat. Re. Neurosci. 6.

Schoffelen, J.M., Gross, J., 2009. Source connectivity analysis with MEG and EEG. Hum.
Brain Mapp. 30, 1857–1865.

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., 2004. Performance of an MEG
adaptive-beamformer source reconstruction technique in the presence of additive
low-rank interference. IEEE Trans. Biomed. Eng. 51, 90–99.

Sekihara, K., Sahani, M., Nagarajan, S.S., 2005. Localization bias and spatial resolution of
adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuro-
image 25, 1056–1067.

Sekihara, K., Hild, K.E., Nagarajan, S.S., 2006. A novel adaptive beamformer for MEG
source reconstruction effective when large background brain activities exist. IEEE
Trans. Biomed. Eng. 53, 1755–1764.

Singh, K.D., Barnes, G.R., Hillebrand, A., Forde, E.M., Williams, A.L., 2002. Task related
changes in cortical synchrony are spatially coincident with the haemodynamic
response. Neuroimage 16, 103–114.

Stam, C.J., van Dijk, B.J., 2002. Synchronization likelihood: an unbiased measure of
generalized synchronization in multivariate data sets. Physica D 163, 236–251.

Stam, C.J., Nolte, G., Daffertshofer, A., 2007. Phase lag index: assessment of functional
connectivity frommulti channel EEG and MEG with diminished bias from common
sources. Hum. Brain Mapp. 28, 1178–1193.

Stancak, A.J., Pfurtscheller, G., 1995. Desynchronisation and recovery of beta rhythms
during brisk and slow self-paced finger movements in man. Neurosci. Lett. 196,
21–24.

Stephan, K.E., Friston, K.J., Frith, C.D., 2009. Dysconnection in schizophrenia: from
abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull.
509–527.

Stevenson, C.M., Brookes, M.J., Morris, P.G., 2011. Beta band correlates of the fMRI BOLD
response. Hum. Brain Mapp. 32, 182–197.

Stoffers, D., Bosboom, J.L.W., Wolters, E.C., Stam, C.J., Berendse, H.W., 2008.
Dopaminergic modulation of cortico-cortical functional connectivity in Parkinson's
disease: an MEG study. Exp. Neurol. 213, 191–195.

Toma, K., Nagamine, T., Yazawa, S., Terada, K., Ikeda, A., Honda, M., Oga, T., Shibasaki, H.,
2000. Desynchronisation and synchronization of central 20 Hz rhythms associated
with voluntary muscle relaxation: a magnetoencephalographic study. Exp. Brain
Res. 134, 417–425.

Uhlhaas, P.J., Singer, W., 2010. Abnormal neural oscillations and synchrony in
schizophrenia. Nat. Rev. Neurosci. 11, 100–113.

Van Drongelen, W., Yuchtman, M., Van Veen, B.D., Van Huffelen, A.C., 1996. A spatial
filtering technique to detect and localize multiple sources in the brain. Brain
Topogr. 9, 39–49.

Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localisation of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Trans. Biomed. Eng. 44, 867–880.

Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase
synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239.

von Stein, A., Chiang, C., Konig, P., 2000. Top–down processing mediated by interareal
synchronization. PNAS 97, 14748–14753.

Winterer, G., Carver, F.W., Musso, M., Mattay, V., Weinberger, D.R., Coppola, R.,
2007. Complex relationship between BOLD signal and synchronization/
desynchronisation of human brain MEG oscillations. Hum. Brain Mapp. 28,
805–816.

Wipf, D.P., Owen, J.P., Attias, H.T., Sekihara, K., Nagarajan, S.S., 2010. Robust Bayesian
estimation of the location, orientation, and time course of multiple correlated
neural sources using MEG. Neuroimage 49, 641–655.

Wise, R.G., Ide, K., Poulin, M.J., Tracey, I., 2004. Resting fluctuations in arterial carbon
dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21,
1652–1664.



1104 M.J. Brookes et al. / NeuroImage 56 (2011) 1082–1104
Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K.,
Fries, P., 2007. Modulation of neuronal interactions through neuronal synchroni-
zation. Science 316, 1609–1612.

Yacoub, E., Shmuel, A., Pfeuffer, J., Van de Moortele, P.F., Adriany, G., Andersen, P.,
Vaughan, J.T., Merkle, H., Ugurbil, K., Hu, X.P., 2001. Imaging brain function in
humans at 7 Tesla. Magn. Reson. Med. 45, 588–594.
Zumer, J.M., Attias, H.T., Sekihara, K., Nagarajana, S.S., 2007. A probabilistic algorithm
integrating source localization and noise suppression for MEG and EEG data.
Neuroimage 37, 102–115.

Zumer, J.M., Stevenson, C.M., Brookes, M.J., Francis, S.T., Morris, P.G., 2010. Relating
BOLD fMRI and neural oscillations through convolution and optimal linear
weighting. Neuroimage 49, 1479–1489.


	Measuring functional connectivity using MEG: Methodology and comparison with fcMRI
	Introduction
	Methods
	Data acquisition
	MEG
	fMRI

	Data analysis
	Analysis of localizer data
	Analysis of resting state fcMRI data
	Analysis of resting state MEG data
	Investigating electrodynamic connectivity
	Cross modal comparison


	Results
	Localizer analysis
	Spatial filter properties
	Investigating electrodynamic connectivity
	Cross-modal comparison
	Remaining issues

	Discussion
	Beamformer methodology and FC measurement
	Investigating electrodynamic connectivity
	Cross-modal comparison
	Limitations and future study

	Conclusion
	Acknowledgments
	Frequency spectra of Hilbert envelope data
	The existence of an interfering brain source
	The existence of an interfering non-brain source
	The existence of an interfering brain source
	References


