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Abstract

The absolute order is a natural partial order on a Coxeter group W . It can be viewed as an analogue of
the weak order on W in which the role of the generating set of simple reflections in W is played by the
set of all reflections in W . By use of a notion of constructibility for partially ordered sets, it is proved that
the absolute order on the symmetric group is homotopy Cohen–Macaulay. This answers in part a question
raised by V. Reiner and the first author. The Euler characteristic of the order complex of the proper part of
the absolute order on the symmetric group is also computed.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a finite Coxeter group W with set of reflections T . Given w ∈ W , let �T (w) denote
the smallest integer k such that w can be written as a product of k reflections in T . The absolute
order, or reflection length order, is the partial order on W denoted by � and defined by letting

u � v if and only if �T (u) + �T

(
u−1v

) = �T (v)
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for u,v ∈ W . Equivalently, � is the partial order on W with cover relations w ≺ wt , where
w ∈ W and t ∈ T are such that �T (w) < �T (wt). We refer to [2, Section 2.4] for elementary
properties of the absolute order and related historical remarks and mention that the pair (W,�)

is a graded poset having the identity e ∈ W as its unique minimal element and rank function �T .
The significance of the absolute order in combinatorics, group theory, invariant theory and

representation theory stems from the following facts. First, it can be viewed as an analogue of
the weak order [7, Chapter 3] on W (this order can be defined by replacing the generating set
of all reflections in W , in the definition of the absolute order, with the set of simple reflections).
Second, the maximal chains in intervals of the form [e,w] correspond to reduced words of w

with respect to the alphabet T and are relevant in the study of conjugacy classes in W [11].
Third, the rank-generating polynomial of (W,�) is given by

∑
w∈W

q�T (w) =
�∏

i=1

(1 + eiq),

where e1, e2, . . . , e� are the exponents [13, Section 3.20] of W and � is its rank. Furthermore, if c

denotes a Coxeter element of W , then the combinatorial structure of the intervals in (W,�) of the
form [e, c], known as noncrossing partition lattices, plays an important role in the construction of
new monoid structures and K(π,1) spaces for Artin groups associated with W ; see for instance
[4,9,10].

When c is a Coxeter element, the intervals [e, c] in the absolute order have pleasant com-
binatorial and topological properties. In particular, they were shown to be shellable in [3]. The
question of determining the topology of (W \ {e},�) was raised by Reiner [15], [1, Problem 3.1]
and the first author (unpublished) and was also posed by Wachs [20, Problem 3.3.7]. In this pa-
per we focus on the case of the symmetric group Sn (the case of other Coxeter groups will be
treated in [14]). We will denote by Pn the partially ordered set (Sn,�) and by P̄n its proper
part (Sn \ {e},�). Before we state our main results, let us describe the poset Pn more explicitly.
Given a cycle c = (i1 i2 · · · ir ) ∈ Sn and indices 1 � j1 < j2 < · · · < js � r , we say that the cy-
cle (ij1 ij2 · · · ijs ) ∈ Sn can be obtained from c by deleting elements. Given two disjoint cycles
a, b ∈ Sn each of which can be obtained from c by deleting elements, we say that a and b are
noncrossing with respect to c if there does not exist a cycle (i j k l) of length four which can be
obtained from c by deleting elements, such that i, k are elements of a and j, l are elements of b.
For instance, if n = 9 and c = (3 5 1 9 2 6 4) then the cycles (3 6 4) and (5 9 2) are noncrossing
with respect to c but (3 2 4) and (5 9 6) are not. It can be checked [9, Section 2] that for u,v ∈ Sn

we have u � v if and only if

• every cycle in the cycle decomposition for u can be obtained from some cycle in the cycle
decomposition for v by deleting elements and

• any two cycles of u which can be obtained from the same cycle c of v by deleting elements
are noncrossing with respect to c.

Fig. 1 depicts the Hasse diagram of Pn for n = 4. We note that the rank of an element w of Pn is
equal to n − p, where p is the number of cycles in the cycle decomposition for w. In particular,
Pn has rank n − 1 and its maximal elements are the cycles in Sn of length n.

The main results of this paper are as follows.

Theorem 1.1. The poset P̄n is homotopy Cohen–Macaulay for all n � 1. In particular, it is
homotopy equivalent to a wedge of (n − 2)-dimensional spheres and Cohen–Macaulay over Z.
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Fig. 1. The absolute order on the symmetric group S4.

Theorem 1.2. The reduced Euler characteristic of the order complex Δ(P̄n) satisfies

∑
n�1

(−1)nχ̃
(
Δ(P̄n)

) tn

n! = 1 − C(t) exp
{−2tC(t)

}
, (1)

where C(t) = 1
2t

(1 − √
1 − 4t) is the ordinary generating function for the Catalan numbers.

Theorems 1.1 and 1.2 are proved in Sections 4 and 5, respectively. Theorem 1.1 is proved by
showing that Pn has a property which we call strong constructibility. This notion is motivated
by the notion of constructibility for simplicial complexes [12] (see also [16]) and is introduced
and studied in Section 3. Section 2 discusses briefly some of the background from topological
combinatorics needed to understand Theorems 1.1 and 1.2.

2. Preliminaries

In this section we fix notation, terminology and conventions related to simplicial complexes
and partially ordered sets (posets) and recall some fundamental definitions and facts. For more
information on these topics we refer the interested reader to [6], [17, Chapter II], [18, Chapter 3]
and [20]. Throughout this paper we use the notation [n] = {1,2, . . . , n}.

All simplicial complexes and posets we will consider in this paper are finite. All topological
properties of an abstract simplicial complex Δ we mention will refer to those of its geometric
realization X (see [6, Section 9]). For instance, Δ is k-connected if the homotopy groups πi(X,x)

vanish for all 0 � i � k and x ∈ X. The elements of an abstract simplicial complex Δ are called
faces. The link of a face F ∈ Δ is defined as linkΔ(F) = {G \ F : G ∈ Δ, F ⊆ G}. The complex
Δ is said to be Cohen–Macaulay (over Z) if

H̃i

(
linkΔ(F),Z

) = 0
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for all F ∈ Δ and i < dim linkΔ(F) and homotopy Cohen–Macaulay if linkΔ(F) is
(dim linkΔ(F) − 1)-connected for all F ∈ Δ. A d-dimensional simplicial complex Δ is said
to be pure if all facets (faces which are maximal with respect to inclusion) of Δ have dimen-
sion d . A pure d-dimensional simplicial complex Δ is (pure) shellable if there exists a total
ordering G1,G2, . . . ,Gm of the set of facets of Δ such that for all 1 < i � m, the intersection of
G1 ∪ · · · ∪ Gi−1 with Gi is pure of dimension d − 1. We have the hierarchy of properties

pure shellable ⇒ homotopy Cohen–Macaulay ⇒ Cohen–Macaulay ⇒ pure

for a simplicial complex (in Section 3 we will insert constructibility between the first and second
property). Moreover, any d-dimensional (finite) homotopy Cohen–Macaulay simplicial complex
is (d − 1)-connected and hence homotopy equivalent to a wedge of d-dimensional spheres.

The order complex, denoted by Δ(P ), of a poset P is the abstract simplicial complex with
vertex set P and faces the chains (totally ordered subsets) of P . All topological properties of a
poset P we mention will refer to those of (the geometric realization of) Δ(P ). The rank of P

is defined as the dimension of Δ(P ), in other words as one less than the largest cardinality of a
chain in P . We say that P is bounded if it has a minimum and a maximum element, graded if
Δ(P ) is pure and pure shellable if so is Δ(P ). A subset I of P is called an (order) ideal if we
have x ∈ I whenever x � y holds in P and y ∈ I .

3. Constructible complexes and posets

In this section we introduce the notion of strong constructibility for partially ordered sets and
discuss some of its features which will be important for us. We will use the following variation
of the notion of constructibility for simplicial complexes [12,16], [6, Section 11.2].

Definition 3.1. A d-dimensional simplicial complex Δ is constructible if it is a simplex or it can
be written as Δ = Δ1 ∪Δ2, where Δ1,Δ2 are d-dimensional constructible simplicial complexes
such that Δ1 ∩ Δ2 is constructible of dimension at least d − 1.

The classical notion of constructibility differs in that, in the previous definition, the dimension
of Δ1 ∩ Δ2 has to equal d − 1. It is well known that pure shellability implies constructibility
(in the classical sense). We do not know whether our notion of constructibility coincides with
the (possibly more restrictive) classical notion. Observe, however, that constructible simplicial
complexes, in the sense of Definition 3.1, are pure and that they enjoy the properties listed in the
following lemma and corollary.

Lemma 3.2.

(i) If Δ is a d-dimensional constructible simplicial complex then Δ is (d − 1)-connected.
(ii) If Δ is constructible then so is the link of any face of Δ.

Proof. Part (i) follows from the fact [6, Lemma 10.3(ii)] that if Δ1,Δ2 are k-connected and
Δ1 ∩Δ2 is (k −1)-connected then Δ1 ∪Δ2 is k-connected. Part (ii) follows from the observation
that if F is a face of Δ1 ∪ Δ2 then linkΔ1∪Δ2(F ) = linkΔ1(F ) ∪ linkΔ2(F ) and linkΔ1(F ) ∩
linkΔ2(F ) = linkΔ1∩Δ2(F ). �
Corollary 3.3. If Δ is a constructible simplicial complex then Δ is homotopy Cohen–Macaulay.
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Proof. This follows from Lemma 3.2. �
Lemma 3.4. Let Δ1,Δ2, . . . ,Δk be d-dimensional constructible simplicial complexes.

(i) If the intersection of any two or more of Δ1,Δ2, . . . ,Δk is constructible of dimension d ,
then their union is also constructible.

(ii) If the intersection of any two or more of Δ1,Δ2, . . . ,Δk is constructible of dimension d − 1,
then their union is also constructible.

Proof. We proceed by induction on k. The case k = 1 is trivial and the case k = 2 is clear by
definition, so we assume that k � 3. The complexes Δ1 ∩ Δk, . . . ,Δk−1 ∩ Δk have dimension d

or d −1 in the cases of parts (i) and (ii), respectively, and satisfy the hypothesis of part (i). Hence,
by our induction hypothesis, their union (Δ1 ∪ · · · ∪ Δk−1) ∩ Δk is constructible of dimension d

or d − 1, respectively. Since, by induction, Δ1 ∪ · · · ∪ Δk−1 is constructible of dimension d and,
by assumption, so is Δk , it follows that Δ1 ∪ · · · ∪ Δk is constructible as well. �

We now consider the class of finite posets with a minimum element and define the notion of
strong constructibility as follows.

Definition 3.5. A finite poset P of rank d with a minimum element is strongly constructible
if it is bounded and pure shellable or it can be written as a union P = I1 ∪ I2 of two strongly
constructible proper ideals I1, I2 of rank d , such that I1 ∩ I2 is strongly constructible of rank at
least d − 1.

Note that any strongly constructible poset is graded.

Proposition 3.6. The order complex of any strongly constructible poset is constructible.

Proof. Let P be a strongly constructible poset of rank d . To show that Δ(P ) is constructible
we will use induction on the cardinality of P . If P is pure shellable then Δ(P ) is pure shellable
and hence constructible. Otherwise P is the union of two strongly constructible proper ideals
I1, I2 of rank d , such that I1 ∩ I2 is strongly constructible of rank at least d − 1. Clearly we have
Δ(P ) = Δ(I1) ∪ Δ(I2) and Δ(I1) ∩ Δ(I2) = Δ(I1 ∩ I2). Since, by the induction hypothesis,
Δ(I1) and Δ(I2) are constructible of dimension d and Δ(I1 ∩ I2) is constructible of dimension
at least d − 1, it follows that Δ(P ) is constructible as well. This completes the induction and the
proof of the proposition. �

The next lemma asserts that our notion of strong constructibility for posets behaves well under
direct products.

Lemma 3.7. The direct product of two strongly constructible posets is strongly constructible.

Proof. Let P,Q be two strongly constructible posets of ranks d and e, respectively. We proceed
by induction on the sum of the cardinalities of P and Q. If P and Q are both bounded and pure
shellable then their direct product P × Q is also (bounded and) pure shellable [8, Theorem 8.3]
and hence strongly constructible. If not then one of them, say P , can be written as a union P =
I1 ∪ I2 of two strongly constructible proper ideals I1, I2 of rank d , such that I1 ∩ I2 is strongly
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constructible of rank at least d − 1. Then P × Q is the union of its proper ideals I1 × Q and
I2 ×Q, each of rank d +e. By our induction hypothesis, these products are strongly constructible
and so is their intersection (I1 ∩ I2) × Q, which has rank at least d + e − 1. As a result, P × Q

is strongly constructible as well. �
The proof of the following lemma is analogous to that of Lemma 3.4(ii) and is omitted.

Lemma 3.8. Let P be a finite poset of rank d with a minimum element. If P is the union of
strongly constructible ideals I1, I2, . . . , Ik of P of rank d and the intersection of any two or more
of these ideals is strongly constructible of rank d − 1, then P is strongly constructible.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by showing that Pn is strongly constructible. We will
in fact prove a more general statement. For that reason, we introduce the following notation. Let
τ0, τ1, . . . , τk be pairwise disjoint subsets of [n], such that τ1, . . . , τk are nonempty. Let also σ be
a nonempty sequence of distinct elements of [n], none of which belongs to any of the sets τi . We
set R = (σ, τ0, . . . , τk) and denote by Sn(R) the set of permutations w ∈ Sn which have exactly
k + 1 cycles c0, c1, . . . , ck in their cycle decomposition, such that

(a) the elements of σ appear consecutively in the cycle c0 in the order in which they appear in σ

and
(b) the elements of τi appear in the cycle ci for 0 � i � k.

Example 4.1. Suppose k = 0 and σ = (1,2, . . . , r). Then Sn(R) is the set of cycles w ∈ Sn of
length n for which w(i) = i + 1 for 1 � i � r − 1. In particular, if r = 1 then Sn(R) is the set of
all maximal elements of Pn.

The following proposition is the main result in this section.

Proposition 4.2. If R is as above then the order ideal of Pn generated by Sn(R) is strongly
constructible.

The next remark will be used in the proof of the following technical lemma, which will be
used in turn in the proof of Proposition 4.2.

Remark 4.3. Suppose that w � c holds in Sn, where c = (a1 a2 · · · an) is a cycle of length n,
and let 1 � p � n. Suppose further that w has a cycle containing no ai with 1 � i � p. Then
there exists a permutation in Sn which has exactly two cycles u,v in its cycle decomposition,
such that u(ai) = ai+1 for 1 � i � p − 1, the elements appearing in u are exactly the elements
which appear in those cycles of w containing a1, a2, . . . , ap , and w � uv. This statement follows
easily from the description of the absolute order on Sn given in Section 1. One constructs the
cycle u by merging appropriately the cycles of w in which the elements a1, a2, . . . , ap appear.
The cycle v can be constructed by merging appropriately the remaining cycles of w. The details
are left to the reader.
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Lemma 4.4. Let 1 � r � n − 2 and J be a subset of {r + 1, . . . , n} with at least two elements.
Suppose that w ∈ Sn is such that for all j ∈ J there exists a cycle c in Sn of length n satisfying
c(i) = i + 1 for 1 � i � r − 1, c(r) = j and w � c.

(i) There exists at most one j ∈ J such that i and j are elements of the same cycle in the cycle
decomposition for w for some 1 � i � r .

(ii) There exists a permutation in Sn which has exactly two cycles u,v in its cycle decomposition
such that w � uv, u(i) = i + 1 for 1 � i � r − 1 and one of the following holds: (a) all
elements of J appear in v, or (b) there exists j ∈ J with u(r) = j and all other elements
of J appear in v.

Proof. Part (i) is once again an easy consequence of the description of the absolute order on Sn

given in Section 1. Part (ii) follows from part (i) and Remark 4.3 (the latter is applied either for
p = r to w and a cycle c of length n satisfying c(i) = i + 1 for 1 � i � r − 1, if no element of J

appears in the same cycle of w with some 1 � i � r , or for p = r + 1 and a cycle c of length n

satisfying c(i) = i + 1 for 1 � i � r − 1 and c(r) = j , if j ∈ J appears in the same cycle of w

with some 1 � i � r). �
Proof of Proposition 4.2. We denote by In(R) the order ideal of Pn generated by Sn(R), so that
In(R) is a graded poset of rank n− k − 1, and by m the number of elements of [n] not appearing
in R = (σ, τ0, . . . , τk). We proceed by induction on n, n − k and m, in this order.

We assume n � 3, the result being trivial otherwise. We first treat the case k � 1. For m = 0,
the poset In(R) is isomorphic to the direct product Ir (S) × Pr1 × · · · × Prk where S = (σ, τ0),
r is the number of elements of [n] appearing in S and ri is the cardinality of τi for 1 � i � k.
Since Ir (S) and Pri are strongly constructible by our induction hypothesis on n, the poset In(R)

is strongly constructible by Lemma 3.7. Suppose now that m � 1 and let j be an element of [n]
which does not appear in R. Clearly we have

In(R) =
k⋃

i=0

In(Ri),

where Ri is obtained from R by inserting j in the set τi . Each ideal In(Ri) has rank n − k − 1
and, by our induction hypothesis on m, it is strongly constructible. Moreover, the intersection of
any two or more of these ideals is equal to In(S), where S = (σ, τ0, . . . , τk+1) with τk+1 = {j}.
Since In(S) has rank n− k − 2, it is strongly constructible by our induction hypothesis on n− k.
It follows from Lemma 3.8 that In(R) is strongly constructible as well.

Finally, suppose that k = 0. Since the elements of τ0 are irrelevant in this case, we may as-
sume that τ0 is empty. Clearly, the isomorphism type of In(R) depends only on the length of σ .
Thus, for convenience with the notation, we will also assume that σ = (1,2, . . . , r) for some
1 � r � n. If m = 0, so that r = n, then Sn(R) consists of a single cycle of length n and In(R)

is isomorphic to the lattice of noncrossing partitions of [n]. Thus In(R) is bounded and pure
shellable [5, Example 2.9] and, in particular, strongly constructible. Suppose that m � 1, so that
r � n − 1. For r + 1 � j � n we set Rj = (σj ,∅), where σj = (1, . . . , r, j) is obtained from σ

by attaching j at the end. Each ideal In(Rj ) has rank n − 1 and, by our induction hypothesis
on m, it is strongly constructible. Moreover, we have

In(R) =
n⋃

In(Rj ).
j=r+1
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In view of Lemma 3.8, to prove that In(R) is strongly constructible it suffices to show that the
intersection of any two or more of the ideals In(Rj ) is strongly constructible of rank n − 2. Let
J be any subset of {r + 1, . . . , n} with at least two elements. We claim that

⋂
j∈J

In(Rj ) = In(S0) ∪
( ⋃

j∈J

In(Sj )

)
, (2)

where S0 = (σ,∅, J ) and Sj = (σj ,∅, J \{j}) for j ∈ J . Indeed, it should be clear that each ideal
In(Sj ) for j ∈ J ∪ {0} is contained in the intersection in the left-hand side of (2). The reverse
inclusion follows from Lemma 4.4(ii). Next, we note that the ideals In(Sj ) for j ∈ J ∪ {0}
have rank n − 2 and that, by our induction hypothesis on n − k, they are strongly constructible.
Applying induction on the cardinality of J , to show that the union in the right-hand side of (2) is
strongly constructible it suffices to show that for q ∈ J , the intersection

In(Sq) ∩
( ⋃

j∈(J\{q})∪{0}
In(Sj )

)

is strongly constructible of rank n − 3. We claim that this intersection is equal to In(S), where
S = (σ,∅, J \{q}, {q}). Indeed, one inclusion follows from the fact that In(S) ⊆ In(Sq)∩In(S0).
For the reverse inclusion observe that in each permutation in Sn(Sq), q appears in a cycle contain-
ing 1,2, . . . , r but no element of J \{q} and that for all j ∈ (J \{q})∪{0}, in each permutation in
Sn(Sj ), q appears in a cycle containing none of 1,2, . . . , r . Finally, observe that the ideal In(S)

has the desired rank n − 3 and is strongly constructible by our induction hypothesis on n − k.
This completes the induction and the proof of the proposition. �
Proof of Theorem 1.1. When k = 0 and σ has length one (see Example 4.1), the ideal In(R)

coincides with Pn. Therefore Proposition 4.2 implies that Pn is strongly constructible. It follows
from Proposition 3.6 and Corollary 3.3 that Pn is homotopy Cohen–Macaulay. As a result, so
is P̄n. �
5. Proof of Theorem 1.2

In this section we denote by 0̂ the minimum element of Pn and by P̂n the poset obtained from
Pn by adding a maximum element 1̂.

Proof of Theorem 1.2. From [18, Proposition 3.8.6] we have that χ̃ (Δ(P̄n)) = μn(0̂, 1̂), where
μn stands for the Möbius function of P̂n, and hence that

χ̃
(
Δ(P̄n)

) = −
∑
x∈Pn

μn(0̂, x). (3)

Let Cm = 1
m+1

(2m
m

)
denote the mth Catalan number. It is well known (see, for instance, [18,

Exercise 3.68(b)]) that

μn(0̂, x) = (−1)k−1Ck−1

if x ∈ Sn is a cycle of length k, since in this case the interval [0̂, x] in Pn is isomorphic to
the lattice of noncrossing partitions of the set [k]. Moreover, for any x ∈ Sn the interval [0̂, x]
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Table 1
The numbers (−1)nχ̃(Δ(P̄n)) for n � 9

n 1 2 3 4 5 6 7 8 9

(−1)nχ̃(Δ(P̄n)) 1 0 2 16 192 3008 58 480 1 360 896 36 931 328

is isomorphic to the direct product over the cycles y in the cycle decomposition for x of the
intervals [0̂, y]. Therefore we have

μn(0̂, x) =
∏

y∈C(x)

(−1)#y−1C#y−1, (4)

where C(x) is the set of cycles in the cycle decomposition for x and #y is the number of elements
(length) of y. Given (3) and (4), the exponential formula [19, Corollary 5.1.9] implies that

1 −
∑
n�1

χ̃
(
Δ(P̄n)

) tn

n! = exp
∑
n�1

(−1)n−1Cn−1
tn

n
. (5)

Integrating the well-known equality

∑
n�1

Cn−1t
n−1 = 1 − √

1 − 4t

2t
,

we get
∑
n�1

Cn−1
tn

n
= 1 − √

1 − 4t + log(1 + √
1 − 4t ) − log 2.

Switching t to −t in the previous equality and exponentiating, we get

exp
∑
n�1

(−1)n−1Cn−1
tn

n
=

√
1 + 4t − 1

2t
exp(

√
1 + 4t − 1).

In view of the previous equality, the result follows by switching t to −t in (5). �
Remark 5.1. It follows from Theorems 1.1 and 1.2 that if C(t) = 1

2t
(1 − √

1 − 4t ) then the
generating function

1 − C(t) exp
{−2tC(t)

}
has nonnegative coefficients.

Table 1 lists the first few values of (−1)nχ̃(Δ(P̄n)).
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