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Abstract

Two natural linear models associated with a graph are considered. The Gauss±

Markov theorem is used in one of the models to derive a combinatorial formula for the

Moore±Penrose inverse of the incidence matrix of a tree. An inequality involving the

Moore±Penrose inverse of the Laplacian matrix of a graph and its distance matrix is

obtained. The case of equality is discussed. Again the main tool used in the proof is the

theory of linear estimation. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Preliminaries

A graph G � �V ;E� consists of a ®nite set of vertices, V, and a set of edges,
E. Each edge is a pair of distinct vertices. We consider graphs which have no
loops or multiple edges. For basic graph-theoretic notions we refer to [4].

A directed graph is a graph in which each edge has been assigned an ori-
entation. Let G be a directed graph with V � f1; . . . ; ng; E � fe1; . . . ; emg: The
incidence matrix of G; denoted by Q, is the n� m matrix de®ned as follows.
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The �i; j�-entry of Q is 0 if vertex i and edge ej are not incident and otherwise it
is 1 or ÿ1 according as ej originates or terminates at i, respectively.

For a directed graph G, the matrix L � QQT is called the Laplacian matrix
(or the Kirchho� matrix) of G. Note that the Laplacian matrix does not
depend on the orientation of G and hence is essentially de®ned for an un-
directed graph. The matrix K � QTQ has been called the edge version of the
Laplacian matrix.

If G � �V ;E� is a connected graph (directed or otherwise) and if i; j 2 V ,
then the distance between i; j, denoted by dij, is de®ned as the length (i.e., the
number of edges) in a shortest path between i and j. (When we talk of a path or
a cycle in G, we mean a path or a cycle in the underlying undirected graph.
These notions of path and cycle di�er from the standard digraph notions,
where, for example, in a path from i to j, the arcs must be oriented from i to j.)
The distance matrix D � �dij� has been considered in the literature as well. In
particular, when the graph is a tree, the distance matrix is closely related to the
Laplacian and its edge version. For several properties of the Laplacian matrix,
the edge version of the Laplacian and the distance matrix we refer to the papers
by Merris [12,13], and the references contained therein.

We now recall some basic aspects of the theory of linear models. Suppose
Y1; . . . ; Yn are random variables such that the expectation of each Yi is a linear
combination of certain parameters b1; . . . ; bp. We can express this information as
a linear model E�Y � � Xb, where E�Y � denotes the expectation of the vector
Y � �Y1; . . . ; Yn�T, X is an n� p matrix of (known) coe�cients and
b � �b1; . . . ; bp�T. We also assume that Y1; . . . ; Yn are uncorrelated with a com-
mon unknown variance r2. Thus the dispersion matrix of Y , denoted by D�Y �, is
given by D�Y � � r2In, where In is the n� n identity matrix. For a discussion of
linear models, including concepts such as estimability and best linear unbiased
estimate (BLUE) see [15,1].

If A is an n� m matrix, then an m� n matrix B is called a generalized inverse
of A if ABA � A. The Moore±Penrose inverse of A, denoted by A�, is an m� n
matrix satisfying the equations ABA � A; BAB � B; �AB�T � AB and
�BA�T � BA. It is well-known that any real or complex matrix admits a unique
Moore±Penrose inverse. We refer to [3,5] for basic properties of the Moore±
Penrose inverse. For some recent results concerning the Moore±Penrose in-
verse of a Laplacian, see [6±8].

2. The Moore±Penrose inverse of the incidence matrix of a tree

A graph-theoretic description of the Moore±Penrose inverse of the incidence
matrix of a directed tree was recently given in [2]. The formula was used to
obtain an expression for the inverse of the edge version of the Laplacian, K,
derived earlier by Moon [14] and by Merris [12].
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In this section we consider a linear model where the coe�cient matrix is the
incidence matrix of a tree. The standard Gauss±Markov theorem is then used
to derive a graph-theoretic description of the Moore±Penrose inverse of the
incidence matrix Q.

Our underlying graph is assumed to be a directed tree. Let T � �V ;E� be a
directed tree with V � f1; . . . ; ng and E � fe1; . . . ; emg. Note that m � nÿ 1.
Let Q be the incidence matrix of T . It is well-known (see, for example [4]) that
the rank of Q is m � nÿ 1. Thus the linear model E�Y � � Qb; D�Y � � r2In is a
full rank model. In particular, each bi is estimable, i.e., there exists ` such that
E�`TY � � bi.

If ei 2 E then observe that the graph T n feig has two components, both
being trees. This observation is relevant in the statement of the next result.

Theorem 1. Let T � �V ;E� be a directed tree with V � f1; . . . ; ng and
E � fe1; . . . ; enÿ1g. Let Q be the incidence matrix of T and let Q� � �q�ij � be the
Moore±Penrose inverse of Q. Then njq�ij j equals the number of vertices in the
component of T n ei not containing j. Furthermore, q�ij is positive or negative
according as ei is directed away from j or towards j, respectively.

Proof. Consider the linear model E�Y � � Qb; D�Y � � r2In. As observed earlier,
this is a full rank model and hence each bi is estimable. Let b̂i denote the BLUE
of bi; i � 1; . . . ; nÿ 1, and let b̂ � �b̂1; . . . ; b̂nÿ1�T. By the Gauss±Markov
theorem, b̂ � �QTQ�ÿ1QTY , and since Q� � �QTQ�ÿ1QT, we have b̂ � Q�Y .
Thus if c1Y1 � � � � � cnYn is the BLUE of bi, then �c1; . . . ; cn� gives the ith row of
Q�; i � 1; . . . ; nÿ 1.

We now ®nd the BLUE of bi. If cTY is unbiased for bi, then
E�cTY � � cTQb � bi for any b, or equivalently,

cTQb � �0; . . . ; 0; 1; 0; . . . ; 0�b;
where the 1 occurs at the ith place. Since b is arbitrary, we conclude that

cTQ � �0; . . . ; 0; 1; 0; . . . ; 0�:
Thus we have

ck ÿ c` � 1 if �k; `� � ei;
0 if �k; `� 2 E; �k; `� 6� ei:

�
�1�

Let us suppose that edge ei joins vertices p; q and that it is directed from p to q.
Let T1; T2 be the components of T n feig and let V1; V2 be the corresponding
vertex sets, respectively. We assume, without loss of generality, that
p 2 V1; q 2 V2.

From (1) we conclude that there exists a such that cp � 1� a; cq � a and

cj � 1� a if j 2 V1;
a if j 2 V2:

�
�2�
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In order to ®nd the BLUE of bi; we must minimize

c2
1 � � � � � c2

n � �1� a�2jV1j � a2jV2j:
Setting the derivative with respect to a, equal to zero, we get

2�1� a�jV1j � 2ajV2j � 0

and hence

a � ÿ jV1j
jV1j � jV2j � ÿ

jV1j
n
:

Substituting in (2) we ®nd the linear estimator cTY which is the BLUE of bi:
Thus if j 2 V1, then cj � jV2j=n while if j 2 V2, then cj � ÿjV1j=n. This estab-
lishes the result. �

We remark that Theorem 1 as well as the results in Section 3 continue to
hold for weighted graphs (i.e., graphs in which each edge is assigned a positive
weight). This only requires obvious modi®cations in the statements and the
proofs. We deal with the unweighted case for convenience.

3. The main result

In this section we consider graphs which are not necessarily trees. Let
G � �V ;E� be a directed graph with V � f1; . . . ; ng; E � fe1; . . . ; emg. Suppose
P is an �i; j�-path. The incidence vector u of P is an m� 1 vector de®ned as
follows. The kth entry of u is zero if ek is not in P. Otherwise it is 1 or ÿ1
according as ek is directed towards j or away from j, respectively. The incidence
vector of a cycle is de®ned similarly. However, in the case of a cycle we must ®x
an orientation for the cycle before de®ning its incidence vector. The choice of
the orientation is arbitrary as long as it is kept ®xed throughout.

Let G be a directed graph with V � f1; . . . ; ng; E � fe1; . . . ; emg and sup-
pose G has p connected components. Let Q be the incidence matrix of G and
consider the linear model

E�Y � � QTb; D�Y � � r2Im:

Recall that a function cTY is called an error function if E�cTY � � 0 for any b.
Thus cTY is an error function if and only if Qc � 0. The null space of Q has
dimension mÿ n� p. Furthermore, there exists a set of cycles, C1; . . . ;Cmÿn�p,
called fundamental cycles, whose incidence vectors form a basis for the null
space of Q (see [4, Ch. 12]).

We now turn to estimable functions in this model. A function `Tb is esti-
mable if and only if `T is in the row space of QT, or equivalently, ` is in the
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column space of Q. We will often use the fact that uTY is the BLUE of the
estimable function `Tb if and only if E�uTY � � `Tb and cov�uTY ; cTY � � 0 for
any error function cTY .

The following is the main result of the paper. It is motivated by a result due
to Kra�t and Schaefer [11], see the discussion given in the end of the paper. We
denote the cardinality of the set S by jSj. If S denotes a path, a cycle etc., then
jSj means the number of edges in S.

Theorem 2. Let G be a graph with V � f1; . . . ; ng; E � fe1; . . . ; emg. Let L be
the Laplacian of G and let M � L�. Let i; j 2 V be fixed, i 6� j and let P be an
�i; j�-path of length kij > 0. Suppose C is a cycle in G with k > 0 edges which
satisfies jP \ Cj � tij. Then

mii � mjj ÿ 2mij6 kij ÿ
t2
ij

k
: �3�

Furthermore, equality holds in (3) if and only if any �i; j�-path is contained in
P [ C.

Proof. Assign an orientation to G and let Q be the incidence matrix. As before,
consider the linear model E�Y � � QTb; D�Y � � r2Im. Let u; v be the incidence
vectors of P; C, respectively. Then for any real a,

E�uTY � avTY � � E�uTY � � bi ÿ bj;

and thus uTY � avTY is unbiased for bi ÿ bj. Therefore

r2�mii � mjj ÿ 2mij�6 var�uTY � avTY � �4�
for any real a. The value a0 of a which minimizes the right-hand side of (4) is
seen to be

a0 � ÿ cov�uTY ; vTY �
var�vTY � � ÿ uTv

vTv
:

Setting a � a0 in (4) we get

r2�mii � mjj ÿ 2mij�6 var�uTY � ÿ �u
Tv�2

vTv
: �5�

Since var�uTY � � r2kij; �uTv�2 � r2t2
ij and vTv � r2k; (3) follows from (5).

We now turn to the case of equality. First suppose (3) is strict. Then
�u� a0v�TY is not the BLUE of bi ÿ bj. Let the BLUE of bi ÿ bj be
�u� a0v� c�TY , where cTY is an error function. Then c is in the span of the
incidence vectors of fundamental cycles. Suppose c is a linear combination of
the incidence vectors of the cycles C1; . . . ;Ck, each of these appearing with a

R.B. Bapat / Linear Algebra and its Applications 302±303 (1999) 223±230 227



nonzero coe�cient in the linear combination. If none of the cycles C1; . . . ;Ck

meet P [ C, then clearly,

var��u� a0v� c�TY � � var��u� a0v�TY � � var�cTY � > var��u� a0v�TY �;
contradicting the fact that �u� a0v� c�TY is BLUE. Thus there must be a cycle
Ci which meets P [ C. Also, we may assume that Ci 6� C. For, if Ci � C and if
it is the only cycle among C1; . . . ;Ck that meets P [ C, then we get a con-
tradiction in view of the choice of a0. It follows that there is an �i; j�-path not
contained in P [ C.

Conversely, suppose there is an �i; j�-path, say P0, not contained in P [ C.
Then there exists a cycle C0 contained in P [P0 such that C \ C0 � C \P. Let
w be the incidence vector of C0. We have

cov��u� a0v�TY ;wTY � � cov�uTY ;wTY � � a0cov�vTY ;wTY �

� r2 uTw
�

ÿ uTv
vTv

vTw
�
:

Note that C \ C0 � C \P � P and clearly, C \ C0 � C0. Thus
C \ C0 � C0 \P. Hence jC0 \PjP jC \ C0j. Therefore juTwjP jvTwj. Also,
jCj > jP \ Cj and hence vTv > juTvj. These two facts imply that

uTwÿ uTv
vTv

vTw 6� 0:

Thus we may ®nd a linear combination of �u� a0v�TY and wTY which is un-
biased for bi ÿ bj and has smaller variance than that of �u� a0v�TY . (To see
this, just consider a linear combination �u� a0v�TY � cwTY and minimize its
variance with respect to c. The fact that wTa0 6� 0 ensures that the minimum is
attained at c 6� 0.) Then �u� a0v�TY is not the BLUE of bi ÿ bj and (3) must be
strict. �

The following result has been obtained by Klein and Randi�c [10] using
concepts from electrical network theory.

Theorem 3. Let G be a connected graph with V � f1; . . . ; ng; E � fe1; . . . ; emg.
Let L be the Laplacian and let M � L�. Also, let D � �dij� be the distance matrix
of G. Then

mii � mjj ÿ 2mij6 dij; i; j � 1; . . . ; n: �6�
Furthermore, equality holds in (6) if and only if there is a unique (i, j)-path in G.

Proof. Consider the graph obtained by taking the disjoint union of G and a
cycle C: Let P be an �i; j�-path of minimum length. Then, using the notation of
Theorem 2, kij � dij and tij � 0: Now the result follows immediately from
Theorem 2. �
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We remark that if H is any generalized inverse of L, then

mii � mjj ÿ 2mij � hii � hjj ÿ hij ÿ hji:

To see this, set zij to be the vector

�0; . . . ; 0; 1; 0; . . . ; 0;ÿ1; 0; . . . ; 0�T;
where the 1 and the ÿ1 occur at the ith place and the jth place, respectively.
Then zij is in the column space of L and hence zijLÿzij is invariant under the
choice of generalized inverse. However, we use the Moore±Penrose inverse for
convenience.

The following special case of Theorem 3 was observed in [2].

Corollary 4. Let T be a tree with Laplacian matrix L and distance matrix D. Let
M � L�. Then for all i,j

mii � mjj ÿ 2mij � dij:

The Wiener index, W �G�, of a graph G has been de®ned as

W �G� �
X
i<j

dij;

and it has important applications in biochemistry, see [9,12]. Summing (6) with
respect to i; j and keeping in mind that the row and column sums of M are zero,
we get the following well-known fact ± For any connected graph G with n
vertices, W �G�P n trace�L��, and equality holds if and only if G is a tree.
Recall that trace �L�� is precisely the sum of the reciprocals of the nonzero
eigenvalues of L.

Consider a block design in which v treatments are allocated in b blocks.
We may associate a bipartite graph with v� b vertices with the design, in
which there are v vertices corresponding to the treatments and b vertices
corresponding to the blocks. Two vertices are joined if one represents a
treatment which appears in the block represented by the other vertex. Let n
be the number of observations. Clearly, in order that the design be con-
nected, the corresponding graph must be connected and this is true if and
only if n P v� bÿ 1: Kra�t and Schaefer [11] consider the situation, where
n � v� b (so the graph is unicyclic) and identify the designs which are A-
optimal. In the course of their proof they obtain a special case of Theorem 2,
see [11, Theorem 1, p. 377]. We have generalized their result to arbitrary (not
necessarily bipartite) graphs. It appears from this connection that the linear
model based on a graph as considered in the present section (see the proof of
Theorem 2) can be a very useful tool in the area of optimality of block
designs.

R.B. Bapat / Linear Algebra and its Applications 302±303 (1999) 223±230 229



References

[1] R.B. Bapat, Linear Algebra and Linear Models, 2nd ed., Hindustan Book Agency, New Delhi,

1999.

[2] R.B. Bapat, Moore±Penrose inverse of the incidence matrix of a tree, Linear and Multilinear

Algebra 42 (1997) 159±167.

[3] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-

Interscience, New York, 1974.

[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.

[5] S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations, Dover, New

York, 1991.

[6] P. Chebotarev, E. Shamis, The matrix-forest theorem and measuring relations in small social

groups, Avtomatika i Telemekhanika 9 (1997) 124±136.

[7] M. Fiedler, Moore±Penrose involutions in the classes of Laplacians and simplices, Linear and

Multilinear Algebra 39 (1995) 171±178.

[8] S. Kirkland, M. Neumann, B. Shader, Distances in weighted trees and group inverse of

Laplacian matrices, SIAM J. Matrix Anal. Appl. 18 (1997) 827±841.

[9] D.J. Klein, Graph geometry, graph metrics and Weiner, Communications in Mathematical

Match and in Computer Chemistry 35 (1997) 7±27.

[10] D.J. Klein, M. Randi�c, Resistance distance, J. Math. Chem. 12 (1993) 81±95.

[11] Kra�t, Olaf, Schaefer, Martin, A-optimal connected block designs with nearly minimal

number of observations, J. Statist. Plann. Inference 65 (1997) 375±386.

[12] R. Merris, An edge version of the matrix-tree theorem and the Wiener index, Linear and

Multilinear Algebra 25 (1989) 291±296.

[13] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197 (1994) 143±176.

[14] J.W. Moon, On the adjoint of a matrix associated with trees, Linear and Multilinear Algebra

39 (1995) 191±194.

[15] C.R. Rao, Linear Statist. Inference Appl., Wiley, New York, 1973.

230 R.B. Bapat / Linear Algebra and its Applications 302±303 (1999) 223±230


