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1. Introduction

We consider linear second-order differential operators,

(
A(t)ϕ

)
(x) =

d∑
i, j=1

qij(t, x)Dijϕ(x) +
d∑

i=1

bi(t, x)Diϕ(x)

= Tr
(

Q (t, x)D2ϕ(x)
) + 〈

b(t, x),∇ϕ(x)
〉
, (1.1)
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with smooth enough coefficients defined in R
1+d , satisfying the uniform ellipticity assumption

d∑
i, j=1

qij(t, x)ξiξ j � η0|ξ |2, (t, x) ∈ R
1+d, ξ ∈ R

d. (1.2)

Under general assumptions, a Markov evolution operator P (t, s) associated to the family {A(t)} has
been constructed and studied in [21]. For every continuous and bounded ϕ and for any s ∈ R, the
function (t, x) �→ P (t, s)ϕ(x) is the unique bounded classical solution u to the Cauchy problem{

Dt u(t, x) = A(t)u(t, x), t > s, x ∈ R
d,

u(s, x) = ϕ(x), x ∈ R
d.

(1.3)

Since the coefficients are allowed to be unbounded, L p spaces with respect to the Lebesgue measure
are not a natural setting for problem (1.3). This is well understood in the autonomous case A(t) ≡ A,
where P (t, s) = e(t−s)A and the Lebesgue measure is replaced by an invariant measure, i.e., a Borel
probability measure μ such that∫

Rd

et Aϕ dμ =
∫
Rd

ϕ dμ, t > 0, ϕ ∈ Cb
(
R

d).
Under suitable assumptions it is possible to show that there exists a unique invariant measure. In this
case, et A is extended to a contraction semigroup in L p(Rd,μ) for every p ∈ [1,∞), and et Aϕ goes to
the mean value

∫
Rd ϕ dμ in L p(Rd,μ) for every ϕ ∈ L p(Rd,μ) as t → ∞, if p > 1.

The natural generalization of invariant measures to the time depending case are families of Borel
probability measures {μs: s ∈ R}, called evolution systems of measures, such that∫

Rd

P (t, s)ϕ dμt =
∫
Rd

ϕ dμs, t > s, ϕ ∈ Cb
(
R

d).
A sufficient condition for their existence, similar to a well known sufficient condition for the existence
of an invariant measure in the autonomous case, is the following: there exist a C2 function V : R

d →
R such that lim|x|→∞ V (x) = ∞, and positive numbers a, c such that A(s)V (x) � a − cV (x) for each
s ∈ R and x ∈ R

d .
If an evolution system of measures exists, then, as in the autonomous case, P (t, s) may be ex-

tended to a contraction (still called P (t, s)) from L p(Rd,μs) to L p(Rd,μt), i.e.,∥∥P (t, s)ϕ
∥∥

L p(Rd,μt )
� ‖ϕ‖L p(Rd,μs)

, t > s, (1.4)

for every ϕ ∈ L p(Rd,μs).
In this paper we treat the case of time periodic coefficients, and we study asymptotic behavior of

P (t, s) and spectral properties of the parabolic operator

G := A(t) − Dt (1.5)

in L p spaces associated to a distinguished evolution system of measures. In fact, the evolution systems
of measures are infinitely many, and we consider the unique T -periodic one, i.e. the only one such
that μs = μs+T for every s ∈ R, where T is the period of the coefficients. We extend to this setting
the convergence results of the autonomous case, showing that for 1 < p < ∞

lim
∥∥P (t, s)ϕ − msϕ

∥∥
L p(Rd,μt )

= 0, s ∈ R, ϕ ∈ Lp(
R

d,μs
)
, (1.6)
t→∞
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and

lim
s→−∞

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
= 0, t ∈ R, ϕ ∈ Cb

(
R

d), (1.7)

where

msϕ =
∫
Rd

ϕ(y)μs(dy).

This is done under suitable assumptions, that in the case of C1
b diffusion coefficients reduce to

sup
s∈R, x,y∈Rd, x
=y

〈b(s, x) − b(s, y), x − y〉
|x − y|2 < ∞, (1.8)

or, equivalently, sup{∑d
i, j=1 Dib j(s, x)ξiξ j: (s, x) ∈ R

1+d, ξ ∈ R
d, |ξ | = 1} < ∞. Inequality (1.8) can

be seen as a weak dissipativity condition on the vector fields b(s, ·). Under a stronger dissipativity
condition, for bounded diffusion coefficients we prove exponential convergence, i.e., for every p ∈
(1,∞) there exist M > 0, ω < 0 such that∥∥P (t, s)ϕ − msϕ

∥∥
L p(Rd,μt )

� Meω(t−s)‖ϕ‖L p(Rd,μs)
, t > s, ϕ ∈ Lp(

R
d,μs

)
. (1.9)

The stronger dissipativity assumption was used in [21] to prove pointwise gradient estimates for
P (t, s)ϕ . In fact, we arrive at exponential convergence through gradient estimates. Then, we discuss
the rate of convergence; in Theorem 3.6 we show that for p � 2 and ω ∈ R the conditions

(a) ∃M > 0: ‖P (t, s)ϕ − msϕ‖Lp(Rd,μt )
� Meω(t−s)‖ϕ‖Lp(Rd,μs)

, t > s, ϕ ∈ L p(Rd,μs),

(b) ∃N > 0: ‖|∇x P (t, s)ϕ|‖Lp(Rd,μt )
� Neω(t−s)‖ϕ‖Lp(Rd,μs)

, t > s + 1, ϕ ∈ L p(Rd,μs),

are equivalent. Therefore, denoting by ωp (resp. γp ) the infimum of the ω ∈ R such that (a) (resp. (b))
holds, we have ωp = γp .

Such characterization of the convergence rate was proved for time depending Ornstein–Uhlenbeck
operators (i.e., when Q is independent of x and B is linear in x) in [18] for p = 2. Apart from
Ornstein–Uhlenbeck operators, it seems to be new even in the autonomous case. For Ornstein–
Uhlenbeck operators we have a precise expression of γ2 in terms of the data, and our Theorem 3.15
shows that γp = γ2 < 0 for every p ∈ (1,∞). In general, γp could depend explicitly on p and we only
give upper estimates for it.

In the autonomous case, exponential convergence to equilibrium in L2(Rd,μ) is usually obtained
through Poincaré inequalities such as∫

Rd

∣∣∣∣ϕ −
∫
Rd

ϕ dμ

∣∣∣∣2

dμ � C0

∫
Rd

∣∣Q 1/2∇ϕ
∣∣2

dμ, ϕ ∈ D(A), (1.10)

where D(A) is the domain of the generator of et A in L2(Rd,μ). If (1.10) holds we get ω2 � −η0/C0
and in the (symmetric) case Aϕ = �ϕ + 〈∇Φ,∇ϕ〉 we have ω2 = 1/C0 = η0/C0, and ω2 is a mini-
mum. Therefore, the problem is reduced to find the best Poincaré constant C0, which is a hard task
in general. The upper bounds on C0 that come from gradient estimates yield η0/C0 � γ2, and the
equality holds only in very special cases. Therefore, Theorem 3.6 gives a better rate of convergence
(see the discussion after Proposition 3.9).

We follow a purely deterministic approach, although the well-known connections between linear
second order parabolic equations and nonlinear ordinary stochastic differential equations might be
used (such as e.g., in [3,14,20,25]) to get some of our formulae and/or estimates. The key tool of our
analysis is the evolution semigroup,
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T (t)u(s, x) = P (s, s − t)u(s − t, ·)(x), t � 0, s ∈ R, x ∈ R
d,

that is a Markov semigroup in the space Cb(T × R
d) of the continuous and bounded functions u such

that u(s, ·) = u(s + T , ·) for all s ∈ R. Its unique invariant measure is

μ(ds,dx) = 1

T
μs(dx)ds.

All Markov semigroups having invariant measures have natural extensions to contraction semigroups
in L p spaces with respect to such measures. Dealing with periodic functions, we consider the space
L p(T × R

d,μ) that consists of all μ-measurable functions u such that u(s, ·) = u(s + T , ·) for a.e.
s ∈ R, and such that

∫ T
0

∫
Rd |u(s, x)|pμs(dx)ds is finite. We denote by G p the infinitesimal generator

of T (t) in L p(T ×R
d,μ). G p is a realization of the parabolic operator G , defined in (1.5), in the space

L p(T × R
d,μ).

We introduce a projection Π on space independent functions,

Πu(s, x) :=
∫
Rd

u(s, y)μs(dy), s ∈ R, x ∈ R
d,

and we prove that T (t)(I − Π) is strongly stable in all spaces L p(T × R
d,μ), 1 < p < ∞, that is

lim
t→∞

∥∥T (t)(u − Πu)
∥∥

L p(T×Rd,μ)
= 0, u ∈ Lp(

T × R
d,μ

)
. (1.11)

From this fact we deduce (1.6) and (1.7); if T (t)(I − Π) is exponentially stable we deduce (1.9). We
arrive at (1.11) through a similar property of the space gradient of T (t)u, i.e.,

lim
t→∞

∥∥∣∣∇x T (t)u
∣∣∥∥

L p(T×Rd,μ)
= 0, u ∈ Lp(

T × R
d,μ

)
,

which is proved using semigroups arguments that seem not to have counterparts for evolution oper-
ators. In particular, we use the identity

T∫
0

∫
Rd

uG2u dμ = −
T∫

0

∫
Rd

〈Q ∇xu,∇xu〉dμ, u ∈ D(G2),

which is a time dependent version of what is called identité du carré du champ by the French mathe-
maticians.

T (t) is a nice example of a Markov semigroup that is not strong Feller and not irreducible, and
that has a unique invariant measure μ. On the other hand, (1.11) shows that in general T (t)u does
not converge to the mean value of u with respect to μ as t → ∞.

Together with asymptotic behavior results, it is natural to get spectral properties of the opera-
tors G p , 1 < p < ∞. When (1.9) holds, we prove that G p has a spectral gap, and precisely

sup
{

Reλ: λ ∈ σ(G p) \ iR
} = ωp < 0.

We remark that the equation λu − G u = f , with f ∈ L p(T×R
d,μ), cannot be seen as an evolution

equation in a fixed L p space X ,

u′(t) − A(t)u(t) + λu(t) = f (t, ·)
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because our spaces X(t) = L p(Rd,μt) vary with time. For the same reason, T (t) is not a usual evo-
lution semigroup in a fixed Banach space X . However, it exhibits some of the typical features of
evolution semigroups in fixed Banach spaces, in particular the Spectral Mapping Theorem holds.

If the diffusion coefficients do not depend on the space variables, and the supremum in (1.8) is
equal to some negative number r0, we get a log-Sobolev type inequality,

T∫
0

∫
Rd

|u|2 log
(
u2)dμ � 1

T

T∫
0

Πu2 log
(
Πu2)ds + 2Λ

|r0|
T∫

0

∫
Rd

|∇xu|2 dμ, (1.12)

for every u ∈ D(G2). Here, Λ is the supremum of the maximum eigenvalues of the matrices Q (s)
when s varies in [0, T ]. Also this inequality is proved using the evolution semigroup T (t), through
semigroups arguments that have no counterparts for evolution operators. Using (1.12) we show that
the domains D(G p) are compactly embedded in L p(T×R

d,μ) for 1 < p < ∞, and from this fact a lot
of nice consequences follow. In particular, the spectrum of each operator G p consists of eigenvalues
and it is independent of p, and the exponential decay rates ωp � r0 are independent of p.

The interest in log-Sobolev estimates goes beyond asymptotic behavior, and much literature has
been devoted to them in the autonomous case. See e.g., the surveys [1,19]. Therefore, it is worth to
establish them in L p spaces with time-space variables. In Proposition 3.12 and in Theorem 3.14 we
prove L p versions of (1.12).

The paper ends with illustrations of the asymptotic behavior and spectral results for explicit ex-
amples of families of operators A(t) that satisfy our assumptions.

Except for nonautonomous Ornstein–Uhlenbeck operators, this one seems to be the first systematic
study of asymptotic behavior in linear nonautonomous parabolic problems with unbounded coeffi-
cients in R

d . A part of our results lends itself to generalizations to some infinite dimensional settings,
where R

d is replaced by a separable Hilbert space H , in the spirit of e.g., [9,10,8].

Notations. We denote by Bb(R
d) the Banach space of all bounded and Borel measurable functions

f : R
d → R, and by Cb(R

d) its subspace of all continuous functions. Bb(R
d) and Cb(R

d) are endowed
with the sup norm ‖ · ‖∞ . For k ∈ N, Ck

b(R
d) is the set of all functions f ∈ Cb(R

d) whose derivatives
up to the kth-order are bounded and continuous in R

d . We use the subscript “c” instead of “b” for
spaces of functions with compact support.

Throughout the paper we consider real valued functions (s, x) �→ f (s, x) defined in R
1+d , that

are T -periodic with respect to time. It is useful to identify such functions with functions defined in
T × R

d , where T = [0, T ] mod T . So, we denote by Cb(T × R
d) the space of the continuous, bounded,

and T -time periodic functions f : R
1+d → R, endowed with the sup norm. Similarly, for any α ∈ (0,1),

we denote by Cα/2,α
loc (T × R

d) the set of all functions f ∈ Cb(T × R
d) which belong to Cα/2,α([0, T ] ×

B(0, R)) for any R > 0, and by W 1,2
p,loc(T×R

d,ds×dx) the set of all time periodic functions f such that
f , Ds f , and the first and second order space derivatives of f belong to L p((0, T ) × B(0, R),ds × dx)
for any R > 0.

2. Preliminaries

2.1. General properties of P (t, s) and of evolution systems of measures

Hypothesis 2.1.

(i) The coefficients qij and bi (i, j = 1, . . . ,d) are T -time periodic and belong to Cα/2,α
loc (T × R

d) for
any i, j = 1, . . . ,d and some α ∈ (0,1).

(ii) For every (s, x) ∈ R
1+d , the matrix Q (s, x) is symmetric and there exists a function η : T × R

d →
R such that 0 < η0 := inf

T×Rd η and〈
Q (s, x)ξ, ξ

〉
� η(s, x)|ξ |2, ξ ∈ R

d, (s, x) ∈ T × R
d.
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(iii) There exist a positive function V ∈ C2(Rd) and numbers a, c > 0 such that

lim|x|→∞ V (x) = ∞ and
(

A(s)V
)
(x) � a − cV (x), (s, x) ∈ T × R

d.

Here we recall some results from [21] and [22]. The first one is that, under Hypothesis 2.1, for
every f ∈ Cb(R

d) problem (1.3) has a unique bounded classical solution u (see [21, Thm. 2.2]). The
evolution operator P (t, s) is defined by

P (t, s) f = u(t, ·), t � s ∈ R.

Some properties of P (t, s), taken from [21], are summarized in the next theorem and in its corollaries.

Theorem 2.2. Let Hypothesis 2.1 hold. Define Λ := {(t, s, x) ∈ R
2+d: t > s, x ∈ R

d}. Then:

(i) for every ϕ ∈ Cb(R
d), the function (t, s, x) �→ P (t, s)ϕ(x) is continuous in Λ. For every s ∈ R, the function

(t, x) �→ P (t, s)ϕ(x) belongs to C1+α/2,2+α
loc ((s,∞) × R

d);
(ii) for every ϕ ∈ C∞

c (Rd), the function (t, s, x) �→ P (t, s)ϕ(x) is continuously differentiable with respect to
s in Λ and Ds P (t, s)ϕ(x) = −P (t, s)A(s)ϕ(x) for any (t, s, x) ∈ Λ;

(iii) for each (t, s, x) ∈ Λ there exists a Borel probability measure pt,s,x in R
d such that

P (t, s)ϕ(x) =
∫
Rd

ϕ(y)pt,s,x(dy), f ∈ Cb
(
R

d). (2.1)

Moreover, pt,s,x(dy) = g(t, s, x, y)dy for a positive function g. In particular, P (t, s) is irreducible;
(iv) P (t, s) is strong Feller; extending it to L∞(Rd,dx) through formula (2.1), it maps L∞(Rd,dx) (and, in

particular, Bb(R
d)) into Cb(R

d) for t > s, and∥∥P (t, s)ϕ
∥∥∞ � ‖ϕ‖∞, ϕ ∈ L∞(

R
d,dx

)
, t > s;

(v) there exists a tight1 evolution system of measures {μs: s ∈ R} for P (t, s). Moreover,

P (t, s)V (x) :=
∫
Rd

V (y)pt,s,x(dy) � V (x) + a

c
, t > s, x ∈ R

d, (2.2)

and ∫
Rd

V (y)μt(dy) � min V + a

c
, t ∈ R, (2.3)

where the constants a and c are given by Hypothesis 2.1(iii).

In particular, statement (i) follows from Theorems 3.7 and 2.2 (Step 3), statement (ii) follows from
Lemma 3.2, statement (iii) is a consequence of Proposition 2.4 and Corollary 2.5, the strong Feller
property of statement (iv) is proved in Corollary 4.3, the existence of the measures μs is proved in
Theorem 5.4 while estimates (2.2) and (2.3) follow from the proofs of Lemma 5.3 and Theorem 5.4,
respectively.

Note that estimate (2.2) implies that the family {pt,s,x: t > s, x ∈ B(0, r)} is tight for every r > 0.

1 i.e., ∀ε > 0 ∃R = R(ε) > 0 such that μs(B(0, R)) � 1 − ε, for all s ∈ R.



L. Lorenzi et al. / J. Differential Equations 249 (2010) 3377–3418 3383
Since the coefficients qij and bi are T -time periodic, uniqueness of the bounded solution to (1.3)
implies that P (t + T , s + T ) = P (t, s) for t � s. Moreover, looking at the construction of the measures
μt of [21] one can see that μs = μs+T for each s ∈ R (see [22, Rem. 6.8(i)]).

The evolution systems of invariant measures are infinitely many, in general. In the case of nonau-
tonomous Ornstein–Uhlenbeck equations, they have been explicitly characterized in [17, Prop. 2.2].
In the next section we shall prove that all the T -periodic families {μs: s ∈ R} constructed in [21]
actually coincide, since P (t, s) has a unique T -periodic evolution system of measures.

In the next corollary we prove some consequences of Theorem 2.2. For this purpose, for every
ϕ ∈ L1(Rd,μs) we define the mean value

msϕ :=
∫
Rd

ϕ(y)μs(dy).

Corollary 2.3. Let Hypothesis 2.1 hold. Then:

(a) for every ϕ ∈ Cb(R
d) the function s �→ msϕ is continuous in R. More generally, for every u ∈ Cb(R

1+d)

the function s �→ msu(s, ·) is continuous in R;
(b) for every ϕ ∈ Cb(R

d) and for every bounded sequence (ϕn) ⊂ Cb(R
d) that converges locally uniformly to

ϕ we have

lim
n→∞ sup

s∈R

‖ϕ − ϕn‖L p(Rd,μs)
= 0, 1 � p < ∞, (2.4)

and, for every r > 0,

lim
n→∞ sup

s�t∈R

∥∥P (t, s)(ϕ − ϕn)
∥∥

L∞(B(0,r)) = 0; (2.5)

(c) for t > s, P (t, s) may be extended to a bounded operator from L p(Rd,μs) to L p(Rd,μt) for all p ∈ [1,∞),
and (1.4) holds.

Proof. The first part of statement (a) is an easy consequence of the continuity of P (t, s)ϕ with respect
to s. Indeed, fix s0 ∈ R and t � s0 + 1. For s ∈ (s0 − 1, s0 + 1) we have

msϕ − ms0ϕ =
∫
Rd

(
P (t, s)ϕ(y) − P (t, s0)ϕ(y)

)
μt(dy).

By Theorem 2.2(i), for every y ∈ R
d we have lims→s0 P (t, s)ϕ(y) − P (t, s0)ϕ(y) = 0; moreover

|P (t, s)ϕ(y) − P (t, s0)ϕ(y)| � 2‖ϕ‖∞ . Therefore, lims→s0 msϕ − ms0ϕ = 0.
Let us prove the second part of statement (a). Fix s0 ∈ R. Then,∣∣msu(s, ·) − ms0 u(s0, ·)

∣∣ �
∣∣ms

(
u(s, ·) − u(s0, ·)

)∣∣ + ∣∣msu(s0, ·) − ms0 u(s0, ·)
∣∣, s ∈ R.

By the first part of the statement, lims→s0 |msu(s0, ·) − ms0 u(s0, ·)| = 0. To estimate |ms(u(s, ·) −
u(s0, ·))| we use Theorem 2.2(v). Given ε > 0, let R > 0 be such that μs(R

d \ B(0, R)) � ε for ev-
ery s ∈ R. Then,∣∣ms

(
u(s, ·) − u(s0, ·)

)∣∣ �
∫

B(0,R)

∣∣u(s, y) − u(s0, y)
∣∣μs(dy) +

∫
Rd\B(0,R)

∣∣u(s, y) − u(s0, y)
∣∣μs(dy)

�
∥∥u(s, ·) − u(s0, ·)

∥∥
L∞(B(0,R))

+ 2ε‖u‖∞.

Since u is continuous, ‖u(s, ·)− u(s0, ·)‖L∞(B(0,R)) � ε for |s − s0| small enough. Statement (a) follows.
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The proof of statement (b) is similar. Let M > 0 be such that ‖ϕn‖∞ � M for each n ∈ N. For every
ε > 0 let R > 0 be as above. Then,∫

Rd

|ϕ − ϕn|p dμs =
∫

B(0,R)

|ϕ − ϕn|p dμs +
∫

Rd\B(0,R)

|ϕ − ϕn|p dμs

� ‖ϕ − ϕn‖p
L∞(B(0,R)) + (‖ϕ‖∞ + M

)p
ε,

and (2.4) holds. The proof of (2.5) is the same, through the representation formula P (t, s)ϕ(x) =∫
Rd ϕ(y)pt,s,x(dy) and the tightness of {pt,s,x: s < t, x ∈ B(0, r)}.

The proof of statement (c) is the same of the autonomous case. Indeed, for every ϕ ∈ Cb(R
d) we

have, by Theorem 2.2(iii) and the Hölder inequality,

∣∣P (t, s)ϕ(x)
∣∣p =

∣∣∣∣ ∫
Rd

ϕ(y)pt,s,x(dy)

∣∣∣∣p

�
∫
Rd

∣∣ϕ(y)
∣∣p

pt,s,x(dy) = (
P (t, s)|ϕ|p)

(x),

so that, integrating with respect to μt , we get∫
Rd

∣∣P (t, s)ϕ
∣∣p

dμt �
∫
Rd

P (t, s)|ϕ|p dμt =
∫
Rd

|ϕ|p dμs, t � s,

i.e., ϕ satisfies (1.4). Since Cb(R
d) is dense in L p(Rd,μs), (1.4) holds for every ϕ ∈ L p(Rd,μs). �

2.2. Smoothing properties of P (t, s)

We recall some global smoothing properties of the evolution operator P (t, s) that have been
proved in [21,22] and will be extensively used in this paper.

Hypothesis 2.4.

(i) The first-order space derivatives of the data qij and bi (i, j = 1, . . . ,d) exist and belong to

Cα/2,α
loc (T × R

d);
(ii) there are two upperly bounded functions ζ : T → R+ and r : T × R

d → R such that

〈∇xb(s, x)ξ, ξ
〉
� r(s, x)|ξ |2, (s, x) ∈ T × R

d, ξ ∈ R
d,∣∣Dkqij(s, x)

∣∣ � ζ(s)η(s, x), (s, x) ∈ T × R
d, i, j,k = 1, . . . ,d,

where η(s, x) is the ellipticity constant at (s, x) in Hypothesis 2.1(ii).

The following theorem has been proved in [21, Thm. 4.1].

Theorem 2.5. Let Hypotheses 2.1 and 2.4 hold. Then, there exist positive constants C1, C2 > 0, such that

(i) for every ϕ ∈ C1
b (Rd) we have

∥∥∇x P (t, s)ϕ
∥∥∞ � C1‖ϕ‖C1

b (Rd), s < t � s + 1;
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(ii) for every ϕ ∈ Cb(R
d) we have

∥∥∇x P (t, s)ϕ
∥∥∞ � C2√

t − s
‖ϕ‖∞, s < t � s + 1. (2.6)

As a consequence, we obtain∥∥∇x P (t, s)ϕ
∥∥∞ � C2‖ϕ‖∞, t � s + 1, (2.7)

for every ϕ ∈ Cb(R
d). It is sufficient to recall that P (t, s)ϕ = P (t, t − 1)P (t − 1, s)ϕ and that

‖P (t − 1, s)ϕ‖∞ � ‖ϕ‖∞ .

Theorem 2.6. Let Hypotheses 2.1 and 2.4 hold and assume in addition that, for some p > 1,

�p := sup
(s,x)∈[0,T ]×Rd

(
r(s, x) + d3(ζ(s))2η(s, x)

4 min{p − 1,1}
)

< ∞. (2.8)

Then:

(i) for every ϕ ∈ C1
b (Rd) we have∣∣∇x P (t, s)ϕ(x)

∣∣p � ep�p(t−s)(P (t, s)|∇ϕ|p)
(x), t � s, x ∈ R

d; (2.9)

(ii) there exists a positive constant C3 = C3(p) such that∣∣∇x P (t, s)ϕ(x)
∣∣p � C p

3 max
{
(t − s)−p/2,1

}
ep�p(t−s)(P (t, s)|ϕ|p)

(x), (2.10)

for every ϕ ∈ Cb(R
d), t > s and x ∈ R

d;
(iii) if the diffusion coefficients qi j (i, j = 1, . . . ,d) are independent of x, then (2.9) holds for p = 1 too, with

�1 = r0 := sup(s,x)∈T×Rd r(s, x). Moreover, there exists C4 > 0, independent of t and s, such that∥∥∣∣∇x P (t, s)ϕ
∣∣∥∥∞ � C4er0(t−s)‖ϕ‖∞, t � s + 1. (2.11)

Proof. Estimates (2.9) and (2.11) have been proved in [21, Thm. 4.5, Cor. 4.6]. To be precise, in [21,
Cor. 4.6] estimate (2.11) is stated as ‖|∇x P (t, s)ϕ|‖∞ � Ce�p(t−s)‖ϕ‖∞ , with C independent of p. If
the diffusion coefficients are independent of x, we can take ζ ≡ 0. Hence, �p = r0 and (2.11) follows.

In (the proof of) [22, Prop. 3.3], an estimate similar to (2.10) has been proved with a worse expo-
nential term. To get (2.10) it is sufficient to observe that for t − s � 1, [22, Prop. 3.3] gives

∣∣∇x P (t, s)ϕ(x)
∣∣p � K p

(t − s)
p
2

(
P (t, s)|ϕ|p)

(x), x ∈ R
d, (2.12)

for some positive constant K = K (p), independent of s, t and ϕ . If t − s > 1, we write P (t, s)ϕ =
P (t, s + 1)P (s + 1, s)ϕ . From (2.9) and (2.12) we obtain∣∣∇x P (t, s)ϕ(x)

∣∣p � ep�p(t−s−1)
(

P (t, s + 1)
∣∣∇x P (s + 1, s)ϕ

∣∣p)
(x)

� K pep�p(t−s−1)
(

P (t, s + 1)P (s + 1, s)|ϕ|p)
(x)

= K pep�p(t−s−1)
(

P (t, s)|ϕ|p)
(x),

for any x ∈ R
d . Estimate (2.10) follows. �
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Remark 2.7. Two remarks are in order.

(a) Estimate (2.10) implies that P (t, s) maps L p(Rd,μs) into W 1,p(Rd,μt) for p > 1, and∥∥∣∣∇x P (t, s)ϕ
∣∣∥∥

L p(Rd,μt )
� C3 max

{
(t − s)−1/2,1

}
e�p(t−s)‖ϕ‖L p(Rd,μs)

. (2.13)

This is not true in general for p = 1, even in the autonomous case. See e.g., [23, Cor. 5.1] for a
counterexample given by the Ornstein–Uhlenbeck semigroup.

(b) Estimates (2.13) are sharp near t = s, but they are not for t � s if �p > 0. In this case for t > s + 1
we write P (t, s) = P (t, t − 1)P (t − 1, s), and using (1.4) we obtain∥∥∣∣∇x P (t, s)ϕ

∣∣∥∥
L p(Rd,μt )

� C3e�p ‖ϕ‖L p(Rd,μs)
, t � s + 1, ϕ ∈ Lp(

R
d,μs

)
. (2.14)

2.3. The evolution semigroup

The evolution semigroup T (t) is defined on continuous and bounded functions f by

T (t) f (s, x) = P (s, s − t) f (s − t, ·)(x), (s, x) ∈ R
1+d, t � 0.

In [21, Prop. 6.1] we have shown that T (t) is a semigroup of positive contractions in Cb(R
1+d). Since

P (s + T , s + T − t) = P (s, s − t), T (t) leaves Cb(T × R
d) invariant for every t > 0.

T (t) is not strongly continuous in Cb(T×R
d). However, the last part of the proof of [21, Prop. 6.1]

implies that, for any f ∈ Cb(T × R
d) and any t0 � 0, T (t) f tends to T (t0) f , locally uniformly in

T × R
d as t → t0.

In the language of [9], T (t) is a stochastically continuous Markov semigroup. It improves spatial
regularity, as the next lemma shows.

Lemma 2.8. For every t > 0 and f ∈ Cb(T×R
d), the derivatives Di T (t) f , Di j T (t) f exist and are continuous

in T × R
d for i, j = 1, . . . ,d.

Proof. Since T (t) f (s, x) = P (s, s − t) f (s − t, ·)(x), it is sufficient to show that the first and second
order space derivatives of the function (t, r, x) �→ P (t, r) f (r, ·)(x) are continuous with respect to
(t, r, x) ∈ Λ. For any (t0, r0, x0) ∈ Λ, fix δ > 0 such that t0 − δ > r0 + δ. The classical interior Schauder
estimates (e.g., [15, Thm. 3.5]) imply that for any R > 0 there exists a positive constant C such that

sup
|t−t0|�δ, |r−r0|�δ

∥∥P (t, r)ϕ
∥∥

C2+α(B(x0,R))
� C‖ϕ‖∞, (2.15)

for every ϕ ∈ Cb(R
d). Applying the interpolatory estimates

‖Diψ‖C(B(x0,R)) � K1‖ψ‖
1+α
2+α

C(B(x0,R))‖ψ‖
1

2+α

C2+α(B(x0,R))
, i = 1, . . . ,d (2.16)

(which hold for every ψ ∈ C2+α(B(x0, R)) and some positive constant K1 = K1(α, R), see e.g., [26,
Sect. 4.5.2, Rem. 2]) to the function ψ = P (t, r) f (r, ·) − P (t0, r0) f (r0, ·) with t ∈ [t0 − δ, t0 + δ], r ∈
[r0 − δ, r0 + δ], we deduce∥∥Di P (t, r) f (r, ·) − Di P (t0, r0) f (r0, ·)

∥∥
C(B(x0,R))

� K1
∥∥P (t, r) f (r, ·) − P (t0, r0) f (r0, ·)

∥∥ 1+α
2+α

C(B(x0,R))

× (∥∥P (t, r) f (r, ·)∥∥C2+α(B(x0,R))
+ ∥∥P (t0, r0) f (r0, ·)

∥∥
C2+α(B(x0,R))

) 1
2+α

� K1
∥∥P (t, r) f (r, ·) − P (t0, r0) f (r0, ·)

∥∥ 1+α
2+α

C(B(x ,R))

(
2C‖ f ‖∞

) 1
2+α ,
0
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where the last inequality follows from (2.15). Since (t, r, x) �→ P (t, r) f (r, ·)(x) is a continuous function
in Λ, the right-hand side vanishes as (t, r) tends to (t0, r0), and this implies that Di P (t, r) f (r, ·)(x) is
continuous in (t, r, x) ∈ Λ.

Using the interpolatory estimates (see [26, Sect. 4.5.2, Rem. 2])

‖Dijψ‖C(B(x0,R)) � K2‖ψ‖
α

2+α

C(B(x0,R))‖ψ‖
2

2+α

C2+α(B(x0,R))
, i, j = 1, . . . ,d,

instead of (2.16), the same procedure yields that Dij P (t, r) f (r, ·)(x) is continuous in Λ for any i, j =
1, . . . ,d. �

The generator G∞ of T (t) in Cb(T × R
d) may be defined through its resolvent. Namely, for every

λ > 0, D(G∞) is the range of the operator

u �→ v(s, x) :=
∞∫

0

e−λt T (t)u(s, x)dt,

and G∞v = λv − u. The following result is taken from [22, Prop. 6.3].

Theorem 2.9. Under Hypothesis 2.1 we have

D(G∞) =
{

f ∈
⋂

q<∞
W 1,2

q,loc

(
T × R

d,ds × dx
) ∩ Cb

(
T × R

d), G f ∈ Cb
(
T × R

d)},

where G f (s, x) = A(s) f (s, ·)(x) − Ds f (s, x). Moreover, D(G∞) coincides with the set of the functions
u ∈ Cb(T × R

d) such that sup0<t�1 t−1‖T (t)u − u‖∞ < ∞ and there exists g ∈ Cb(T × R
d) such that

t−1(T (t)u − u) → g, locally uniformly in T × R
d, as t → 0.

For every T -periodic evolution system of measures {νs: s ∈ R} for P (t, s), the measure ν(ds,dx) :=
1
T νs(dx)ds is invariant for T (t). Indeed, the first part of the proof of Corollary 2.3 shows that, for
each ϕ ∈ Cb(R

d), the function s �→ ∫
Rd ϕ dνs is continuous in R. Hence, for every Borel set Γ ⊂ R

d the
function s �→ νs(Γ ) is Lebesgue measurable, and ν is well defined. Moreover, for every f ∈ Cb(T×R

d)

we have

∫
(0,T )×Rd

T (t) f dν = 1

T

T∫
0

ds

∫
Rd

P (s, s − t) f (s − t, ·)dνs

= 1

T

T∫
0

ds

∫
Rd

f (s − t, ·)dνs−t

= 1

T

T −t∫
−t

dσ

∫
Rd

f (σ , ·)dνσ

=
∫

(0,T )×Rd

f dν,

where the last equality follows from the periodicity of the function σ �→ ∫
Rd f (σ , ·)dνσ .
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Proposition 2.10. Under Hypothesis 2.1, P (t, s) has a unique T -periodic evolution system of measures, and
T (t) has a unique invariant measure.

Proof. Let {νs: s ∈ R} be any T -periodic evolution system of measures for P (t, s). The arguments
in [5, Thm. 4.3] show that ν = 1

T νs(dx)ds is ergodic for T (t), in the sense that, if Γ is a Borel
set in T × R

d such that T (t)1Γ = 1Γ for every t , then either ν(Γ ) = 0 or ν(Γ ) = 1. This implies
that the invariant measures μ and ν corresponding to two different evolution systems of measures
{μs: s ∈ R} and {νs: s ∈ R}, are either singular or coincide, see e.g., [9, Prop. 3.2.5]. But we know from
[21, Prop. 5.2] that μt and νt are equivalent to the Lebesgue measure in R

d for every t ∈ R, hence μ
and ν are equivalent to the Lebesgue measure in T × R

d so that they cannot be singular. Therefore,
ν = μ, which implies νs = μs for a.e. s ∈ R. Since s �→ ∫

Rd ϕ(x)νs(dx) and s �→ ∫
Rd ϕ(x)μs(dx) are

continuous for each ϕ ∈ Cb(R
d) by Corollary 2.3, then νs = μs for every t ∈ R.

Let us prove that each invariant measure ν for T (t) comes from an evolution system of mea-
sures. Arguing as in the case of time depending Ornstein–Uhlenbeck operators [7, Prop. 4.2] we
see that ν is of the type ν(ds,dx) = 1

T νs(dx)dt , where {νs: s ∈ R} is a family of T -periodic prob-
ability measures. Let f (s, x) = g(s)ϕ(x), with g ∈ C(T) and ϕ ∈ Cb(R

d). For t > 0 the equality∫
T×Rd T (t) f dν = ∫

T×Rd f dν means

T∫
0

g(s)

∫
Rd

ϕ(x)νs(dx)ds =
T∫

0

g(s − t)

∫
Rd

P (s, s − t)ϕ(x)νs(dx)ds

=
T −t∫
−t

g(s)

∫
Rd

P (s + t, s)ϕ(x)νs+t(dx)ds

=
T∫

0

g(s)

∫
Rd

P (s + t, s)ϕ(x)νs+t(dx)ds.

Since g is arbitrary, then
∫

Rd P (s + t, s)ϕ(x)νs+t(dx) = ∫
Rd ϕ(x)νs(dx) for every t > 0, which means

that {νs: s ∈ R} is an evolution system of measures. �
From now on we shall consider the invariant measure μ for T (t) defined by

μ(ds,dx) := 1

T
μs(dx)ds,

where {μs: t ∈ R} is the unique T -periodic evolution system of measures for P (t, s).
As a consequence of [2, p. 2067], there exists a continuous positive function ρ : T × R

d → R

such that μ(ds,dx) = ρ(s, x)ds dx. The computation at the end of the proof of Proposition 2.10 shows
that the family of measures νs(dx) := ρ(s, x)dx are a T -periodic evolution system of measures. By
uniqueness, νs = μs/T for every s, i.e. the density of μs is Tρ(s, ·) for every s ∈ R.

For any p ∈ [1,∞), we introduce the space L p(T×R
d,μ) of all functions f such that f (s + T , x) =

f (s, x) for a.e. (s, x) ∈ R
1+d and

‖ f ‖p
L p(T×Rd,μ)

:=
∫

(0,T )×Rd

| f |p dμ < ∞.

We also use the symbol
∫

T×Rd | f |p dμ for
∫
(0,T )×Rd | f |p dμ. If no confusion may arise, we write ‖ f ‖p

for ‖ f ‖Lp(T×Rd,μ) .
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As all Markov semigroups having an invariant measure, T (t) can be extended to a semigroup of
positive contractions in L p(T × R

d,μ) for any p ∈ [1,∞). We still call T (t) these extensions, using
the notation T p(t) only when we deal with different L p spaces.

It is easy to see that T (t) is strongly continuous in L p(T × R
d,μ) for 1 � p < ∞. Indeed, we

already know that T (t) f tends to f locally uniformly as t → 0+ , for any f ∈ Cb(T × R
d). Moreover,

‖T (t) f ‖∞ � ‖ f ‖∞ for any t > 0. By dominated convergence, T (t) f tends to f in L p(T × R
d,μ) as

t → 0+ . Since Cb(T × R
d) is dense in L p(T × R

d,μ), T (t) f tends to f in L p(T × R
d,μ) as t → 0+ ,

for every f ∈ L p(T × R
d,μ).

We denote by G p the infinitesimal generator of T (t) in L p(T × R
d,μ). In general, the character-

ization of the domain D(G p) of G p is not obvious, and even determining whether a given smooth
function f belongs to D(G p) is not obvious. In the case of time depending Ornstein–Uhlenbeck op-
erators, D(G2) has been characterized in [17] as the space of all f ∈ L2(T × R

d,μ) such that there
exist Ds f , Di f , Dij f ∈ L2(T × R

d,μ) for i, j = 1, . . . ,d. A similar characterization for 2 
= p ∈ (1,∞)

follows adapting to the periodic case the procedure of [16]. We do not expect the same result in the
general case, since for functions f with all derivatives in L p(T×R

d,μ), A(s) f (s, ·) does not necessar-
ily belong to L p(Rd,μs), even for bounded diffusion coefficients. Fortunately, the explicit knowledge
of D(G p) is not necessary in several circumstances, provided we know a good core of G p . In the paper
[22] sufficient conditions have been given for C∞

c (T × R
d) be a core of G p , for 1 � p < ∞. In general,

C∞
c (T × R

d) is contained in D(G p) but it is not a core. However, we have the following result (see
[22, Thm. 6.7]).

Proposition 2.11. Under Hypothesis 2.1, T (t) maps D(G∞) into itself, and D(G∞) is a core of G p for every
p ∈ [1,∞) and every t > 0.

Adapting to our situation a similar result for evolution semigroups in fixed Banach spaces (e.g., [4,
Thm. 3.12]), we determine another core of G p .

To this purpose, for any τ ∈ R, χ ∈ C∞
c (Rd) and α ∈ C1

c (R) with suppα ⊂ (a,a + T ) for some
a � τ , we define the function uτ ,χ,α : R

1+d → R, as the T -periodic (with respect to s) extension of
the function (s, x) �→ α(s)P (s, τ )χ(x) defined in [a,a + T ) × R

d .

Proposition 2.12. For each τ , χ and α as above, the function uτ ,χ,α belongs to D(G p) and the linear span C
of the functions uτ ,χ,α is a core for G p , for each p ∈ [1,∞).

Proof. Any function u ∈ C is in C1,2(R1+d) by (the proof of) [21, Thm. 2.2] and, since it is periodic in
time and bounded, it belongs to L p(T × R

d,μ) for every p ∈ [1,∞).
Fix τ , α, χ as in the statement and define u := uτ ,χ,α . For each s ∈ [a,a + T ), x ∈ R

d we have

G u(s, x) = −{
α′(s)P (s, τ )χ(x) + α(s)A(s)P (s, τ )χ(x)

} + α(s)A(s)P (s, τ )χ(x),

so that

G u(s, x) = −α′(s)P (s, τ )χ(x), s ∈ [a,a + T ), x ∈ R
d,

and, for every k ∈ Z,

G u(s, x) = −α′(s − kT )P (s − kT , τ )χ(x), s ∈ [
a + kT ,a + (k + 1)T

)
, x ∈ R

d.

Let us prove that, for every t > 0, T (t)u ∈ C . For every s ∈ R, let k ∈ Z be such that s − t ∈ [a + kT ,

a + (k + 1)T ). Then s − t − kT � τ , and for every x ∈ R
d we have
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(
T (t)u

)
(s, x) = α(s − t − kT )P (s, s − t)P (s − t − kT , τ )χ(x)

= α(s − t − kT )P (s − kT , s − t − kT )P (s − t − kT , τ )χ(x)

= α(s − t − kT )P (s − kT , τ )χ(x),

so that T (t)u is the T -periodic extension of the function (s, x) �→ α(s − t)P (s, τ )χ(x) defined in
[a + t,a + t + T ) × R

d , which belongs to C . Moreover, t �→ T (t)u is differentiable at t = 0 with values
in L p(T × R

d,μ) and we have(
d

dt
T (t)u

)
|t=0

(s, x) = −α′(s)P (s, τ )χ(x) = G u(s, x), s ∈ [a,a + T ),

which shows that u ∈ D(G p) and G pu = G u.
Let us prove that C is dense in the domain of G p . Since T (t) maps C into itself for any t > 0, it is

enough to prove that C is dense in L p(T × R
d,μ).

We recall that the linear span of the functions (s, x) �→ β(s)χ(x), with β ∈ C1(T), χ ∈ C∞
c (Rd), is

dense in L p(T × R
d,μ). Therefore, it is enough to approximate any product g = βχ of this type by

elements of C .
Fix β ∈ C1(T), χ ∈ C∞

c (Rd) and ε > 0. Let τ ∈ R. Lemma 3.2 of [21] implies that P (s, τ )χ tends
to χ , uniformly in R

d , as s → τ+ . Therefore, there exists τ ′ ∈ (τ , τ + T ) such that ‖P (s, τ )χ −χ‖∞ �
ε, for each s ∈ [τ , τ ′], which implies

∥∥P (s, τ )χ − χ
∥∥

L p(Rd,μs)
� ε, τ � s � τ ′.

Let us cover T by a finite number of such intervals (mod T ) (τk, τ
′
k), k = 1, . . . , K , and let (αk) be an

associated partition of unity. Setting

uk(s, x) = β(s)αk(s)P (s, τk)χ(x), s ∈ [τk, τk + T )

and still denoting by uk its T -periodic extension, the function u defined by

u(s, x) :=
K∑

k=1

uk(s, x), s ∈ R, x ∈ R
d,

belongs to C , and we have

∥∥g(s, ·) − u(s, ·)∥∥L p(Rd,μs)
� ‖β‖∞

K∑
k=1

αk(s)
∥∥P (s, τk)χ − χ

∥∥
L p(Rd,μs)

� ε‖β‖∞,

for any s ∈ [0, T ]. Integrating with respect to s in (0, T ) we obtain

‖g − u‖p � ε‖β‖∞,

and the statement follows. �
Corollary 2.13. For 1 < p < ∞, D(G p) ⊂ W 1,2

p,loc(T×R
d,ds×dx) and for every r > 0 the restriction mapping

R : D(G p) → W 1,2
p (T × B(0, r),ds × dx), defined by Ru = u|T×B(0,r) , is continuous.



L. Lorenzi et al. / J. Differential Equations 249 (2010) 3377–3418 3391
Proof. Every u ∈ C belongs to C1,2(T×R
d), and G pu(s, x) = A(s)u(s, x)− Dsu(s, x), so that by classical

regularity results for parabolic equations in L p spaces with respect to the Lebesgue measure there
exists C1 = C1(r) such that

‖u‖W 1,2
p (T×B(0,r),ds×dx) � C1

(‖u‖L p(T×B(0,2r),ds×dx) + ‖G pu‖L p(T×B(0,2r),ds×dx)
)
.

On the other hand, since μ(ds,dx) = ρ(s, x)ds dx for a positive continuous function ρ , there exists
C2 = C2(r) such that ‖·‖Lp(T×B(0,2r),ds×dx) � C2‖·‖Lp(T×Rd,μ) . Then, R is continuous from C (endowed

with the D(G p)-norm) to W 1,2
p (T × B(0, r),ds × dx), and since C is dense in D(G p) the statement

follows. �
The estimates on the space derivatives of P (t, s) f yield a useful embedding result for D(G p). We

denote by W 0,1
p (T × R

d,μ) the set of the functions f ∈ L p(T × R
d,μ) having space derivatives Di f

in L p(T × R
d,μ), for every i = 1, . . . ,d. It is a Banach space with the norm

‖ f ‖W 0,1
p (T×Rd,μ)

= ‖ f ‖L p(T×Rd,μ) +
d∑

i=1

‖Di f ‖L p(T×Rd,μ).

Similarly, we denote by C0,1
b (T × R

d) the set of the functions f ∈ Cb(T × R
d) having space derivatives

Di f in Cb(T × R
d), for every i = 1, . . . ,d. It is a Banach space with the norm

‖ f ‖C0,1
b (T×Rd)

= ‖ f ‖∞ +
d∑

i=1

‖Di f ‖∞.

Proposition 2.14. Assume that Hypotheses 2.1 and 2.4 are satisfied. Let C2 be the constant given by Theo-
rem 2.5. Then, for every t > 0 and f ∈ Cb(T × R

d) we have∥∥∣∣∇x T (t) f
∣∣∥∥∞ � C2 max

{
t−1/2,1

}‖ f ‖∞. (2.17)

Moreover, D(G∞) is continuously embedded into C0,1
b (T × R

d).
If for some p > 1 the constant �p in (2.8) is finite, let C3 be the constant in estimate (2.10). Then, for every

f ∈ L p(T × R
d,μ),

∥∥∣∣∇x T (t) f
∣∣∥∥

p �
{

C3e�p t−1/2‖ f ‖p, 0 < t � 1,

C3 min{e�pt, e�p }‖ f ‖p, t � 1,
(2.18)

and D(G p) is continuously embedded into W 0,1
p (T × R

d,μ). Moreover,∥∥∣∣∇x T (t) f
∣∣∥∥

p � e�pt
∥∥|∇x f |∥∥p, t > 0, f ∈ W 0,1

p

(
T × R

d,μ
)
. (2.19)

Proof. Recalling that T (t) f (s, x) = P (s, s − t) f (s − t, ·)(x), estimate (2.17) follows immediately from
(2.7) and (2.6).

Let us prove that D(G∞) is continuously embedded into C0,1
b (R1+d). D(G∞) coincides with the

range of the resolvent R(λ, G∞), for any λ > 0. Since R(λ, G∞) f (s, x) = ∫ ∞
0 e−λt T (t) f (s, x)dt for

any (s, x) ∈ R
1+d , estimate (2.17) implies that the derivatives Di R(λ, G∞) f are bounded by C‖ f ‖∞

for some C > 0. Their continuity follows from the continuity of the space derivatives of T (t) f
(Lemma 2.8) through the dominated convergence theorem.
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Assume now that �p < ∞ and let f ∈ L p(T × R
d,μ). Using (2.13) we obtain

∫
T×Rd

∣∣∇x T (t) f
∣∣p

dμ = 1

T

T∫
0

∫
Rd

∣∣∇x P (s, s − t) f (s − t, ·)(x)
∣∣p

μs(dx)ds

� (C3e�pt)p

T
max

{
t−p/2,1

} T∫
0

∥∥ f (s − t, ·)∥∥p
L p(Rd,μs−t )

ds

= (
C3e�pt)p

max
{

t−p/2,1
}‖ f ‖p

L p(T×Rd,μ)
.

If �p > 0, for t � 1 we use (2.14) instead of (2.13), and we get∥∥∣∣∇x T (t) f
∣∣∥∥

p � C3e�p ‖ f ‖p.

In any case, (2.18) holds. The embedding D(G p) ⊂ W 0,1
p (T × R

d,μ) follows again from the equality
R(λ, G p) f = ∫ ∞

0 e−λt T (t) f dt , for any λ > 0.

Estimate (2.19) follows from Theorem 2.6(i) and from the density of C0,1
b (T × R

d,μ) in

W 0,1
p (T × R

d,μ). �
If some bounds on Q and on 〈b, x〉 hold, we can prove important integration formulae in D(G∞).

They yield the embeddings D(G p) ⊂ W 0,1
p (T × R

d,μ), even without the assumption �p < ∞.

Proposition 2.15. Assume that Hypotheses 2.1 and 2.4 are satisfied. Then:

(a) if there exists C > 0 such that ∥∥Q (s, x)
∥∥

L(Rd)
� C

(|x| + 1
)

V (x),〈
b(s, x), x

〉
� C

(|x|2 + 1
)

V (x), (s, x) ∈ R
1+d, (2.20)

then for every p ∈ (1,∞) and u ∈ D(G∞), |u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} belongs to L1(T × R
d,μ), and∫

T×Rd

|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} dμ � − 1

p − 1

∫
T×Rd

u|u|p−2G pu dμ; (2.21)

(b) if there exists C > 0 such that ∥∥Q (s, x)
∥∥

L(Rd)
� C

(|x| + 1
)

V (x),∣∣〈b(s, x), x
〉∣∣ � C

(|x|2 + 1
)

V (x), (s, x) ∈ R
1+d, (2.22)

then for p � 2 and u ∈ D(G∞) we have∫
T×Rd

|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} dμ = − 1

p − 1

∫
T×Rd

u|u|p−2G pu dμ; (2.23)

(c) if the diffusion coefficients qi j are bounded, then for every p ∈ (1,∞) and u ∈ D(G∞), (2.23) holds.
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Proof. Step 1: p � 2. Let u ∈ D(G∞). Then,

G
(|u|p) = pu|u|p−2 G u + p(p − 1)|u|p−2〈Q ∇xu,∇xu〉. (2.24)

Since u, Diu, G u are bounded, if the diffusion coefficients are bounded G(|u|p) is bounded too. There-
fore, |u|p ∈ D(G∞) ⊂ D(G1), so that

∫
T×Rd G(|u|p)dμ = 0 and (2.23) holds.

Even if the diffusion coefficients are unbounded, we shall show that G(|u|p) ∈ L1(T × R
d,μ), and

that
∫

T×Rd G(|u|p)dμ � 0 if (2.20) holds,
∫

T×Rd G(|u|p)dμ = 0 if (2.22) holds. Note that since G(|u|p)

is the sum of a bounded function and a positive function, then
∫

T×Rd G(|u|p)dμ is either finite or
equal to ∞.

Let η ∈ C∞(R) be a nonincreasing function such that 1(−∞,1] � η � 1(−∞,2] . For n ∈ N define the
functions θn(x) := η(|x|/n) for any x ∈ R

d . Let us observe that∫
T×Rd

G
(|u|p)

dμ = lim
n→∞

∫
T×Rd

G
(|u|p)

θn dμ. (2.25)

Formula (2.25) follows applying the monotone convergence theorem to the positive and increas-
ing sequence (θn|u|p−2〈Q ∇xu,∇xu〉) and the dominated convergence theorem to the sequence
(pθnu|u|p−2 G u).

Let us estimate the integrals
∫

T×Rd G(|u|p)θn dμ. For every n ∈ N, the function |u|pθn belongs to⋂
p<∞ W 1,2

p,loc(R
1+d) ∩ Cb(T × R

d) and

G
(|u|pθn

) = |u|p G(θn) + G
(|u|p)

θn + 2pu|u|p−2〈Q ∇xu,∇θn〉

belongs to Cb(T × R
d). Hence, |u|pθn ∈ D(G∞), so that the mean value of G(|u|pθn) vanishes. This

means ∫
T×Rd

G
(|u|p)

θn dμ =
∫

T×Rd

(−|u|p G(θn) − 2pu|u|p−2〈Q ∇xu,∇θn〉
)

dμ. (2.26)

Let us compute G(θn)(s, x) = (A(s)θn)(s, x). We have D jθn(0) = Dijθn(0) = 0 and

D jθn(x) = η′
( |x|

n

)
x j

|x|n ,

Dijθn(x) = η′′
( |x|

n

)
xi x j

|x|2n2
+ η′

( |x|
n

)
δi j

|x|n − η′
( |x|

n

)
xi x j

|x|3n
,

for any x ∈ R
d \ {0} and any i, j = 1, . . . ,d. Therefore,

(
A(s)θn

)
(s, x) = η′′

( |x|
n

) 〈Q (s, x)x, x〉
|x|2n2

+ η′
( |x|

n

)
Tr(Q (s, x))

|x|n

− η′
( |x|

n

) 〈Q (s, x)x, x〉
|x|3n

+ η′
( |x|

n

) 〈b(s, x), x〉
|x|n .

Since η′(r) and η′′(r) vanish if r /∈ (1,2), there exists C1 > 0 such that∣∣∣∣η′′
( |x|

n

) 〈Q (s, x)x, x〉
|x|2n2

+ η′
( |x|

n

)
Tr(Q (s, x))

|x|n − η′
( |x|

n

) 〈Q (s, x)x, x〉
|x|3n

∣∣∣∣ � C1 V (x)

n
,
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for any (s, x) ∈ R
1+d . Moreover, 〈Q ∇xu,∇θn〉 goes to 0 pointwise as n → ∞, and for each s ∈ R and

x ∈ R
d we have

∣∣〈Q (s, x)∇xu(s, x),∇θn(x)
〉∣∣ � C

(|x| + 1
)

V (x)
∥∥|∇xu|∥∥∞

1

n

∣∣∣∣η′
( |x|

n

)∣∣∣∣
� 3C

∥∥η′∥∥∞‖|∇xu|‖∞V (x).

Thus, for (s, x) ∈ T × (Rd \ {0}) we have

−(|u|p G(θn) + 2pu|u|p−2〈Q ∇xu,∇θn〉)(s, x) = fn(s, x) − η′
( |x|

n

) 〈b(s, x), x〉
|x|n , (2.27)

where limn→∞ ‖ fn‖L1(T×Rd,μ) = 0. Let us split 〈b(s, x), x〉 = 〈b(s, x), x〉+ − 〈b(s, x), x〉− . Then

η′(|x|/n)
〈b(s,x),x〉−

|x|n � 0, while η′(|x|/n)
〈b(s,x),x〉+

|x|n goes to 0 pointwise as n → ∞, and by (2.20)

∣∣∣∣η′
( |x|

n

) 〈b(s, x), x〉+
|x|n

∣∣∣∣ �
∣∣∣∣η′

( |x|
n

)∣∣∣∣ C(|x|2 + 1)V (x)

|x|n � 5C
∥∥η′∥∥∞V (x), (2.28)

for any (s, x) ∈ R
1+d , so that by dominated convergence

lim
n→∞

∫
T×Rd

∣∣∣∣η′
( |x|

n

)∣∣∣∣ 〈b(s, x), x〉+
|x|n dμ = 0. (2.29)

Formulae (2.26) and (2.27) yield, for every R > 0,∫
T×Rd

G
(|u|p)

θn dμ �
∫

T×Rd

(
fn(s, x) − η′

( |x|
n

) 〈b(s, x), x〉+
|x|n

)
dμ, (2.30)

where the right-hand side goes to 0 as n → ∞. Now, taking (2.25) into account, we deduce that∫
T×Rd G(|u|p)dμ � 0, so that G(|u|p) ∈ L1(T × R

d,μ) and (2.21) follows. If in addition (2.22) holds,
estimate (2.28) and its consequence (2.29) hold with 〈b(s, x), x〉+ replaced by 〈b(s, x), x〉, so that (2.30)
may be replaced by∫

T×Rd

G
(|u|p)

θn dμ =
∫

T×Rd

(
fn(s, x) − η′

( |x|
n

) 〈b(s, x), x〉
|x|n

)
dμ

and letting n → ∞, (2.25) implies (2.23).

Step 2: 1 < p < 2. Fix u ∈ D(G∞) and δ > 0. Then, the function uδ := (u2 + δ)
p
2 − δ

p
2 is bounded and

continuous in T × R
d . A straightforward computation shows that

G uδ = pu
(
u2 + δ

) p
2 −1 G u + p

(
u2 + δ

) p
2 −2[

(p − 1)u2 + δ
]〈Q ∇xu,∇xu〉.

If (2.20) holds, then

lim
n→∞

∫
d

G(uδ)θn dμ =
∫

d

G(uδ)dμ.
T×R T×R
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Moreover,

G(uδθn) = uδ G(θn) + G(uδ)θn + 2pu
(
u2 + δ

) p−2
2 〈Q ∇xu,∇θn〉

belongs to Cb(T × R
d), and

∣∣u(
u2 + δ

) p−2
2 〈Q ∇xu,∇θn〉∣∣ � 2C‖η′‖∞V

(‖u‖2∞ + δ
) p−1

2
∥∥|∇xu|∥∥∞.

The arguments used in Step 1 show that G(|u|p) ∈ L1(T × R
d,μ) and

∫
T×Rd G uδ dμ � 0, i.e.∫

T×Rd

(
u2 + δ

) p
2 −2[

(p − 1)u2 + δ
]〈Q ∇xu,∇xu〉dμ � −

∫
T×Rd

u
(
u2 + δ

) p
2 −1 G u dμ. (2.31)

If the diffusion coefficients are bounded, G uδ belongs to Cb(T × R
d), hence uδ ∈ D(G∞) ⊂ D(G1) and

the inequality in (2.31) can be replaced by an equality.
By dominated convergence, the right-hand side of (2.31) converges, as δ → 0, to the corresponding

integral with δ = 0. Indeed, for any δ > 0, the function |u|(u2 + δ)
p
2 −1|G pu| is bounded from above

by |u|p−1|G pu| since p < 2, and the μ-a.e. pointwise convergence is obvious. On the other hand, the
functions

(
u2 + δ

) p
2 −2[

(p − 1)u2 + δ
]〈Q ∇xu,∇xu〉

converge pointwise a.e. (with respect to the Lebesgue measure) in {u 
= 0} to the function
(p − 1)|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} , and ∇xu = 0 a.e. (with respect to the Lebesgue measure) in the
set {u = 0}. Since μ is absolutely continuous with respect to the Lebesgue measure, it follows
that (u2 + δ)

p
2 −2[(p − 1)u2 + δ]〈Q ∇xu,∇xu〉 converges to 0 μ-a.e. in {u = 0}. This shows that

(u2 +δ)
p
2 −2[(p −1)u2 +δ]〈Q ∇xu,∇xu〉 converges pointwise to (p −1)|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} μ-a.e.

in T × R
d . By the Fatou Lemma,

(p − 1)

∫
{u 
=0}

|u|p−2〈Q ∇xu,∇xu〉dμ � lim inf
δ→0+

∫
T×Rd

(
u2 + δ

) p
2 −2[

(p − 1)u2 + δ
]〈Q ∇xu,∇xu〉dμ

= − lim
δ→0+

∫
T×Rd

u
(
u2 + δ

) p
2 −1

G pu dμ

= −
∫

T×Rd

u|u|p−2G pu dμ,

and this implies that |u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} belongs to L1(T × R
d,μ). Now, since

(
u2 + δ

) p
2 −2[

(p − 1)u2 + δ
]〈Q ∇xu,∇xu〉 � (p − 1)|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0},

we can apply the dominated convergence theorem to both sides of (2.31) (which is an equality if the
diffusion coefficients are bounded) and conclude that (2.21) holds if (2.20) is satisfied, and that (2.23)
holds if the diffusion coefficients are bounded. �
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Corollary 2.16. Let Hypotheses 2.1 and 2.4 hold. Then:

(a) if the diffusion coefficients are bounded, or if (2.20) holds, D(G p) ⊂ W 0,1
p (T × R

d) for each p ∈ (1,∞),

and the mapping f �→ Q 1/2∇x f is continuous from D(G p) into (L p(T × R
d,μ))d for 1 < p � 2;

(b) if the diffusion coefficients are bounded, or if (2.20) holds, inequality (2.21) holds for every p ∈ (1,∞)

and u ∈ D(G p);
(c) if the diffusion coefficients are bounded, equality (2.23) holds for every p � 2 and u ∈ D(G p).

Proof. (a). Let 1 < p � 2 and f ∈ D(G∞). Using the Hölder inequality, (2.21) and then the Hölder
inequality again, we get

( ∫
T×Rd

|Q 1/2∇x f |p dμ

) 2
p

�
( ∫

T×Rd

| f |p dμ

) 2
p −1 ∫

T×Rd

| f |p−2
∣∣Q 1/2∇x f

∣∣2
χ{ f 
=0} dμ

� ‖ f ‖2−p
p

1

p − 1

∫
T×Rd

| f |p−1|G p f |dμ

� 1

p − 1
‖ f ‖p‖G p f ‖p.

Therefore, ‖|Q 1/2∇x f |‖p � 1/(2
√

p − 1)‖ f ‖D(G p) . Since D(G∞) is dense in D(G p), the mapping f �→
Q 1/2∇x f is bounded from D(G p) to (L p(T × R

d,μ))d and, since Q (s, x) � η0 I for each s and x, also

the mapping f �→ ∇x f is bounded from D(G p) to (L p(T×R
d,μ))p , that is D(G p) ⊂ W 0,1

p (T×R
d,μ).

If p > 2, the embedding follows by interpolation between L2 and L∞ . Precisely, since for i =
1, . . . ,d and λ > 0 the mappings f �→ Di

∫ ∞
0 e−λt T (t) f dt are bounded in L2(T × R

d,μ) by the above
arguments, and in L∞(T × R

d,μ) by Proposition 2.14, they are bounded in L p(T × R
d,μ) for every

p ∈ (2,∞). On the other hand,
∫ ∞

0 e−λt T (t) f dt = R(λ, G p) f for every f ∈ L p(T × R
d,μ). Therefore,

the range of R(λ, G p), which is the domain of G p , is continuously embedded in W 0,1
p (T × R

d,μ).
(b). Consider the nonlinear functions on D(G p) defined by

H(u) = |u|p−2〈Q ∇xu,∇xu〉χ{u 
=0}, K (u) = u|u|p−2G pu.

It is easy to see that K is continuous with values in L1(T × R
d,μ). Concerning H , fix u ∈

D(G p) and let (un) ⊂ D(G∞) converge to u in D(G p). By statement (a), (un) converges to u in

W 0,1
p (T × R

d,μ). We may assume (possibly replacing un by a suitable subsequence) that un , Diun

converge, respectively, to u, Diu pointwise μ-a.e, i = 1, . . . ,d, so that H(un) converges to H(u) point-
wise μ-a.e in {u 
= 0}. For every n ∈ N, un satisfies (2.21) by Proposition 2.15. Letting n → ∞ we get,
by the Fatou Lemma,∫

T×Rd

|u|p−2〈Q ∇xu,∇xu〉χ{u 
=0} dμ � lim inf
n→∞

∫
T×Rd

|un|p−2〈Q ∇xun,∇xun〉χ{un 
=0} dμ

� lim
n→∞

∫
T×Rd

un|un|p−2G pun dμ

=
∫

T×Rd

u|u|p−2G pu dμ,

that is, (2.21) holds for every u ∈ D(G p).
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(c). If the diffusion coefficients are bounded, using statement (a) and the Hölder inequality it is
easy to see that the function H : D(G p) → L1(T × R

d,μ) is continuous for p � 2. Since D(G∞) is
dense in D(G p) and (2.23) holds for u ∈ D(G∞) by Proposition 2.15, then it holds for u ∈ D(G p). �

As in the case of evolution semigroups in fixed Banach spaces, the spectral mapping theorem holds
for T (t). The proof is the same of [18, Prop. 2.1] with obvious changes, and it is omitted.

Theorem 2.17. Let 1 � p < ∞, and denote by T p(t) the realization of T (t) in L p(T × R
d,μ). Then we have

σ
(

T p(t)
) \ {0} = etσ (G p), t > 0.

3. Asymptotic behavior

In this section we prove some asymptotic behavior results for T (t) that yield asymptotic behavior
results for P (t, s).

We introduce a projection Π on functions depending only on time, defined by

Π f (s, x) := ms f (s, ·) =
∫
Rd

f (s, y)μs(dy), s ∈ T, x ∈ R
d.

It is easy to see that ‖Π‖L(Cb(T×Rd)) = 1, and ‖Π‖L(Lp(T×Rd,μ)) = 1. The ranges of Π(Cb(T × R
d))

and of Π(L p(T × R
d,μ)) may be identified with C(T) and with L p(T, ds

T ), respectively. T (t) leaves

C(T) and L p(T, ds
T ) invariant, and the part of T (t) in such spaces is just the translation semigroup

f �→ f (· − t). Although T (t) is not strongly continuous in Cb(T × R
d), the part of T (t) in C(T) is

strongly continuous. The infinitesimal generators of the parts of T (t) in C(T) and in L p(T, ds
T ) have

domains (isomorphic to) C1(T) and W 1,p(T, ds
T ), respectively, and coincide with −Ds .

In the next theorems we relate the asymptotic behavior of T (t) to the asymptotic behavior
of P (t, s).

Theorem 3.1. Let Hypothesis 2.1 hold. For 1 � p < ∞, consider the following statements:

(i) for each f ∈ L p(T × R
d,μ) we have

lim
t→∞

∥∥T (t)( f − Π f )
∥∥

L p(T×Rd,μ)
= 0; (3.1)

(ii) for each ϕ ∈ Cb(R
d) we have

∃/∀t ∈ R, lim
s→−∞

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
= 0; (3.2)

(iii) for some/each s ∈ R we have

lim
t→∞

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
= 0, ϕ ∈ Lp(

R
d,μs

); (3.3)

(iv) for each ϕ ∈ Cb(R
d) we have

∃/∀t ∈ R, lim
s→−∞

∥∥P (t, s)ϕ − msϕ
∥∥

L∞(B(0,R))
= 0, R > 0; (3.4)



3398 L. Lorenzi et al. / J. Differential Equations 249 (2010) 3377–3418
(v) for some/each s ∈ R we have

lim
t→∞

∥∥P (t, s)ϕ − msϕ
∥∥

L∞(B(0,R))
= 0, ϕ ∈ Cb

(
R

d), R > 0. (3.5)

For every p ∈ [1,∞), statements (i), (ii), (iii) are equivalent, and they are implied by statements (iv) and (v).
If in addition Hypothesis 2.4 holds, for every p ∈ [1,∞) statements (i) to (v) are equivalent.

Proof. The proof is split in several steps.

Step 1: ∃/∀ parts of statements (ii) to (v). To begin with, let us consider statement (ii). Let ϕ ∈ Cb(R
d)

and t0 ∈ R be such that lims→−∞ ‖P (t0, s)ϕ −msϕ‖Lp(Rd,μt0 ) = 0. Then, for t > t0, we have P (t, s)ϕ −
msϕ = P (t, t0)(P (t0, s)ϕ −msϕ) so that ‖P (t, s)ϕ −msϕ‖Lp(Rd,μt )

� ‖P (t0, s)ϕ −msϕ‖Lp(Rd,μt0 ) , which

goes to 0 as s → −∞. For t < t0 fix k ∈ N such that t + kT � t0. Then, P (t, s)ϕ − msϕ =
P (t + kT , s + kT )ϕ − ms+kT ϕ , and μt = μt+kT , so that ‖P (t, s)ϕ − msϕ‖Lp(Rd,μt )

= ‖P (t + kT ,

s + kT )ϕ − ms+kT ϕ‖Lp(Rd,μt+kT ) vanishes as s → −∞ by the first part of the proof.

The same arguments yield the ∃/∀ part of statement (iv). Indeed, let ϕ ∈ Cb(R
d) and t0 ∈ R be

such that lims→−∞ ‖P (t0, s)ϕ − msϕ‖L∞(B(0,R)) = 0 for each R > 0. For t > t0 we have P (t, s)ϕ −
msϕ = P (t, t0)ϕs , where ϕs := P (t0, s)ϕ−msϕ goes to 0 locally uniformly as s → −∞. Corollary 2.3(b)
yields lims→−∞ supt>t0

‖P (t, t0)ϕs‖L∞(B(0,R)) = 0 for each R > 0, that is (3.4) holds for t > t0 (even
uniformly with respect to t). If t < t0 it is sufficient to fix k ∈ N such that t + kT � t0 and to argue as
above.

Concerning statement (iii), if (3.3) holds for s = s0, then it holds for each s ∈ R. Indeed, for s < s0
and ϕ ∈ L p(Rd,μs) we have P (t, s)ϕ = P (t, s0)P (s0, s)ϕ and

ms0 P (s0, s)ϕ =
∫
Rd

P (s0, s)ϕ dμs0 =
∫
Rd

ϕ dμs = msϕ,

so that

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
= ∥∥P (t, s0)ψ − ms0ψ

∥∥
L p(Rd,μt )

,

with ψ = P (s0, s)ϕ . Since ψ ∈ L p(Rd,μs0 ), the right-hand side vanishes as t → ∞.
For s > s0 fix k ∈ N such that s − kT < s0. Then,

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
= ∥∥P (t − kT , s − kT )ϕ − ms−kT ϕ

∥∥
L p(Rd,μt−kT )

.

Since s − kT < s0, by the first part of the proof the right-hand side vanishes as t → ∞.
The same arguments show that if (3.5) holds for some s0, then it holds for each s ∈ R.

Step 2: (i) implies (ii). Let us fix ϕ ∈ C∞
c (Rd). By Step 1, it is enough to show that lims→∞ ‖P (0,−s)ϕ −

m−sϕ‖Lp(Rd,μ0) = 0. To this aim we shall prove that, for every sequence (tn) → ∞, there exists a
subsequence (sn) such that limn→∞ ‖P (0,−sn)ϕ − m−snϕ‖Lp(Rd,μ0) = 0.

Set f (s, x) := ϕ(x) for any (s, x) ∈ R
1+d . Then, f ∈ Cb(T×R

d), and for every t > 0, s ∈ R and x ∈ R
d

we have

T (t)(I − Π) f (s, x) = P (s, s − t)ϕ(x) − ms−tϕ.

Formula (3.1) implies
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lim
t→∞

0∫
−T

∥∥P (s, s − t)ϕ − ms−tϕ
∥∥p

L p(Rd,μs)
ds = 0.

Since P (0, s − t)ϕ(x)−ms−tϕ = P (0, s)[P (s, s − t)ϕ −ms−tϕ] for s ∈ [−T ,0] and t � 0, and (1.4) holds,
then

lim
t→∞

0∫
−T

∥∥P (0, s − t)ϕ − ms−tϕ
∥∥p

L p(Rd,μ0)
ds = 0. (3.6)

It follows that for every sequence (tn) → ∞ there exist a subsequence (sn) and a set Γ ⊂ [−T ,0],
with negligible complement, such that

lim
n→∞

∥∥P (0, s − sn)ϕ − ms−snϕ
∥∥

L p(Rd,μ0)
= 0, s ∈ Γ. (3.7)

Our aim is to show that 0 ∈ Γ . This follows from the uniform continuity in (−∞,0] of the Cb(R
d)-

valued function s �→ P (0, s)ϕ (see Theorem 2.2(ii)) and of the real-valued function s �→ msϕ (see
Corollary 2.3). Indeed, for each s ∈ Γ we have∥∥P (0,−sn)ϕ − m−snϕ

∥∥
L p(Rd,μ0)

�
∥∥P (0,−sn)ϕ − P (0, s − sn)ϕ

∥∥
L p(Rd,μ0)

+ ∥∥P (0, s − sn)ϕ − ms−snϕ
∥∥

L p(Rd,μ0)
+ |ms−snϕ − m−snϕ|,

and ‖P (0,−sn)ϕ− P (0, s− sn)ϕ‖Lp(Rd,μ0) � ‖P (0,−sn)ϕ− P (0, s− sn)ϕ‖∞ . Then, for every ε > 0 there
exists δ > 0 such that ‖P (0,−sn)ϕ − P (0, s − sn)ϕ‖Lp(Rd,μ0) � ε and |ms−snϕ − m−snϕ| � ε, for each
s ∈ (−δ,0) and n ∈ N. Fix s ∈ Γ ∩ (−δ,0). By (3.7), ‖P (0, s − sn)ϕ − ms−snϕ‖Lp(Rd,μ0) � ε for n large
enough, say n � n(s, ε). Summing up, ‖P (0,−sn)ϕ − m−snϕ‖Lp(Rd,μ0) � 3ε for n � n(s, ε). Therefore,

0 ∈ Γ and (3.2) holds for ϕ ∈ C∞
c (Rd).

Let us now fix ϕ ∈ Cb(R
d), and let (ϕn) be a bounded sequence of test functions that converges

to ϕ locally uniformly. By Corollary 2.3(b), limn→∞ sups∈R ‖ϕn − ϕ‖Lp(Rd,μs)
= 0. Since∥∥P (t, s)ϕ − msϕ

∥∥
L p(Rd,μt )

�
∥∥P (t, s)(ϕ − ϕn)

∥∥
L p(Rd,μt )

+ ∥∥P (t, s)ϕn − msϕn
∥∥

L p(Rd,μt )

+ |msϕn − msϕ|
� 2 sup

s∈R

‖ϕ − ϕn‖L p(Rd,μs)
+ ∥∥P (t, s)ϕn − msϕn

∥∥
L p(Rd,μt )

, (3.8)

for every n ∈ N, then ‖P (t, s)ϕ − msϕ‖Lp(Rd,μt )
goes to 0 as s → −∞.

Step 3: (i) implies (iii). Let ϕ ∈ Cb(R
d). Changing variable in (3.6) we get

lim
t→∞

T∫
0

∫
Rd

∣∣P (s + t, s)ϕ(x) − msϕ
∣∣p

μs+t(dx)ds = 0,

so that there exists a sequence (tn) → ∞ such that, for almost every s ∈ (0, T ) and by periodicity for
almost every s ∈ R, we have

lim
n→∞

∫
d

∣∣P (s + tn, s)ϕ(x) − msϕ
∣∣p

μs+tn (dx) = 0. (3.9)
R
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Let Γ ′ be the set of all s ∈ R such that (3.9) holds. For s ∈ Γ ′ and for t ∈ [tn, tn+1) we have

P (s + t, s)ϕ − msϕ = P (s + t, s + tn)
[

P (s + tn, s)ϕ − msϕ
]
,

so that, from (1.4),∥∥P (s + t, s)ϕ − msϕ
∥∥

L p(Rd,μs+t )
�

∥∥P (s + tn, s)ϕ − msϕ
∥∥

L p(Rd,μs+tn )
.

Hence, limt→∞ ‖P (t, s)ϕ −msϕ‖Lp(Rd,μt )
= 0 for s ∈ Γ ′ . To prove that the limit is zero for every s ∈ R,

we argue as at the end of Step 2, replacing ϕn by P (s, rn)ϕ , with rn ∈ Γ ′ , rn ↑ s as n → ∞. Indeed, by
Theorem 2.2(ii), P (s, rn)ϕ converges to ϕ locally uniformly. Estimates (3.8) imply the statement.

If ϕ ∈ L p(Rd,μs), (3.3) follows approaching ϕ by a sequence of functions in Cb(R
d) and recalling

that P (t, s) and ms are contractions from L p(Rd,μs) to L p(Rd,μt). So, statement (iii) holds.

Step 4: if Hypothesis 2.4 holds, (ii) and (iii) imply (iv) and (v), respectively. Let ϕ ∈ Cb(R
d). Then, for every

t ∈ R, the functions P (t, s)ϕ − msϕ (s � t − 1) are equibounded and equicontinuous by estimate (2.7).
By the Arzelà–Ascoli Theorem, for every R > 0 there exist a sequence (sn) → −∞ and a function
g ∈ Cb(B(0, R)) such that limn→∞ ‖P (t, sn)ϕ − msnϕ − g‖L∞(B(0,R)) = 0.

Let ρ be the continuous positive version of the density of μ with respect to the Lebesgue measure.
Then, μs = ρ(s, x)dx for any s ∈ R, by the remark after the proof of Proposition 2.10. For each n ∈ N

we have

inf
R×B(0,R)

ρ

∫
B(0,R)

∣∣P (t, sn)ϕ(x) − msnϕ
∣∣dx �

∫
B(0,R)

∣∣P (t, sn)ϕ(x) − msnϕ
∣∣ρ(t, x)dx

=
∫

B(0,R)

∣∣P (t, sn)ϕ(x) − msnϕ
∣∣dμt

�
(∫

Rd

∣∣P (t, sn)ϕ(x) − msnϕ
∣∣p

dμt

) 1
p

.

If (ii) holds, the last term vanishes as n → ∞. Therefore,
∫

B(0,R)
|g(x)|dx = 0, so that g ≡ 0 and (v)

holds.
The proof that (iii) implies (v) is the same.

Step 5: (ii), (iii), (iv), (v) imply (i). Let f (s, x) = α(s)ϕ(x), with α ∈ C(T) and ϕ ∈ Cb(R
d). Then

T (t)( f − Π f )(s, x) = α(s − t)(P (s, s − t)ϕ(x) − ms−tϕ), so that

∥∥T (t)( f − Π f )
∥∥p

p = 1

T

T∫
0

∣∣α(s − t)
∣∣p

∫
Rd

∣∣P (s, s − t)ϕ(x) − ms−tϕ
∣∣p

μs(dx)ds. (3.10)

If (ii) holds, then limt→∞
∫

Rd |P (s, s − t)ϕ(x) − ms−tϕ|pμs(dx) = 0 for each s ∈ (0, T ). Moreover,∫
Rd |P (s, s − t)ϕ(x) − ms−tϕ|pμs(dx) � (2‖ϕ‖∞)p , for each s ∈ (0, T ). If (iv) holds, |α(s − t)(P (s,

s − t)ϕ(x) − ms−tϕ)|p goes to zero pointwise, and it does not exceed (2‖α‖∞‖ϕ‖∞)p , for each
s ∈ (0, T ). In both cases, by dominated convergence limt→∞ ‖T (t)( f − Π f )‖Lp(T×Rd,μ) = 0.

If (iii) or (v) holds, let us rewrite (3.10) as

∥∥T (t)( f − Π f )
∥∥p

L p(T×Rd,μ)
= 1

T

T∫
0

∣∣α(s)
∣∣p

∫
d

∣∣P (s + t, s)ϕ(x) − msϕ
∣∣p

μs+t(dx)ds.
R
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Then, limt→∞
∫

Rd |P (s + t, s)ϕ(x) − msϕ|pμs+t(dx) = 0 for each s ∈ (0, T ) if (iii) or (v) hold. If (iii)
holds, this is immediate. If (v) holds, it is sufficient to use the uniform convergence of |P (s +
t, s)ϕ − msϕ|p to zero as t → ∞, on each ball B(0, R) and Corollary 2.3. In both cases, we have
again

∫
Rd |P (s+ t, s)ϕ(x)−msϕ|pμs+t(dx) � (2‖ϕ‖∞)p , for each s ∈ (0, T ). By dominated convergence,

limt→∞ ‖T (t)( f − Π f )‖Lp(T×Rd,μ) = 0.

Since the linear span of the functions f (s, x) = α(s)ϕ(x), with α ∈ C(T) and ϕ ∈ Cb(R
d), is dense

in L p(T × R
d,μ), (i) follows. �

Theorem 3.2. Let Hypothesis 2.1 hold. Fix 1 � p � ∞, M > 0, ω ∈ R. The following conditions are equivalent:

(a) for every t > 0 and u ∈ L p(T × R
d,μ),

∥∥T (t)(I − Π)u
∥∥

p � Meωt‖u‖p, t > 0, u ∈ Lp(
T × R

d,μ
);

(b) for every t > s and ϕ ∈ L p(Rd,μs),

∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
� Meω(t−s)‖ϕ‖L p(Rd,μs)

, t > s, ϕ ∈ Lp(
R

d,μs
)
.

Proof. For p = ∞ the equivalence is immediate.
The proof that (a) ⇒ (b) for p < ∞ is quite similar to the proof of Step 2 of [18, Thm. 2.17], that

concerns p = 2 and backward Ornstein–Uhlenbeck evolution operators. In our periodic case we do
not need the localization function ξ of [18], it is sufficient to define u(s, ·) = ϕ for every s. We omit
the details of the proof, leaving them to the reader.

Still for p < ∞, (b) ⇒ (a) is easy. For, if (b) holds, then for s ∈ R, t > 0, and u ∈ L p(T × R
d,μ), we

have ∫
Rd

∣∣P (s, s − t)u(s − t, ·) − ms−t u(s − t, ·)∣∣p
dμs � M peωpt

∫
Rd

∣∣u(s − t, ·)∣∣p
dμs−t,

and integrating over [0, T ] we obtain

∫
T×Rd

∣∣T (t)(I − Π)u
∣∣p

dμ � M peωpt 1

T

T∫
0

∫
Rd

∣∣u(s − t, ·)∣∣p
dμs−t ds

= M peωpt 1

T

T∫
0

∫
Rd

∣∣u(τ , ·)∣∣p
dμτ dτ

= M peωpt‖u‖p
p . �

Remark 3.3. It is also possible to relate the asymptotic behavior of ∇x T (t) to the asymptotic be-
havior of ∇x P (t, s). Namely, some of the results of Theorems 3.1 and 3.2 hold, with |∇x T (t)u| and
|∇x P (t, s)ϕ| replacing T (t)(I −Π)u and P (t, s)ϕ −msϕ , respectively. The details are left to the reader.

In view of Theorems 3.1 and 3.2, we study the decay to zero of T (t)(I − Π). The starting point
is the decay of |∇x T (t) f | as t → ∞, for every f ∈ L2(T × R

d,μ). Since everything relies on for-
mula (2.21), we need that the assumptions of Proposition 2.15 hold. The proof of the following
proposition is an extension to the evolution semigroup of a similar proof for Markov semigroups
generated by elliptic operators (see e.g., [6]).
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Proposition 3.4. Let Hypotheses 2.1 and 2.4 hold. If the diffusion coefficients are bounded, or if (2.20) is
satisfied, then for every f ∈ D(G2) we have

lim
t→∞

∥∥∣∣∇x T (t) f
∣∣∥∥

2 = 0. (3.11)

If moreover the constant �2 in (2.8) is finite (which is always the case if the diffusion coefficients are bounded),
then (3.11) holds for every f ∈ L2(T × R

d,μ).

Proof. Let f ∈ D(G2). From the equality

d

dt

∥∥T (t) f
∥∥2

2 = 2
〈

T (t) f , G2 T (t) f
〉
L2(T×Rd,μ)

, t > 0,

we obtain

∥∥T (t) f
∥∥2

2 − ‖ f ‖2
2 = 2

t∫
0

∫
T×Rd

T (s) f G2 T (s) f dμds, t > 0,

and using (2.21), that holds for the functions in D(G2) by Corollary 2.16(b), we get

∥∥T (t) f
∥∥2

2 + 2

t∫
0

∫
T×Rd

〈
Q ∇x T (s) f ,∇x T (s) f

〉
dμds � ‖ f ‖2

2, t > 0. (3.12)

Therefore, the function

χ f (s) :=
∫

T×Rd

∣∣∇x T (s) f
∣∣2

dμ, s � 0,

is in L1(0,∞), and its L1-norm does not exceed ‖ f ‖2
2/η0. Its derivative is

χ ′
f (s) =

∫
T×Rd

2
〈∇x T (s) f ,∇x T (s)G2 f

〉
dμ

so that, if f ∈ D((G2)
2),

∣∣χ ′
f (s)

∣∣ � 2

( ∫
T×Rd

∣∣∇x T (s) f
∣∣2

dμ

) 1
2
( ∫

T×Rd

∣∣∇x T (s)G2 f
∣∣2

dμ

) 1
2

� χ f (s) + χG2 f (s),

for any s � 0. Therefore, also χ ′
f is in L1(0,∞). This implies that lims→∞ χ f (s) = 0, and (3.11) holds

for every f ∈ D((G2)
2). For f ∈ D(G2), (3.11) follows approaching f by a sequence of functions in

D((G2)
2), which is dense in (D(G2),‖ · ‖D(G2)), and using Corollary 2.16(a), which implies that ∇x T (·)

is bounded in (0,∞) with values in L(D(G2), (L2(T × R
d,μ))d).

The last assertion follows again by density, approaching any f ∈ L2(T × R
d,μ) by a sequence of

functions in D((G2)
2) and using estimate (2.18) with p = 2. �
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Theorem 3.5. Let Hypotheses 2.1 and 2.4 hold. Further, assume that the diffusion coefficients are bounded, or
that (2.20) is satisfied. Then, for every p ∈ [1,∞)

lim
t→∞

∥∥T (t)(I − Π) f
∥∥

p = 0, f ∈ Lp(
T × R

d,μ
)
. (3.13)

Therefore, statements (ii) to (v) of Theorem 3.1 hold.

Proof. Let f ∈ C ⊂ D(G2). Then, f is a linear combination of functions uτ ,χ,α , defined before Propo-
sition 2.12.

Let us prove that, for each u = uτ ,χ,α , the set of functions {T (t)(I −Π)u: t > 0} is equicontinuous
and equibounded in R × B(0, R), for each R > 0.

Since Πu(s, x) = α(s)mτ χ , then T (t)Πu(s, x) = α(s − t)mτ χ is equicontinuous and equibounded.
Concerning T (t)u, we recall that it is the time periodic extension of the function (s, x) �→ α(s −
t)P (s, τ )χ(x) defined for s ∈ [a + t,a + t + T ), x ∈ R

d , if the support of α is contained in (a,a + T )

with a � τ . We have to prove only equicontinuity, since ‖T (t)u‖∞ � ‖α‖∞‖χ‖∞ . By Theorem 2.5,
‖|∇xα(s − t)P (s, τ )χ |‖L∞(Rd) � C1‖α‖∞‖χ‖C1

b (Rd) , so that T (t)u is equi-Lipschitz continuous in x. To

prove that it is equi-Lipschitz continuous in s we show preliminarily that, for every R > 0,

sup
s�τ , |x|�R

∣∣A(s)P (s, τ )χ(x)
∣∣ < ∞. (3.14)

From the proof of [21, Thm. 2.2] we know that the function (s, x) �→ P (s, τ )χ(x) belongs to
C1+α/2,2+α

loc ([τ ,∞) × R
d) and, therefore,

sup
τ�s�τ+2T , |x|�R

∣∣A(s)P (s, τ )χ(x)
∣∣ < ∞.

If s ∈ (τ + kT , τ + (k + 1)T ] with k � 2 we write

P (s, τ )χ = P
(
s, τ + (k − 1)T

)
P
(
τ + (k − 1)T , τ

)
χ := P (σ , τ )ϕ,

with σ = s − (k − 1)T ∈ (τ + T , τ + 2T ], ϕ = P (τ + (k − 1)T , τ )χ ∈ Cb(R
d), ‖ϕ‖∞ � ‖χ‖∞ . By Theo-

rem 2.2(i),

sup
{∣∣A(σ )P (σ , τ )ϕ

∣∣: τ + T � σ < τ + 2T , |x| � R
}

� C(R)‖ϕ‖∞,

and (3.14) follows.
From the equality

Ds T (t)u(s, ·) = α′(s − t)P (s, τ )χ + α(s − t)A(s)P (s, τ )χ, s ∈ [a + t,a + t + T ),

using (3.14) we obtain that Ds T (t)u is bounded in [a + t,a + t + T )× B(0, R). Since it is periodic in s,
it is bounded in R × B(0, R).

Therefore, for each f ∈ C the set of functions {T (t) f : t > 0} is equicontinuous and equibounded
in R × B(0, R), for each R > 0. By the Arzelà–Ascoli Theorem and the usual diagonal procedure, there
exist a sequence tn → ∞ and a function g ∈ Cb(T × R

d) such that T (tn)(I − Π) f converges to g uni-
formly on T × B(0, R), for each R > 0. Since ‖T (tn)(I − Π) f ‖∞ � ‖ f ‖∞ , by dominated convergence
T (tn)(I − Π) f converges to g in L p(T × R

d,μ), for every p ∈ [1,∞).
Let us prove that g ≡ 0. We have limn→∞ ‖T (tn)(I − Π) f − g‖2 = 0, moreover, by Proposition 3.4,

limn→∞ ‖|∇x T (tn)(I − Π) f |‖2 = 0. Since the density ρ of μ with respect to the Lebesgue mea-
sure is positive, the space derivatives are closed operators in L2(T × R

d,μ). This implies that g ∈
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W 0,1
2 (T × R

d,μ) has null space derivatives, so that it depends only on s. On the other hand,
g ∈ (I − Π)(L2(T × R

d,μ)) because it is the limit of the sequence (T (tn)(I − Π) f ) that has values in
(I −Π)(L2(T×R

d,μ)). If a function in (I −Π)(L2(T×R
d,μ)) is independent of the space variables, it

vanishes. Therefore, g ≡ 0. Since the only possible limit g is zero, then limt→∞ ‖T (t)(I − Π) f ‖p = 0,
for every p ∈ [1,∞).

Since C is dense in L p(T × R
d,μ), by Proposition 2.12, and ‖T (t)(I − Π)‖L(Lp(T×Rd,μ)) � 1, (3.13)

follows. Theorem 3.1 yields the other statements. �
For ϕ ∈ Cb(R

d), the convergence of P (t, s)ϕ − msϕ to 0 is not uniform in R
d in general, even in

the autonomous case. Take for instance any Ornstein–Uhlenbeck operator A,

Aϕ = 1

2
Tr

(
Q D2ϕ

) + 〈Bx,∇ϕ〉,

where Q is symmetric and positive definite and all the eigenvalues of B have negative real part. Then,
the Ornstein–Uhlenbeck semigroup T (t) has a unique invariant measure μ, which is the Gaussian
measure with zero mean and covariance operator Q ∞ := ∫ ∞

0 esB Q esB∗
ds. We have P (t, s) = T (t − s)

and μt = μ for every t ∈ R.
Take an exponential function g = ei〈·,h〉 (h ∈ R

d \ {0}). Then

T (t)g = exp

(
−1

2
〈Q th,h〉 + i

〈·, et B∗
h
〉)

, t � 0,

where Q t := ∫ t
0 esB Q esB∗

ds. A simple computation shows that
∫

Rd g dμ = e−〈Q ∞h,h〉/2. Therefore,

T (t)g −
∫
Rd

g dμ =
{

exp

(
−1

2
〈Q th,h〉

)
− exp

(
−1

2
〈Q ∞h,h〉

)}
ei〈·,et B∗

h〉

+ exp

(
−1

2
〈Q ∞h,h〉

)(
exp

(
i
〈·, et B∗

h
〉) − 1

)
,

for any t > 0. The sup norm of the first addendum in the right-hand side vanishes as t → ∞ but the
second one does not, since, for any t > 0, supx∈Rd |exp(i〈x, et B∗

h〉) − 1| = supθ∈R |exp(iθ) − 1| = 2.
Concerning exponential rates of convergence, for every p ∈ [1,∞) let us define the right halflines

Ap := {
ω ∈ R: ∃Mω > 0 s.t.

∥∥T (t)( f − Π f )
∥∥

p � Mωeωt‖ f − Π f ‖p for any t � 0,

f ∈ Lp(
T × R

d,μ
)}

,

B p := {
ω ∈ R: ∃Nω > 0 s.t.

∥∥∣∣∇x T (t) f
∣∣∥∥

p � Nωeωt‖ f ‖p for any t � 1, f ∈ Lp(
T × R

d,μ
)}

,

and their infima

ωp := inf Ap, γp := inf B p . (3.15)

Then, ωp � 0 is the growth bound of the part of T (t) in (I − Π)(L p(T × R
d,μ)). We recall that if

�p < ∞, then �p ∈ B p by Proposition 2.14, hence γp � min{�p,0}.

Theorem 3.6. Let Hypotheses 2.1 and 2.4 hold. Then A p ⊂ B p for every p ∈ (1,∞) such that �p < ∞. If the
diffusion coefficients are bounded, B p ⊂ A p for every p � 2.
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Proof. Let �p < ∞. By Proposition 2.14, T (t) maps L p(T × R
d,μ) into W 0,1

p (T × R
d,μ) for every

t > 0.
Fix f ∈ L p(T × R

d,μ) and ω ∈ A p . Since Π f is independent of x, ∇x T (t) f = ∇x T (t)( f − Π f ).
Taking (2.18) into account, for t > 1 we estimate

∥∥∇x T (t)( f − Π f )
∥∥

p = ∥∥∇x T (1)
(

T (t − 1)( f − Π f )
)∥∥

p

� C3e�p
∥∥T (t − 1)( f − Π f )

∥∥
p

� C3e�p Mωeω(t−1)‖ f − Π f ‖p,

so that ω ∈ B p , and the first part of the statement is proved.
If the diffusion coefficients are bounded, set

Λ := sup
{〈

Q (s, x)ξ, ξ
〉
: s ∈ T, x ∈ R

d, ξ ∈ R
d, |ξ | = 1

}
. (3.16)

Since A p ⊃ [0,∞), if B p ⊂ [0,∞) the inclusion B p ⊂ A p is obvious. So, we may assume that B p ∩
(−∞,0) 
= ∅.

Fix f ∈ (I − Π)(D(G p)) and ω ∈ B p , ω < 0. Then,

d

dt

∫
T×Rd

∣∣T (t) f
∣∣p

dμ = p

∫
T×Rd

∣∣T (t) f
∣∣p−2 T (t) f G p T (t) f dμ,

so that, by (2.23) and the Hölder inequality,

d

dt

∫
T×Rd

∣∣T (t) f
∣∣p

dμ = −p(p − 1)

∫
T×Rd

∣∣T (t) f
∣∣p−2〈

Q ∇x T (t) f ,∇x T (t) f
〉
dμ

� −p(p − 1)Λ
∥∥T (t) f

∥∥p−2
p

∥∥∣∣∇x T (t) f
∣∣∥∥2

p

� −p(p − 1)Λ
∥∥T (t) f

∥∥p−2
p N2

ωe2ωt‖ f ‖2
p .

Therefore, the function

β(t) := ∥∥T (t) f
∥∥2

p =
( ∫

T×Rd

∣∣T (t) f
∣∣p

dμ

) 2
p

, t � 1,

either vanishes in a halfline, or is strictly positive in [1,∞) and satisfies

β ′(t) = 2

p

∥∥T (t) f
∥∥2−p

p

d

dt

∫
T×Rd

∣∣T (t) f
∣∣p

dμ � −2(p − 1)ΛN2
ωe2ωt‖ f ‖2

p.

Since limt→∞ β(t) = 0 by Theorem 3.5, then

β(t) = −
∞∫

β ′(s)ds � 2(p − 1)ΛN2
ω‖ f ‖2

p

∞∫
e2ωs ds = (p − 1)ΛN2

ω

|ω| e2ωt‖ f ‖2
p,
t t
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for any t � 1, that is, ∥∥T (t) f
∥∥2

p � M̃pe2ωt‖ f ‖2
p, t � 1.

Since (I − Π)(D(G p)) is dense in (I − Π)(L p(T × R
d,μ)), the above estimate holds for any f ∈

(I − Π)(L p(T × R
d,μ)), and this implies that ω ∈ A p . It follows that B p ⊂ A p . �

The second part of the proof of Theorem 3.6 may be easily adapted to the case of unbounded
diffusion coefficients, and it yields, for p � 2,∥∥T (t) f

∥∥2
p � Ce2ωt‖ f ‖2

p, f ∈ (I − Π)
(
Lp(

T × R
d,μ

))
, t � 1,

for every ω < 0 such that

∃M:
∥∥〈

Q ∇x T (t) f ,∇x T (t) f
〉∥∥

p � Meωt‖ f ‖p, f ∈ Lp(
T × R

d,μ
)
, t � 1. (3.17)

But at the moment we are not able to give any sufficient conditions for (3.17) to hold, while a suffi-
cient condition for γp < 0 is �2 < 0, by estimate (2.18).

Theorem 3.6 has two important consequences. The first one is about the spectral gap of G p and
the solvability of the equation λu − G pu = f ; the second one is about the asymptotic behavior of the
evolution operator P (t, s).

Corollary 3.7. Let Hypotheses 2.1 and 2.4 hold. Assume that the diffusion coefficients are bounded and that
�2 < 0. Then:

(a) σ(G p)∩ iR = {2π ik/T : k ∈ Z} consists of simple isolated eigenvalues for every p ∈ (1,∞). In particular,
for every f ∈ L p(T × R

d,μ) the parabolic problem G pu = f is solvable if and only if
∫

T×Rd f dμ = 0. In
this case, it has infinite solutions, and the difference of two solutions is constant.

(b) For every p ∈ (1,∞) G p has a spectral gap. Specifically,

sup
{

Reλ: λ ∈ σ(G p) \ iR
}

�
{

�2, if p � 2,

2�2(1 − 1/p), if 1 < p < 2.

Proof. By Proposition 2.14, γ2 � �2. Since ‖T (t)(I − Π) f ‖1 � 2‖ f ‖1 for every t > 0 and f ∈
L1(T × R

d,μ), using estimate (2.18) with p = 2 and interpolating between L1 and L2 we get∥∥T (t)(I − Π) f
∥∥

p � Mpe2�2(1−1/p)t‖ f ‖p,

for every f ∈ L p(T × R
d,μ) and every t > 0. Therefore, the spectrum of the part of G p in

(I − Π)(L p(T × R
d,μ)) is contained in the halfplane Reλ � �2, if p � 2, and in the halfplane

Reλ � 2�2(1 − 1/p), if 1 < p < 2. For the other values of λ, it is convenient to write the equation
λu − G pu = f as the system {

λΠu − G pΠu = Π f ,

λ(I − Π)u − G p(I − Π)u = (I − Π) f ,

where the second equation is uniquely solvable. Setting Πu = β , the first equation may be rewritten
as

β ∈ W 1,p
(

T,
ds

T

)
, λβ(s) + β ′(s) = ms f (s, ·), s ∈ T,
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and it is uniquely solvable if and only if λ 
= 2π ik/T for every k ∈ Z. Since the eigenvalues 2π ik/T
of the realization of the first order derivative in L p(T, ds

T ) are simple, the eigenvalues 2π ik/T of G p

are simple too. In particular, for λ = 0 the above equation is solvable if and only if
∫ T

0 ms f (s, ·)ds =
0, which means

∫
T×Rd f dμ = 0, and in this case the solutions differ by constants. The statements

follow. �
Corollary 3.8. Let Hypotheses 2.1 and 2.4 hold. Assume that the diffusion coefficients are bounded and that
�2 < 0. Then, for every p > 1 there exists Mp > 0 such that∥∥P (t, s)ϕ − msϕ

∥∥
L p(Rd,μt )

� Mpe�2(t−s)‖ϕ‖L p(Rd,μs)
, t > s, ϕ ∈ Lp(

R
d,μs

)
, (3.18)

if p � 2, and∥∥P (t, s)ϕ − msϕ
∥∥

L p(Rd,μt )
� Mpeθp(t−s)‖ϕ‖L p(Rd,μs)

, t > s, ϕ ∈ Lp(
R

d,μs
)
, (3.19)

if 1 < p < 2, with θp = 2�2(1 − 1/p).

Proof. By estimate (2.18), �2 ∈ B p for p � 2, and (3.18) follows applying Theorem 3.2 and Theo-
rem 3.6. For 1 < p < 2, the estimate ‖P (t, s)ϕ − msϕ‖Lp(Rd,μt )

� M pe2�2(1−1/p)(t−s)‖ϕ‖Lp(Rd,μs)
fol-

lows interpolating between L1 and L2, since ‖P (t, s)ϕ − msϕ‖L1(Rd,μt )
� 2‖ϕ‖L1(Rd,μs)

for t > s and

ϕ ∈ L1(Rd,μs). �
To get a better decay estimate in L p spaces with p < 2 we need more refined arguments. An

important tool is a logarithmic Sobolev estimate, that will be proved in the next subsection.
We end this subsection with a remark. Spectral gaps of elliptic differential operators with un-

bounded coefficients and asymptotic behavior of the associated semigroups are usually proved
through Poincaré inequalities. We may prove a Poincaré type inequality in our nonautonomous set-
ting, and precisely

Proposition 3.9. Let Hypotheses 2.1 and 2.4 hold. Assume that the diffusion coefficients are bounded and that
�2 < 0. Then ∫

T×Rd

| f − Π f |2 dμ � Λ

|�2|
∫

T×Rd

|∇x f |2 dμ, f ∈ W 0,1
2

(
T × R

d,μ
)
, (3.20)

where Λ is defined in (3.16).

Proof. Let f ∈ (I − Π)(D(G2)). By Corollary 2.16(c), inequality (3.12) is in fact an equality. Letting
t → ∞ in (3.12) and recalling that limt→∞ T (t) f = 0 by Theorem 3.5, we obtain

‖ f ‖2
2 = 2

∞∫
0

∫
T×Rd

〈
Q ∇x T (s) f ,∇x T (s) f

〉
dμds

and therefore, using (2.19),

‖ f ‖2
2 � 2Λ

∞∫
0

∫
d

∣∣∇x T (s) f
∣∣2

dμds � 2Λ

∞∫
0

∫
d

e2�2s|∇x f |2 dμds = Λ

|�2|
∫

d

|∇x f |2 dμ,
T×R T×R T×R
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so that (3.20) holds for every f ∈ D(G2). Since D(G2) is dense in W 0,1
2 (T × R

d,μ), (3.20) holds for

every f ∈ W 0,1
2 (T × R

d,μ). �
Once the Poincaré inequality (3.20) is established, arguing as in [7, Prop. 6.4] we obtain

∥∥T (t)( f − Π f )
∥∥

2 � eη0�2t/Λ‖ f − Π f ‖2, t > 0,

so that ω2 � η0�2/Λ. Since η0 � Λ, the estimate ω2 � �2 obtained through Theorem 3.6 is sharper.
Such estimates coincide only if η0 = Λ, that is if the diffusion matrix Q is a scalar multiple of the
identity.

3.1. A log-Sobolev type inequality

Throughout the whole subsection we assume that Hypotheses 2.1 and 2.4 hold, that r0 < 0, and
that the diffusion coefficients are independent of x. We recall that r0 = sup(t,x)∈T×Rd r(t, x) where r is
the function in Hypothesis 2.4(ii). This is an important restriction, due to the fact that in the proof
(which is an adaptation to the nonautonomous case of the method of [12, Thm. 6.2.42]) we use the
estimate ∣∣∇x T (t) f (s, x)

∣∣ � er0(t−s)(T (t)|∇x f |)(s, x), t > 0, (s, x) ∈ R
1+d, (3.21)

obtained from Theorem 2.6(iii), which is not obvious (and, in general, not true) if the diffusion coef-
ficients are not independent of x. We refer the reader to [27] for a discussion about the validity of an
estimate similar to (3.21) in the autonomous case.

Lemma 3.10. For any f ∈ D(G∞) such that f � δ for some δ > 0, we have

lim
t→∞

∫
T×Rd

T (t) f log
(

T (t) f
)

dμ = 1

T

T∫
0

Π f log(Π f )ds.

Proof. By the definition of T (t) we have

1

T

T∫
0

Π f log(Π f )ds =
∫

T×Rd

Π f (· − t) log
(
Π f (· − t)

)
dμ =

∫
T×Rd

T (t)Π f log
(

T (t)Π f
)

dμ.

On the other hand, using Hölder inequality and recalling that the function y �→ y log(y) is Hölder
continuous on bounded sets, we can determine C > 0 and α ∈ (0,1) such that∣∣∣∣ ∫

T×Rd

(
T (t) f log

(
T (t) f

) − T (t)Π f log
(

T (t)Π f
))

dμ

∣∣∣∣
� C

∫
T×Rd

∣∣T (t)( f − Π f )
∣∣α dμ � C

∥∥T (t)( f − Π f )
∥∥α

2 ,

for any t > 0, and Theorem 3.5 yields the assertion. �
We recall that Λ is the supremum of the eigenvalues of the matrices Q (s).
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Theorem 3.11. For any p ∈ [1,∞) and any f ∈ D(G∞) with positive infimum we have

∫
T×Rd

f p log
(

f p)
dμ � 1

T

T∫
0

Π f p log
(
Π f p)

ds + p2Λ

2|r0|
∫

T×Rd

f p−2|∇x f |2 dμ. (3.22)

Proof. Let f ∈ D(G∞) satisfy f � δ for some δ > 0. We first prove (3.22) with p = 1. By Proposi-
tion 2.11, T (t) f ∈ D(G∞) for any t > 0. Moreover, T (t) f � T (t)δ ≡ δ for any t � 0.

Let us consider the function F : [0,∞) → R defined by

F (t) =
∫

T×Rd

T (t) f log
(

T (t) f
)

dμ, t � 0.

By Lemma 3.10 we have

lim
t→∞ F (t) = 1

T

T∫
0

Π f log(Π f )ds.

We want to show that F is differentiable, and to compute F ′(t). First of all we remark that, since
T (t) f ∈ D(G∞) and T (t) f � δ, the function log(T (t) f ) is in D(G∞) for any t � 0. Indeed, it belongs
to Cb(T × R

d) ∩ W 1,2
q (T × B(0, R)) for every q and R , and

G
(
log

(
T (t) f

)) = 1

T (t) f
G T (t) f − 1

(T (t) f )2

〈
Q ∇x T (t) f ,∇x T (t) f

〉
is continuous and bounded. Taking Proposition 2.14 into account, it follows that the function
T (t) f log(T (t) f ) belongs to D(G∞) and

G
[

T (t) f log
(

T (t) f
)] = T (t) f

(
1

T (t) f
G T (t) f − 1

(T (t) f )2

〈
Q ∇x T (t) f ,∇x T (t) f

〉)
+ (

G T (t) f
)

log
(

T (t) f
) + 2

〈
Q ∇x T (t) f ,

∇x T (t) f

T (t) f

〉
= G T (t) f + 1

T (t) f

〈
Q ∇x T (t) f ,∇x T (t) f

〉
+ (

G T (t) f
)

log
(

T (t) f
)
. (3.23)

A straightforward computation shows that

d

dt

(
T (t) f log

(
T (t) f

)) = G T (t) f log
(

T (t) f
) + G T (t) f , t � 0.

Using (3.23) we get

d

dt

(
T (t) f log

(
T (t) f

)) = G
[

T (t) f log
(

T (t) f
)] − 1

T (t) f

〈
Q ∇x T (t) f ,∇x T (t) f

〉
,
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which is continuous and bounded. Therefore, F is differentiable and, since the integral of
G[T (t) f log(T (t) f )] vanishes, we have

F ′(t) = −
∫

T×Rd

1

T (t) f

〈
Q ∇x T (t) f ,∇x T (t) f

〉
dμ, t � 0.

Let us estimate F ′(t). The pointwise estimate (3.21) implies that

∣∣∇x T (t) f (s, x)
∣∣2 � e2r0t(T (t)|∇x f |(s, x)

)2
, t > 0, (s, x) ∈ R

1+d,

so that ∫
T×Rd

1

T (t) f

〈
Q ∇x T (t) f ,∇x T (t) f

〉
dμ � e2r0t

∫
T×Rd

Λ

T (t) f

(
T (t)|∇x f |)2

dμ, t � 0.

Moreover, using the Hölder inequality in the representation formula

T (t) f (s, x) =
∫
Rd

f (s − t, y)ps,s−t,x(dy), t > 0, (s, x) ∈ T × R
d

(see Theorem 2.2), we get

(
T (t)|∇x f |)2 =

(
T (t)

(√
f
|∇x f |√

f

))2

�
(

T (t) f
)(

T (t)

( |∇x f |2
f

))
.

Therefore, for each t � 0 we have∫
T×Rd

1

T (t) f

〈
Q ∇x T (t) f ,∇x T (t) f

〉
dμ � Λe2r0t

∫
T×Rd

T (t)

( |∇x f |2
f

)
dμ = Λe2r0t

∫
T×Rd

|∇x f |2
f

dμ,

that is

F ′(t) � −Λe2r0t
∫

T×Rd

|∇x f |2
f

dμ, t � 0.

Integrating with respect to t in (0,∞) we get

1

T

T∫
0

Π f log(Π f )ds − F (0) =
∞∫

0

F ′(t)dt � − Λ

2|r0|
∫

T×Rd

|∇x f |2
f

dμ,

that is formula (3.22) with p = 1.
Let now fix p ∈ (1,∞). We have

G
(

f p) = pf p−1 G f + p(p − 1) f p−2〈Q ∇x f ,∇x f 〉,
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where f p � δp > 0, and then, again by Proposition 2.14, f p ∈ D(G∞). The first part of the proof
applied to the function f p yields the conclusion. �
Proposition 3.12. For every p ∈ (1,∞) and for every u ∈ D(G∞) we have

∫
T×Rd

|u|p log
(|u|p)

dμ � 1

T

T∫
0

Π |u|p log
(
Π |u|p)

ds + p2Λ

2|r0|
∫

T×Rd

|u|p−2|∇xu|2 dμ. (3.24)

In addition, if u ∈ D(G∞) satisfies

∫
T×Rd

|∇xu|2
|u| dμ < ∞,

then (3.24) holds also for p = 1.

Proof. Fix u ∈ D(G∞) and define the sequence

un :=
√

u2 + 1

n
, n ∈ N.

A straightforward computation shows that

G un = u

un
G u + 1

n

〈Q ∇xu,∇xu〉
u3

n
,

so that un ∈ D(G∞) and, moreover, un � 1√
n

for any n ∈ N. Therefore, by Theorem 3.11, we have

∫
T×Rd

up
n log

(
up

n
)

dμ � 1

T

T∫
0

Πup
n log

(
Πup

n
)

ds + p2Λ

2|r0|
∫

T×Rd

up−2
n |∇xun|2 dμ, (3.25)

for any p ∈ [1,∞) and for any n ∈ N.
Since 0 < up

n � ‖(u2 + 1)p/2‖∞ for any n ∈ N and the function x �→ x log x is continuous in
[0,∞), the left-hand side of (3.25) converges to

∫
T×Rd |u|p log(|u|p)dμ. Similarly, since Πup

n �
‖(u2 + 1)p/2‖∞ , by the dominated convergence theorem Π |u|p log(Π |u|p) ∈ L1((0, T ),ds), and

lim
n→∞

1

T

T∫
0

Πup
n log

(
Πup

n
)

ds = 1

T

T∫
0

Π |u|p log
(
Π |u|p)

ds.

Concerning the second integral in the right-hand side of (3.25), if p ∈ [1,2) we have

0 < up−2
n |∇xun|2 � |u|p−2|∇xu|2χ{u 
=0}, a.e. in T × R

d,

and the right-hand side is in L1(T × R
d,μ) by Proposition 2.15(c) for p > 1 and by assumption for

p = 1; if p � 2 we have
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0 < up−2
n |∇xun|2 � up−2

1 |∇xu|2,

which is bounded by Proposition 2.14. In any case, the dominated convergence theorem yields

lim
n→∞

∫
T×Rd

up−2
n |∇xun|2 dμ =

∫
T×Rd

|u|p−2|∇xu|2 dμ

and the statement follows. �
Proposition 3.12 with p = 2 would be enough to prove next compactness Theorem 3.16. However,

it is interesting to extend logarithmic Sobolev inequalities as far as possible. To extend estimate (3.24)
to all functions u ∈ D(G p) for p � 2, we use the following lemma.

Lemma 3.13. For p � 2 and u ∈ D(G p), |u|p ∈ D(G1), and the mapping u �→ |u|p is continuous from D(G p)

into D(G1). Moreover, there exists C p > 0 such that ‖|u|p‖D(G1) � C p‖u‖p
D(G p)

, for every u ∈ D(G p).

Proof. In the proof of Proposition 2.15 we have shown that |u|p ∈ D(G∞) for any u ∈ D(G∞) and

G∞
(|u|p) = pu|u|p−2 G u + p(p − 1)|u|p−2〈Q ∇xu,∇xu〉. (3.26)

Recalling that D(G p) is continuously embedded in W 0,1
p (T×R

d,μ) by Proposition 2.14, formula (3.26)
implies that the nonlinear operator u �→ |u|p is continuous from D(G∞) (endowed with the D(G p)-
norm) to D(G1). Estimate ‖|u|p‖D(G1) � C p‖u‖p

D(G p) follows using the Hölder inequality in the right-
hand side of (3.26). Since D(G∞) is dense in D(G p), the statement follows. �
Theorem 3.14. For every p � 2 and for every u ∈ D(G p), estimate (3.24) holds true.

Proof. Fix p � 2 and u ∈ D(G p). Then, there exists a sequence (un) ⊂ D(G∞) such that un → u in the
graph norm of G p . Possibly replacing (un) by a subsequence, we may assume that un → u pointwise
a.e. By Proposition 3.12, for any n ∈ N we have

∫
T×Rd

|un|p log
(|un|p)

dμ � 1

T

T∫
0

Π |un|p log
(
Π |un|p)

ds + p2Λ

2|r0|
∫

T×Rd

|un|p−2|∇xun|2 dμ.

As a first step, we prove that

lim
n→∞

T∫
0

Π |un|p log
(
Π |un|p)

ds =
T∫

0

Π |u|p log
(
Π |u|p)

ds. (3.27)

By Lemma 3.13, |un|p → |u|p in D(G1), as n → ∞. Therefore, limn→∞ Π(|un|p) = Π(|u|p) in D(G1).
As we already mentioned at the beginning of the section, the part of G1 in Π(L1(T × R

d,μ)) is
the time derivative −Ds with domain isomorphic to W 1,1(T, ds

T ). It follows that limn→∞ Π(|un|p)

= Π(|u|p) in W 1,1(T, ds
T ) and, since W 1,1((0, T ), ds

T ) is continuously embedded in L∞(0, T ), and the
function y �→ y log y is α-Hölder-continuous for any α ∈ (0,1) on bounded sets of [0,∞), we get
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1

T

T∫
0

∣∣Π |un|p log
(
Π |un|p) − Π |u|p log

(
Π |u|p)∣∣ds � C1

T

T∫
0

∣∣Π |un|p − Π |u|p
∣∣α ds

� C1
∥∥Π |un|p − Π |u|p

∥∥α

∞
� C2

∥∥Π |un|p − Π |u|p
∥∥α

W 1,1((0,T ),ds/T )
,

for some positive constants Ci (i = 1,2). Then, (3.27) follows. Since the function u �→ H(u) =∫
T×Rd |u|p−2|∇xu|2 dμ is continuous in D(G p) by the proof of Corollary 2.16(c), H(un) tends to H(u)

as n → ∞. Now, denote by log−(y) and log+(y) the negative and the positive parts of log(y), i.e.,

log−(y) := max
{

0,− log(y)
}
, log+(y) := max

{
0, log(y)

}
, y > 0.

Taking into account that the function y �→ yp log−(yp) is Lipschitz continuous, we get∫
T×Rd

∣∣|u|p log−
(|u|p) − |un|p log−

(|un|p)∣∣dμ � C3

∫
T×Rd

∣∣|u|p − |un|p
∣∣dμ,

for some constant C3 > 0, and the right-hand side tends to 0 as n → ∞.
By the Fatou Lemma we have∫
T×Rd

|u|p log+
(|u|p)

dμ � lim inf
n→∞

∫
T×Rd

|un|p log+
(|un|p)

dμ

� lim
n→∞

( ∫
T×Rd

|un|p log−
(|un|p)

dμ + 1

T

T∫
0

Π |un|p log
(
Π |un|p)

ds

+ p2Λ

2|r0|
∫

T×Rd

|un|p−2|∇xun|2 dμ

)

=
∫

T×Rd

|u|p log−
(|u|p)

dμ + 1

T

T∫
0

Π |u|p log
(
Π |u|p)

ds

+ p2Λ

2|r0|
∫

T×Rd

|u|p−2|∇xu|2 dμ,

which implies (3.24) and concludes the proof. �
3.2. Compactness in L p spaces

If the domain D(G p0 ) is compactly embedded in L p0(T × R
d,μ) for some p0, a lot of nice conse-

quences follow.

Theorem 3.15. Under Hypothesis 2.1, assume that the domain of G p0 is compactly embedded in
L p0(T × R

d,μ) for some p0 ∈ [1,∞]. Then, for every p ∈ (1,∞) the domain of G p is compactly embed-
ded in L p(T × R

d,μ), and
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(i) the spectrum of G p consists of isolated eigenvalues independent of p, for p ∈ (1,∞). The associated
spectral projections are independent of p, too;

(ii) the growth bounds ωp defined in (3.15) are independent of p ∈ (1,∞). Denoting by ω0 their common
value, for every p ∈ (1,∞) we have

ω0 = sup
{

Re λ: λ ∈ σ(G p) \ iR
}
.

If in addition Hypothesis 2.4 too is satisfied, then

(iii) statement (a) of Corollary 3.7 holds;
(iv) ω0 < 0. Moreover, for every ω > ω0 , p ∈ (1,∞) there exists M > 0 such that∥∥P (t, s)ϕ − msϕ

∥∥
L p(Rd,μt )

� Meω(t−s)‖ϕ‖L p(Rd,μs)
, t > s, ϕ ∈ Lp(

R
d,μs

)
. (3.28)

Proof. Suppose that D(G p0 ) is compactly embedded in L p0(T × R
d,μ). Then, for any λ > 0 the resol-

vent operator u �→ ∫ ∞
0 e−λt T (t)u dt is compact in L p0(T×R

d,μ), and since it is bounded in all spaces
L p(T × R

d,μ), 1 � p � ∞, it is compact in all spaces L p(T × R
d,μ), 1 < p < ∞, by interpolation. See

e.g., [11, (proof of) Thm. 1.6.1], for p0 < ∞, and [24, Prop. 4.6] for p0 = ∞. Since the domain of G p

coincides with the range of R(λ, G p), it is compactly embedded in L p(T × R
d,μ).

Let us now prove statements (i) to (iv).
(i). By the general spectral theory, the spectrum of G p consists of isolated eigenvalues. Applying

[11, Cor. 1.6.2] to the resolvent R(λ, G p) for a fixed λ > 0, it follows that the spectrum of R(λ, G p) is
independent of p and, hence, the spectrum of G p is independent of p. It also follows that the spectral
projections are independent of p.

(ii). Fix any p ∈ (1,∞) and denote by GΠ , TΠ(t), respectively, the parts of G p , T (t) in
Π(L p(T×R

d,μ)), and by G I−Π , T I−Π(t), respectively, the parts of G p , T (t) in (I −Π)(L p(T×R
d,μ)).

Since Π commutes with T (t), then σ(G p) = σ(GΠ) ∪ σ(G I−Π). The spectrum of GΠ is the set
{2kπ i/T : k ∈ Z}, since Π(L p(T × R

d,μ)) is isometric to L p(T, ds
T ) and GΠ = −Ds on D(GΠ) =

Π(D(G p)). Therefore,

sup
{

Reλ: λ ∈ σ(G p),Re λ < 0
} = sup

{
Re λ: λ ∈ σ(G I−Π)

}
.

Let us prove that such suprema coincide with ωp . This will imply that ωp is independent of p,
because the left-hand supremum is independent of p.

To this aim, we remark that, although the operators T (t) are not compact, σ(T (t))\{0} consists of
eigenvalues. Indeed, by the Spectral Mapping Theorem 2.17, σ(T (t)) \ {0} = etσ(G p) , and by the gen-
eral theory of semigroups (e.g., [13, Thm. IV.3.7]) Pσ(T (t)) \ {0} = et Pσ(G p) , where Pσ denotes the
point spectrum. Since σ(G p) = Pσ(G p), then σ(T (t)) \ {0} = Pσ(T (t)) \ {0}. As a consequence, also
σ(T I−Π(t)) \ {0} consists of eigenvalues, because the elements of σ(T I−Π(t)), which are not eigen-
values, are contained in σ(T (t)) \ Pσ(T (t)), which does not contain nonzero elements. Again by the
spectral mapping theorem for the point spectrum, σ(T I−Π(t)) \ {0} = etσ(G I−Π ) i.e., the semigroup
T I−Π(t) satisfies the spectral mapping theorem. This implies that ωp = sup{Reλ: λ ∈ σ(G I−Π)}, be-
cause ωp coincides with the logarithm of the spectral radius of T I−Π(1) (see e.g., [13, Prop. IV.2.2]).

(iii). Since T I−Π(t) is strongly stable by Theorem 3.5, G I−Π cannot have eigenvalues on the imag-
inary axis. Therefore, iR is contained the resolvent set of G I−Π . The arguments used in the proof of
the statement (a) of Corollary 3.7 yield the statement.

(iv). We already remarked that σ(G I−Π)∩ iR = ∅. Consequently, the spectrum of T I−Π(1) does not
intersect the unit circle. It follows that

sup
{|ζ |: ζ ∈ σ

(
T I−Π(1)

)}
< 1. (3.29)
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Indeed, if there were a sequence of eigenvalues (ζn) of T I−Π(1) such that limn→∞ |ζn| = 1, a sub-
sequence would converge to an element ζ with modulus 1, and since the spectrum is closed,
ζ ∈ σ(T I−Π(1)). But this is impossible. Hence, (3.29) holds.

It follows that there exists a < 1 such that

∥∥T I−Π(n)
∥∥

L(L p(T×Rd,μ))
= ∥∥(

T I−Π(1)
)n∥∥

L(L p(T×Rd,μ))
� an,

for n large, and since

∥∥T I−Π(t)
∥∥

L(L p(T×Rd,μ))
= ∥∥T I−Π(t − n)T I−Π(n)

∥∥
L(L p(T×Rd,μ))

�
∥∥T I−Π(n)

∥∥
L(L p(T×Rd,μ))

,

for n � t < n + 1, ‖T I−Π(t)‖L(Lp(T×Rd,μ)) decays exponentially as t → ∞, i.e., ωp < 0.
Estimate (3.28) follows from Theorem 3.2. �
As in the autonomous case, log-Sobolev inequalities imply that D(G p) is compactly embedded in

L p(T × R
d,μ), for every p ∈ (1,∞).

Theorem 3.16. Let Hypotheses 2.1 and 2.4 hold. Assume that (3.24) holds for p = 2 and for every f ∈ D(G2).
Then, for any p ∈ (1,∞), D(G p) is compactly embedded in L p(T × R

d,μ).

Proof. By Theorem 3.15, it is enough to prove that D(G2) is compactly embedded in L2(T × R
d,μ).

We shall show that, for every ε > 0, the unit ball B of D(G2) may be covered by a finite number
of balls of L2(T × R

d,μ) with radius not greater than ε.
Fix u ∈ B , k > 1 and set E := {|u| < k}. For every R > 0 we have, by (3.24),

T∫
0

∫
B(0,R)c

u2 dμ �
T∫

0

∫
B(0,R)c

1Ek2 dμ + 1

log(k2)

T∫
0

∫
B(0,R)c

1Ec u2 log
(
u2)dμ

� k2

T

T∫
0

ds

∫
B(0,R)c

dμs + 1

log(k2)

(
1

T

T∫
0

Π
(
u2) log

(
Πu2)ds + C1

∫
T×Rd

|∇xu|2 dμ

)
,

for some positive constant C1, independent of u and k.
Fix ε > 0. By Lemma 3.13, u2 ∈ D(G1), and ‖u2‖D(G1) � C2‖u‖2

D(G2) � C2, with C2 independent

of u. Therefore, Πu2 belongs to the domain of the part of G1 in Π(L1(T × R
d,μ)), which is isomor-

phic to W 1,1(T, ds
T ). By the Sobolev embedding for the Lebesgue measure, ‖Πu2‖L∞(0,T ) is bounded

by a constant independent of u, so that
∫ T

0 Πu2 log(Πu2)ds is bounded by a constant independent
of u. Also the integral

∫
R1+d |∇xu|2 dμ is bounded by a constant independent of u, by Proposition 2.14.

So, there exists M > 0 such that 1
T

∫ T
0 Πu2 log(Πu2)ds+C1

∫
T×Rd |∇xu|2 dμ � M , for every u ∈ B . Tak-

ing k large enough, we get

1

log(k2)

(
1

T

T∫
0

Πu2 log
(
Πu2)ds + C1

∫
T×Rd

|∇xu|2 dμ

)
� ε

2
.
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By Theorem 2.2(v) the measures μs are tight, so that there exists R > 0 such that

k2

T

T∫
0

ds

∫
B(0,R)c

dμs � ε

2
.

Summing up, ∫
(0,T )×B(0,R)c

u2 dμ � ε.

By Corollary 2.13, D(G2) is contained in W 1,2
2,loc(T × R

d,ds × dx) and the restriction operator

R : D(G2) → W 1,2
2 (T × B(0, R),ds × dx), Ru = u|T×B(0,R) , is continuous. Since the embedding

of W 1,2
2 (T × B(0, R),ds × dx) in L2(T × B(0, R),ds × dx) is compact, there exist f1, . . . , fk ∈

L2(T × B(0, R),ds × dx) such that the balls B( f i, ε) cover the restrictions of the functions of B to
T × B(0, R). Let f̃ i denote the null extension of f i to T × R

d . Then B ⊂ ⋃k
i=1 B( f̃ i,2ε), and the state-

ment follows. �
Remark 3.17. Under Hypotheses 2.1 and 2.4, if the diffusion coefficients are independent of x and
r0 < 0, then the assumptions of Theorem 3.16 are satisfied, hence all the statements of Theorem 3.15
hold, as well as the statements of Corollaries 3.7 and 3.8. Since r0 = �2 = ω0, statement (ii) of Theo-
rem 3.15 is sharper than the statements of Corollaries 3.7 and 3.8 for 1 < p < 2, while estimate (3.18)
is sharper than statement (iv) of Theorem 3.15 for p � 2.

4. Examples

4.1. Time dependent Ornstein–Uhlenbeck operators

Let us consider the operators

(
A(t)ϕ

)
(x) = 1

2
Tr

(
B(t)B∗(t)D2

xϕ(x)
) + 〈

A(t)x + f (t),∇ϕ(x)
〉
, x ∈ R

d,

with continuous and T -periodic data A, B : R → L(Rd) and f : R → R
d . The ellipticity condition (1.2)

is satisfied provided det B(t) 
= 0 for every t ∈ R.
In [18] asymptotic behavior results for the backward evolution operator P (s, t), s � t , associated

to the family {A(t)} in L2 spaces have been proved, as well as spectral properties of the parabolic
operator u �→ A(s)u + Dsu. Here, we consider forward evolution operators P (t, s), t � s, and the
parabolic operator u �→ A(s)u − Dsu. Reverting time, there is no difficulty to pass from backward to
forward.

Let U (t, s) be the evolution operator in R
d , solution of ∂

∂t U (t, s) = −A(t)U (t, s), U (s, s) = I .
A (unique) T -periodic evolution system of measures {μs: s ∈ R} exists provided the growth bound
ω0(U ) of U (t, s) is negative; in this case the measures μt are explicit Gaussian measures.

The results of this paper allow to extend most of the L2 asymptotic behavior results of [18] to
the L p setting, with p ∈ (1,∞). In fact, the log-Sobolev inequality (3.24) holds for p = 2, for every
u ∈ D(G2). It was proved in [7] for every u ∈ C1,2

b (T×R
d) which is dense in D(G2), and the procedure

of Theorem 3.14 allows to extend it to all the functions u ∈ D(G2). Moreover, Proposition 2.4 of [18]
shows that ω2 = ω0(U ). Therefore, all the statements of Theorem 3.15 hold, with ω0 = ω0(U ).

Note that our assumption of Hölder regularity of the coefficients is not needed here, because the
proof of Theorem 3.14 is independent of time regularity of the coefficients.
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4.2. Diffusion coefficients independent of x

Let now consider the operators A(t) defined in (1.1) with T -periodic diffusion coefficients depend-
ing only on time, under the regularity and ellipticity assumptions of Hypothesis 2.1 (i) and (ii). For
every n ∈ N the function V (x) := 1 + |x|2n satisfies Hypothesis 2.1(iii) provided that there exists R > 0
such that

sup
s∈R, |x|�R

〈b(s, x), x〉
|x|2 < 0.

In this case the statements of Theorem 2.2 and of Proposition 2.10 hold. So, there exists a Markov
evolution operator P (t, s) with a unique T -periodic evolution system of measures {μs: s ∈ R}. The
measures μs have uniformly bounded moments of every order, i.e.,

sup
s∈R

∫
Rd

|x|kμs(dx) < ∞, k ∈ N.

If moreover the derivatives Dib j belong to Cα/2,α
loc (T × R

d) and there exists r0 ∈ R such that

〈∇xb(s, x)ξ, ξ
〉
� r0|ξ |2, (s, x) ∈ T × R

d, ξ ∈ R
d,

then Hypothesis 2.4 holds too.
Applying Theorem 3.5, statements (ii) to (iv) of Theorem 3.1 hold.
In the case that r0 < 0, we have �2 = r0 < 0, and the log-Sobolev inequalities of Subsection 3.1

hold. By Theorem 3.16 the domain D(G p) is compactly embedded in L p(T × R
d,μ) for p ∈ (1,∞)

and all the statements of Theorem 3.15 hold. Moreover the statements of Corollaries 3.7 and 3.8 hold.
See Remark 3.17.

4.3. General diffusion coefficients

In the general case, setting again V (x) := 1 + |x|2n , we have

A(s)V (x) = 2n|x|2n
[
(2n − 2)

〈Q (s, x)x, x〉
|x|4 + Tr Q (s, x)

|x|2 + 〈b(s, x), x〉
|x|2

]
,

for any (s, x) ∈ R
1+d , so that Hypothesis 2.1(iii) is satisfied by V provided there exists R > 0 such that

sup
s∈R, |x|�R

(
(2n − 2 + d)

Λ(s, x)

|x|2 + 〈b(s, x), x〉
|x|2

)
< 0, (4.1)

where Λ(s, x) is the greatest eigenvalue of Q (s, x). If also the regularity and ellipticity assumptions
of Hypothesis 2.1 (i) and (ii) are satisfied, by Theorem 2.2 and Proposition 2.10 there exists a Markov
evolution operator P (t, s) with a unique T -periodic evolution system of measures {μs: s ∈ R}; the
measures μs satisfy

sup
s∈R

∫
Rd

|x|2nμs(dx) < ∞.

If moreover Hypothesis 2.4 is satisfied and there exists C > 0 such that
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∥∥Q (s, x)
∥∥

L(Rd)
� C

(
1 + |x|)2n+1

, s ∈ R, x ∈ R
d,

then the assumptions of Theorem 3.5 hold. Indeed, since Λ(s, x) is positive, (4.1) implies that
〈b(s, x), x〉 < 0 for |x| � R and s ∈ R, so that the second condition of (2.20) is satisfied. Then, The-
orem 3.5 yields that statements (ii) to (iv) of Theorem 3.1 hold.

If in addition the diffusion coefficients are bounded and the number �2 in (2.8) is negative, then
all the assumptions of Corollaries 3.7 and 3.8 are satisfied, and we have the exponential decay rates
given by Corollary 3.8 and the spectral properties of the operators G p given by Corollary 3.7.
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