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Absence of Filamin A Prevents Cells from Responding to Stiffness
Gradients on Gels Coated with Collagen but not Fibronectin
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ABSTRACT Cell types from many tissues respond to changes in substrate stiffness by actively remodeling their cytoskeletons
to alter spread area or adhesion strength, and in some cases changing their own stiffness to match that of their substrate. These
cell responses to substrate stiffness are linked to substrate-induced changes in the state, localization, and amount of numerous
proteins, but detailed evidence for the requirement of specific proteins in these distinct forms of mechanical response are scarce.
Here we use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of filamin A in cell
responses to mechanical stimuli and dissociate cell spreading and stiffening by contrasting responses of a pair of human mela-
noma-derived cell lines that differ in expression of this actin cross-linking protein. M2 melanoma cells null for filamin A do not alter
their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors,
but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change
adherent area on both substrates and respond more strongly to collagen I-coated gels than to fibronectin-coated gels. Strikingly,
A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately
adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7
cells on the softest gels examined (1000 Pa). Comparison of cell spreading and cell stiffening on the same gradient substrates
shows that cell spreading is uncoupled from stiffening. At saturating collagen and fibronectin concentrations, adhesion of M2
cells is reduced compared to that of A7 cells to an extent approximately equal to the difference in adherent area. Filamin A
appears to be essential for cell stiffening on collagen, but not for cell spreading on fibronectin. These results have implications
for different models of cell protrusion and adhesion and identify a key role for filamin A in altering cellular stiffness that cannot be
compensated for by other actin cross-linkers in vivo.
INTRODUCTION

The mechanical properties of a cell’s microenvironment can

have as great an impact on cell structure and function as

soluble stimuli and cell-cell contacts (1). Many cell types

alter their morphology when grown on substrates of different

stiffness (2–8). Cells grown on stiff substrates assemble actin

stress fibers (5), exhibit a more spread phenotype (9), acti-

vate signaling pathways characteristic of contractility

(2,10), and upregulate expression of cytoskeletal proteins

(11,12) and integrins (13). Not all cell types appear to be

sensitive to substrate stiffness, and not all mechanosensitive

cell types respond similarly to changes in stiffness. However

most cell types studied thus far spread more and adhere

better to harder matrices. Some cell types cannot grow on

very soft (<50 Pa) surfaces (3,5,6,8,9,14), and other cell

types such as mesenchymal stem cells survive in a quiescent

state when the elastic modulus of their substrates is suffi-

ciently low (15).

Neither the physical nor molecular mechanisms by which

cells sense the stiffness of their environments or by which
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they respond to externally imposed forces are thoroughly

understood. A current hypothesis to explain increased

spreading on stiffer adhesive surfaces is that by pulling on

the matrix at focal adhesions, anchorage points to the under-

lying substrate, the cell creates tension within its membrane

and underlying cortical actin mesh (16); the tension depends

on the inherent material properties of the matrix, a relatively

stiff matrix will resist cellular force more than a soft one. In

cell types that grow preferentially on hard matrices, the

tension will stimulate such a cell to extend its periphery

increasing its spread area (17). A correlation between cell

spreading and stiffening has been reported in fibroblasts

(12,18) and can be accounted for by a theoretical model

(19), but whether cells necessarily stiffen as they spread is

not clear.

From a physical perspective, cells might sense stiffness by

mechanisms analogous to the two design principles of

rheometers. In one mechanism, cells could apply a measured

stress (e.g., using acto-myosin motors) and detect the amount

of deformation (strain) imposed on their surroundings. In the

other, they could impose a constant strain (e.g., by moving

a fixed lever arm through a given angle) and detect the

amount of work required. Both mechanisms require an

elastic material within the cell that deforms to an extent
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dependent on the opposing stiffness of the extracellular

matrix or on an external force applied to the cell. Several

candidate molecules and signaling pathways have been

proposed to constitute the hypothetical force generators

and deformation sensors. These include protein phospha-

tases (20); small GTPases; Ca2þ channels; and several cyto-

skeletal proteins including talin, filamin, and dystrophin

(summarized in a recent review (21)).

Filamin A is the most efficient actin cross-linking protein

in vitro (22–26), producing elastic networks that cannot be

formed by other cross-linkers such as alpha actinin (25,27)

or temporary branching proteins such as the Arp2/3 complex

(28). Previous work has shown that loss of filamin A in a cell

line derived from a primary human melanoma decreased the

stiffness of these cells by a factor of ~2 (29) and that loss of

Dictyostelium filamin decreases the elastic modulus of these

cells (30). Loss of filamin in glomerular podocytes derived

from a mouse model of HIV-associated nephropathy

(HIVAN) is associated with a decrease in the elastic modulus

of these cells by a factor of 4 compared to wild-type podo-

cytes (31). In contrast, studies using magnetic twisting rhe-

ometry (32) report insignificant mechanical differences in

cells devoid of filamin A compared to their wild-type

controls, raising issues as to whether filamin A or any other

actin cross-linker can determine the stiffness of the cytoskel-

eton or overall cell stiffness (33).

In addition to its actin filament cross-linking function, fil-

amin A binds numerous other proteins including some integ-

rins to mediate the link between cytoskeleton and cell

membrane (34). Filamin is specifically recruited to sites

where stress is applied to integrins by magnetic beads coated

with collagen, and melanoma cells lacking filamin cannot

mount this mechanoprotective response (35). Several protein
Biophysical Journal 96(12) 5095–5102
complexes involved in signaling cytoskeletal reorganization

in response to force bind to filamin A including ras/Erk (36),

Rho (37), and ion channels (38–42). These data indicate that

filamin A is a good candidate for mediating cellular

responses to substrate stiffness, especially responses

involving beta 1 integrins that bind filamin A at their cyto-

plasmic tails (43,44). In this report, we systematically test

the role of filamin A in the response of cells to substrates

of different stiffnesses and in the ability of cells to alter their

own stiffness to match that of their substrate.

EXPERIMENTAL METHODS

Fabrication of microfluidic channels

Gradient generators made from polydimethyl siloxane (PDMS) microfluidic

channels were fabricated using standard photolithography techniques

(45,46). Photomasks of the gradient generator (Fig. 1) were designed in

AutoCAD and printed (Advance Reproductions, North Andover, MA).

SU-8 2100 negative photoresist (Microchem, Newton, MA) was spin coated

onto a silicon wafer, baked for 15 min at 65�C, and then baked again at 95�C
for 60 min. The photoresist was exposed to 365 nm ultraviolet (UV) light

through the photomask to cross-link the exposed parts of the photoresist.

A postbake process was then performed at 95�C for 25 min before the

coated wafer was immersed in SU-8 developer for 8 min to remove the

uncross-linked parts and leave on the wafer a pattern of the designed micro-

fluidic channels called the master. PDMS solution (Sylgard 184, Dow Corn-

ing, Midland, MI) was poured over the master and baked at 70�C for 2 h to

produce a negative replica of the channels. PDMS was removed from the

master and bound to glass coverslips. The gradient-mixer region was

bonded to a plain coverslip using a mild oxygen plasma treatment (45 W

for 40 s), and the outlet region was bonded using a high-power (75 W)

plasma treatment for 50 s to a coverslip activated with (3-aminopropyl)tri-

methoxysilane (Sigma (St. Louis, MO) 281778) and glutaraldehyde (Sigma

G7651) (9,46). Activating the coverslip promotes adhesion of polyacryl-

amide gels, and the reversible bonding enables separation of the PDMS

from the activated coverslip.
FIGURE 1 (a) Gradient generator, which has three inlets

supplying the relative amounts of bisacrylamide or fluores-

cent dye shown and one wide outlet. (b)The chemical

gradient produced at the outflow from the mixing apparatus

of the microfluidic system visualized by doping the bisacry-

lamide solution with a fluorescent dye. Higher fluorescence

intensities represent lower bisacrylamide concentration, and

hence lower gel stiffness. (c) Local elastic modulus (solid

circles) measured by AFM across a 2 mm wide gradient

gel. Fluorescence intensity profile across a gradient gel

coated with rhodamine-labeled fibronectin (solid squares)

and a gradient gel coated with nonfluorescent fibronectin

(open squares) to correct for gel autofluorescence.
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Polyacrylamide gel with stiffness gradients

The strategy for making stiffness gradients was developed from the design of

Zaari et al (46). The stiffness of polyacrylamide gels was tuned by varying

the concentration of bisacrylamide at a fixed acrylamide concentration (13).

Three solutions with the same acrylamide (Bio-Rad, Hercules, CA) concen-

tration but different N,N0-methylene-bisacrylamide (Bio-Rad) concentra-

tions were injected into the gradient generator. Each solution had an

acrylamide concentration of 8% and a 2,2-diethoxyacetophenone (Sigma

227102) photoinitiator concentration of 0.5%. The bisacrylamide concentra-

tions of the three inlets were: 0.02%, 0.02%, and 1%. Fluorescein (Sigma

F6377) was added to the 0.02% bis-acrylamide solution to evaluate the

gradient of bis-acrylamide concentration upon polymerization (Fig. 1 b).

The solutions were then driven through the microfluidic channels by syringe

pumps (Harvard Apparatus, Holliston, MA) at the same flow rate of 3 mL.

Once the flow in the outlet channel reached a steady state, a UV light was

shined on the outlet region for 8 min. The syringe pumps were stopped after

the outlet region was exposed in the UV light for 10 s. Peeling off the PDMS

leaves the gel stuck on the activated coverslip. The resulting gel, 1.8 mm in

width and 2 cm in length, was immediately immersed in PBS buffer for 12 h

to remove the unreacted photoinitiators.

Once the gradient PA gels were fabricated, stiffness across the gel was

characterized using atomic force microscopy (AFM) (Fig. 1 c). The gradual

transition in bis-acrylamide concentration, which correlates with gel stiff-

ness, was also evaluated by fluorescence (Fig. 1 b). The gel surface was

then activated with sulfo-SANPAH, and adhesion proteins were covalently

ligated through free amino groups by succinimide chemistry (47). Previous

studies using fluorescently labeled fibronectin and quantifying adhesive

ligand density by fluorescence microscopy (48) show that incubation of

0.1 mg/ml protein solutions for 30 min on the gel is sufficient to produce

a saturating level of adhesion protein on gels independent of their stiffness.

Gradient gels were coated with 0.1 mg/ml salmon fibronectin (Sea Run

Holdings, Freeport, ME) 0.1 mg/ml rat-tail collagen (BD Bioscience, San

Diego, CA) or a combination of both proteins, each at 0.1 mg/ml.

Ligand density across the coated gradient gel was evaluated using fluores-

cence microscopy. Fluorescence images of a gradient gel coated by 0.1 mg/

ml rhodamine labeled fibronectin were acquired using a Coolsnap Hq

charge-coupled device camera (Roper Scientific, Trenton, NJ) mounted on

an Axio Observer Z1 microscope (Carl Zeiss, Jena, Germany). A total of

seven images across the gel were taken and stitched together to reconstruct

an image of the whole gel. Each image was acquired at a different location of

the gel using the same acquisition parameters so that the overlap regions of

the images have the same intensity level. A fluorescence intensity profile

across the gel was evaluated by plotting the mean intensity of a selected

square region, 100 mm2 in area, against the distance of its centroid from

the soft edge of the gel. A constant fluorescence intensity level across the

gel (Fig. 1 c) indicates uniform distribution of ligand density.

Cell culture

The M2 cell line was originally identified in a study of cells cultured from

primary and metastatic human melanomas as a cell type with impaired

motility (49). The abnormal motility and morphology of M2 cells was later

shown to be associated with their lack of expression of ABP280 (29), the

actin cross-linker now called filamin A (50). Whereas motile melanoma

cell lines cultured from human tumors had filamin/actin ratios ranging

from 1:80 to 1:140, M2 cells had strongly reduced mRNA for filamin A

and no protein detectable by an anti-filamin A antibody. A7 cells, derived

from M2 cells by stable reexpression of filamin A, have actin levels compa-

rable to motile melanoma cells and a filamin/actin ratio of 1:160, close to the

range found in untransfected filamin Aþ melanoma cells (29).

M2 (filamin A deficient) and A7 (filamin A expressing) melanoma cells

were cultured in DMEM (BioWhittaker, Walkersville, MD) supplemented

with 10% fetal bovine serum (Hyclone, Logan, UT) at 37�C with 5% CO2.

Acrylamide gels, either single stiffness or stiffness gradients, were prepared

for cell culture by coating with 0.5 mg/ml sulfo-SANPAH (Pierce Biotech-
nology, Rockford, IL) and activated using UV for 10 min. Cells were then

added to gels coated with adhesion proteins as described above and allowed

to attach and spread for 24 h before experiments were performed. Immedi-

ately before experimentation, cells were placed in CO2 independent buffer

(PBS þCa, þMg) to prevent changes in pH of the cellular environment.

AFM and fluorescent microscopy

AFM was done with a DAFM-2X Bioscope (Veeco, Woodbury, NY)

mounted on an Axiovert 100 microscope (Zeiss, Thornwood, NY) using

silicon nitride cantilevers (196 mm long, 23 mm wide, 0.6 mm thick) with

a bead tip (1 mm diameter) for indentation. The spring constant of the canti-

lever, calibrated by resonance measurements, was typically 0.06 N/m

(Novascan, Ames, IA). A grid with 300 mm divisions was placed length-

wise beneath the gel, and ~3–4 cell/gel stiffness measurements are made

within each division. Correlation between cell and gel stiffness was deter-

mined by indenting the cells at three distinct points and the gel at three points

proximal to the attached cell.

To quantify stiffness (elastic modulus), the first 500 nm of tip deflection

was fit with the Hertz model for a sphere

fbead ¼ k � dcantilever ¼
4

3

E

1� v2

ffiffiffi

R
p

d
3
2

where fbead is the force on the bead, k is the spring constant of the cantilever,

dcantilever is the deflection of the cantilever measured by the AFM, E is the

Young’s modulus, v is the Poisson ratio, R is the radius of the bead, and

d is the vertical indentation of the material. d is determined by subtracting

dcantilever from the distance traveled by the cantilever during the indentation

process. Previous studies have shown that this simple approximation,

although not exact for our conditions, is correct within a small fraction

(<15%) of values determined by conventional rheometry of identical gels

(51). Phase contrast images of cells, including those measured by AFM,

were analyzed using Image J to determine adherent area.

For evaluation of actin organization of M2 and A7 cells on varying gel

stiffness, samples were fixed with 4% paraformaldehyde (Sigma-Aldrich,

St. Louis, MO) for 30 min at 37 � and stained with 1:40 FITC-labeled phal-

loidin (Invitrogen, Carlsbad, CA) in PBS for 30 min.

Measurement of cell adhesion

Equal numbers of M2 and A7 cells (two 104 cells/well) were plated in trip-

licate wells of 96-well plates. Groups of wells contained serial dilutions of

collagen or fibronectin ranging from 0–10 mg/ml. The cells were allowed

to adhere to the wells for 30 min in a tissue culture incubator. After

30 min, the plates were washed, and the cells that remained were stained

with crystal violet. The plates were dried and the stain solubilized with meth-

anol-acetic acid, and the plates read in a microplate reader (52).

RESULTS

The specific function of filamin A in the ability of cells to

sense or respond to substrate stiffness is illustrated by

comparison of the two human melanoma-derived cell lines

M2 and A7 (29). M2 cells are derived from a primary human

melanoma, and although transformed and robust in culture

have highly impaired motility because they lack filamin A

expression (Fig. 2 e). A7 cells are derived from M2 cells

by stably expressing approximately wild-type levels of fila-

min A. A typical response of A7 cells to the changes in stiff-

ness within a gradient gel coated with fibronectin and

collagen is shown in Fig. 2 a. On the softest region of the

gel, which has a Young’s modulus of ~1 kPa, measured by

small amplitude indentation at a frequency of 1 HZ, A7 cells
Biophysical Journal 96(12) 5095–5102
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FIGURE 2 Morphological change of melanoma cells on

stiffness gradient gels. Shapes of A7 (a) and M2 (b) cells

bound to a PA gradient gel coated with collagen I and fibro-

nectin, taken 24 h after plating. Gel stiffness increases from

left to right. Scale bar is 40 mm. The full width of the gel is

1.8 mm, and its stiffness ranges from 1 to 30 kPa. Higher

magnification images show examples of A7 (c and f) and

M2 (d and g) cells on soft (c and d, 0.5 kPa) and stiff

(f and g, 15 kPa) gels. Scale bar for these images is

10 mm Western blot (e) shows equal levels of talin and

actin expression in M2 and A7 cells, but no filamin A

expression in M2 cells. Molecular mass bars on left of

image are 200 kDa for filamin and talin, and 40 kDa for

actin.
are round and lack actin bundles or stress fibers that are

visible by fluorescence microscopy after staining with rhoda-

mine-phalloidin. As stiffness increases to levels of ~30 kPa

on the right side of the gel shown, the A7 cells develop

a spread, fan-shaped morphology and assemble actin bundles

(Fig. 2, a and f). These morphological changes are very

similar to those seen in fibroblasts and other cell types. M2

cells form few if any stress fibers on any gel at any level

of stiffness under these conditions (Fig. 2, b and g).

Function of filamin in response to substrate
stiffness

The potential of filamin A to mediate the integrin-specific stiff-

ness sensing-response function of cells is demonstrated by the

data in Fig. 3. When A7 cells are cultured on gels coated with

collagen I, fibronectin, or a combination of both proteins, they

increase both their own cortical stiffness (Fig. 3 a) and their
Biophysical Journal 96(12) 5095–5102
adherent area (Fig. 3 c) but to very different extents, depending

on the nature of the adhesive ligand. Cell stiffness is greater

and increases more strongly with substrate stiffness when

A7 cells are grown on collagen I, and like fibroblasts (51),

these cell types modulate their cytoskeletal stiffness to match

that of their underlying substrate. A7 cell stiffening on fibro-

nectin is much more gradual, and when plated on both ligands,

the cellular response is intermediate between those of either

ligand alone. This result suggests that activation of fibronectin

receptors, presumably b3 integrins, interferes with the

response to collagen receptors, presumably b1 integrins.

Direct comparison of spread area and cell stiffness for the

same population of cells shows that spreading and stiffening

are not linked, and in the case of A7 cells show opposite

responses to changes in adhesive ligand. Whereas A7 cells

were stiffest on collagen, their spread area was the same

on collgen-coated and fibronectin-coated gels (Fig. 3 c)

and gels with both collagen and fibronectin lead to spread
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FIGURE 3 Cellular stiffness measured by AFM (a and

b) and adherent area (c and d) of A7 (a, c) and M2

(b and d) melanoma cells cultured for 24 h on polyacryl-

amide gels laminated with collagen I (circles), fibronectin

(triangles), or mixture of collagen I and fibronectin

(diamonds). Both proteins were added at saturating

concentrations to the gels using methods described in

(47). Error bars representing standard errors (n ¼ 3) for

stiffness measurements of individual cells and the adjacent

gel shown in panel a are representative for data in panels

a and b. Error bars in panels c and d represent larger pop-

ulations of cells (n ¼ 30–50) within gels of the average

stiffness shown on the abscissa.
areas that were approximately the sum of the area on either

ligand alone. The coating density of both collagen and fibro-

nectin was sufficiently high to be saturating for both collagen

and fibronectin, as determined by previous studies and

confirmed by the data of Fig. 4.

Filamin-A null M2 cells responded very differently to

changes in substrate stiffness that again depended on the

FIGURE 4 Adhesion strength of M2 and A7 cells to surfaces coated with

different densities of fibronectin and collagen. Relative cell adhesion

strength is calculated as the intensity of cell staining on surfaces after non-

adherent cells are removed by washing with medium.
nature of the adhesive ligand. Fig. 3 b shows that M2 cells

maintain a constant low value of cytoskeletal stiffness inde-

pendent of the stiffness of their substrate. There appears to

be a slight trend toward stiffening on collagen, but not on

fibronectin. However, like A7 cells, M2 cells increased their

spread area as the stiffness increased on gels that contained

fibronectin, consistent with a previous report (48), but not

on collagen alone. These findings are consistent with reports

that filamin might be the primary cytoskeletal linker to integ-

rin subtypes that promote tight adhesion and inhibit motility,

whereas filamin A might be replaced by talin as the cytoskel-

etal linker when the cell binds fibronectin and initiates a motile

phenotype (43). Similar to fibroblasts (51), A7 cells alter their

stiffness to match that of their substrate when bound by

collagen receptors, but have a much weaker stiffening

response when bound to fibronectin-coated gels (Fig. 3 a).

M2 cells maintain their low elastic modulus on all substrates

(Fig. 3 b). The stiffness values reported here were determined

by AFM indentation of gradient gels, with the AFM probing

both the cell and the adjacent substrate.

Absence of filamin weakens but does not prevent
adhesion to collagen- or fibronectin-coated
surfaces

Changes in spread area and potentially cell stiffness might

result from differences in the ability of cells to adhere to their

substrate. To test for differences in adhesion strength inde-

pendent of stiffness differences, M2 and A7 cells were plated

on plastic surfaces coated with serial dilutions of collagen I
Biophysical Journal 96(12) 5095–5102
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or fibronectin. Adherent cells were subjected to uniform fluid

shear stress and their abilities to maintain adhesion on

surfaces coated with different densities of fibronectin or

collagen I are shown in Fig. 4.

At the densities of ligand used for the studies shown in

Fig. 3 (>10 mg/ml) M2 cells’ adhesion strength is ~60%

that of A7 cells on both types of ligands. Previous studies

show that total adhesion strength scales with the number of

ligated integrins (53), and therefore at saturating adhesion

protein densities, approximately with the adherent area. The

M2 cells have a clear adhesion defect on collagen compared

to the A7 cells. At the maximum fibronectin concentration,

the adhesion of A7 is similar to that of A7 cells on collagen,

and adhesion of the M2 cells is similar to that of the M2 cells

on collagen. Even though M2 cells spread better on fibro-

nectin than collagen (Fig. 3 d) to the point that their spreading

behavior approaches that of A7 cells, their adhesive properties

remain defective compared to A7 cells. The difference in

adhesion strength between M2 and A7 cells is consistent

with their differences in adherent area on the stiffest substrates

shown in Fig. 3, suggesting that both cell types are able to

engage their substrate effectively, but the lack of spreading

leads to overall less adhesion. The lack of filamin A, presum-

ably needed for coupling the membrane receptors to the cyto-

skeleton, leads to differences in stiffening and spreading as

substrate stiffness is altered.

DISCUSSION

The stiffness of tissues is tightly controlled, and the elastic

modulus of most normal tissues generally ranges from

~100 Pa for the softest tissues, such as fat and bone marrow,

to tens of thousands of Pa for muscle, and an order of magni-

tude greater for cartilage and tissues such as bone that are

composed more of extracellular matrix than of cells

(reviewed in (54)). The stiffening of tissues resulting from

fibrosis or other diseases is commonly thought to be merely

an inevitable late-stage consequence of the pathologic

process, but recent work supports the hypothesis that

changes in tissue stiffness have a more active, causative

role in disease, as they can exacerbate or even initiate cellular

changes coincident with chemical signaling (2,55,56). The

molecular determinants of cellular and extracellular matrix

elasticity are extensively studied, but a universally accepted

model to explain how changes in protein assembly and orga-

nization translate into macroscopic or microscopic elasticity

has been elusive. Intracellular elasticity is generally thought

to rely on the formation of cytoskeletal networks, especially

the cortical actin meshwork, a dynamic system of polymer-

izing and depolymerizing filaments cross-linked to each

other and to the plasma membrane by a host of actin binding

proteins. The relative efficiency of different purified actin

cross-linkers has been documented in vitro, and filamin A

is consistently found to be the most efficient cross-linker,

not only in terms of forming actin filament networks, but
Biophysical Journal 96(12) 5095–5102
also of inducing stiffening of these networks as they deform

(25,28). Whether or not filamin A is essential for stiffness

sensing appears to depend on the context, with different

studies reporting that filamin A expression is either essential

(35,57) or unnecessary (48,58) for cellular response to

changes in stiffness or response to external forces.

Cellular responses to matrix stiffness depend not only on

the cell type and its expression of cytoskeletal protein but

also on the types of extracellular matrix and therefore the

type of adhesion receptors expressed, usually integrins, by

which the cell binds its substrate. Previous studies have

shown that fibroblasts, endothelial cells, and several other

cell types all increase in spread area as a function of substrate

stiffness, but to different extents, depending on whether they

bind through collagen, fibronectin, or laminin receptors (1).

Similarly, the data in Figs. 2 and 3 show that melanoma cells,

whether or not they express filamin A, respond differently to

fibronectin- and collagen-coated surfaces, but that spreading,

stiffening, and adhesion (Fig. 4) on collagen-coated surfaces

shows an absolute requirement for filamin A.

The results in Fig. 3 are consistent with and help explain

the apparently discrepant results of two studies of me-

chano-sensing in filamin-deficient melanoma cells. Glogauer

et al. (35) showed that filamin-expressing A7 cells increased

actin assembly and activated myosin contractility at sites

where magnetic collagen-coated beads applied force to the

surface of the cell, whereas M2 cells, devoid of filamin,

did not. In contrast, Giannone et al. (58) reported that M2

cells responded nearly normally to force application by fibro-

nectin-coated beads, whereas deletion of talin abolished the

response to force in this system. Because talin, but not fila-

min, activates b3 integrins (59), the receptors for fibronectin

in most cell types (60) the mechanosensing required for

shape changes (spreading) in response to substrate stiffness

is intact in M2 cells on an Fn matrix. However, when the

only adhesive ligand is collagen, which engages largely b1

integrin that binds primarily to filamin A, the mechanosens-

ing in filamin A-deficient cells is abolished, and they do not

spread, stiffen, or adhere normally. It is notable that although

talin appears to be able to compete with filamin for b1 integ-

rins (44), it alone is not capable of transmitting or trans-

ducing the collagen and integrin b1-dependent signal

required for shape change (spreading) in response to stiffness

differences.

The data in Fig. 3 also show that cell spreading and stiff-

ening can be independently controlled. This finding has

implications for differentiating among different models of

how cells adhere to and move on surfaces. Several studies

suggest that application of internal tension (prestress) is

required for a cell to spread, and that a consequence of

prestress is stiffening of the cytoskeleton. This mechanism

is inconsistent with the data in Fig. 3 a and c, which show

that A7 cells stiffen more on collagen than on fibronectin,

but spread equally well on fibronectin or collagen. Alterna-

tive models posit that cortical tension, and therefore a stiffer
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cell, counters cell spreading and that softening of the cyto-

skeleton alters the balance between cytoskeletal elasticity

and membrane adhesion energy, allowing the cell to spread

more. The data in Figs. 3 and 4 also indicate that adhesion

strength and spreading can be dissociated, because despite

increased spreading of M2 cells on fibronectin compared

to collagen (Fig. 3 d), their adhesive properties on collagen

and fibronectin are similar. The different responses to fibro-

nectin- and collagen-coated gels are consistent with a model

by which activation of the integrins specific for these ligands

initiates signals that support different cellular functions with

different requirements for plasticity and solidity. The finding

that the combination of collagen and fibronectin produces

a greater spread area than either ligand alone (Fig. 3 c), but

a stiffness intermediate between that of each ligand sepa-

rately (Fig. 3 a) suggests that ligation of the Fn receptor

might promote cell softening, whereas ligation to collagen

promotes stiffening, without a change in adherent area.

The differential behavior of cells on matrices with different

compositions (collagen versus fibronectin) may also have

implications for the behavior of cells in wounds and in

response to inflammation.
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