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An addition chain for a positive integer n is a set t = uoc: a, < . . . c a, = n of integers such 
that fw each i 3 1. a, = a, + ak for scjrne k c j < i. The smallest length I for which an addition 
cham for n exists is denoted by I(n). This paper introduces the function h(x) which denotes the 
number of Integers n less than or equal to x for which l(b) = l(n) and proves that 
h(x) * (log, x ): A necessary theorem for establishing this result is that there exist infinitely many 
infinite classes of integers for which l(2n) = l(n). The proof of this theorem is outlined. Also. this 

pper establishes seven new cases for which 1(2” - 1) = n + l(n) - 1. These are cases n = 15, 16, 
It. IS, 20. 24 and 32. 

1. Introduction 

The study of how to raise x up to x” most efficiently gives rise to the concept ,of 
the addition chain which for a positive integer n is a set 1 = a,, c uI < . . . < a, = n 

of integers such that for each i 2 1, ca, = a,, + ai, for some k s j < i. As x is raised up 
to X” the exponent!; on the various powers of x form an addition chain. The 
minimal length t for which an addition chain for n exists is denoted by I(n). This 
paper will investigate the equalities 1(2n) = f(n) and 42” - 1) = n .- I(n)- 1 which 
are found to hold for certain values of n. 

It was considered a remarkable fact when computer calculations revealed that 
1(382) = I( 191) = II. It seems efficient to construct an addition chain for 2n by first 
constructing an addition chain for n and then adding n to itself to obtain 2n. In fact, 
Utz [ 171 asks if it is not true that I(n) < l(2n) for all n 2 1. The computer 
calculations of Knuth reveal 39 integers ranging from 191 to 8971 for which 
1(h) = I(n). In [ 15) it is proved that there is an infinite class of integers for which 
1(h) = I(n). Specificall), if n = 2”(23) + 7 where m 2 5, then l(2n) = I(n) = 
m + 8. If h(x) denotes the number of integers n less than or equal to x for which 
1(2n) = f(n). then this result implies that h(x)>, logzx - 10 from which it follows 
that h(x) s log2 x. This paper will extend these results and show thal there are 
infinitely many infin?;e classes of integers n for which 1(2n) = I(n) from which it 
will follow that Ft (x) + (log2 1)‘. 

Let h(n) = [!o~~x]. and let v(n) denote the number of ones in the binary 
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representation of PI. For each i 2 1. it is C%:BT that ar s 2ni. I. If A (a,) z A(u, -I), step 
i iii called a small step while if A@,) :r .’ (0, ,) + 1 then step i ipI called a big step. 

mr,cse arg the ~p,ty po!,sihle relatr6r?ns bctwccn X (a,) and A (a, ,). and as Knuth 19) 
@nts out the length r of an addition chain for n is h(n) plus the number of small 
steps in the chain. If N(ai) denotes the number of small steps in the chain up to a,, 
theu I = A(n) + N(n). 

21 F’roposition A 

F:~~ur lemmas from [ 15; and Knuth’s Theorem C in 19) wilt be referred ta on a 
nurnher of 0ccasions. They are listed here for convenience. I% first two lemmas 
concern integers written in their binar-ji representation, 

Lelm!nr! 0. lf a; = u, + ua and if c represents the nwr&er of curries in u, + uk, ihen 

v(u, ) = u(u, ) -+ V(UL ) - c. 

Before the psxt lemma is listed it needs to be menticbned that if a and ar, are 
tJvrittc.,n in binar) notation and a, is placed above uk in order to add Or subtract, the 
resultant figure is called a con!iguration and is designated by a, !uk. If fitx a given 
power of two a 1 appears in u, over h 0 in a kV this is called a l/O slot. If a 1 appears 
over a 1 t this is called a l/l slot ztc. 

“Lenuna 2. lf UC = a, - uk and there are s 111 slots in a, /uk und 4 one uppars in uc 
inucdy p times tinder either u 1 /l slot or u O/f) slot* then ~(a, ) =: v (a, ) - s + p. 

termma 3. If u; and uk ate two members of an addition chu1:n and if A (a,) = 
A(ai, )i- m (m 30) and 251~ C a,, then No N(a)+ It. 

Len- 4. lf a, und uk are two members of an uddition chin und if A (a, ) = 

A@,. )+ m (m %2) and a, > 2w-1~k + ?“--’ ati, tlten N(u,) B N(a, ) t- 1 unless a, = 
t”-‘uk 1 + . 

Theorem C. lf r+r) 3 4, then I(n) 2 A In j T 3 except when t,(n) := 4 und n hus one 
of tlxe four fbhwo’ng binary arms: 

(A,) n = 1 --d -- 1 -- 1 --d -- l-- where d inrlicurvrs the nwmber of zeros between the first 

and secr)nd one and between the third ,:lrtd fourth QW. 
(B) n = l-d-- I-- l--e--l-- where d a vd e again indicate zems and P = d - 1. 
(C) II == lOW-11-- where the dashes indiazte zeros, 
D) ~9 = 1OOOOll I-- where the dushes irtdicute zeros. 

In these @ur cases I(n) = A(O) + 2. 

It must: he shown that there are infinitely many infinite classes of integers for 
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which 1(2n)= f(n). This rtquircs a tedious proposition whose proof will be 
outlined rather than done step by step. A more meticulous treatment of the 
methods involved can be found in [IS). 

Prdposltion A. ff w(n) = 7 and n has the binary representation n = 101--m--l I--k- 
- 1 l--m -- I where m and k indrcate the number of zeros between ones and m a 1 and 
k 33, then &t)aA(n)+4. 

In other words in any addition chain for aa integer with these binary characteristics 
thzre wilt be at Zeast frrur small steps. 

Ptoat [Outline). Let 1 = a,, i a, < . . . C a, = n be an addition chain for n 
where r$n ) = 7 and n = 101--m--l I--k--l I--m--l (m 2 1, k 2 3). By [ 15, Theorem 
11 it can be assumed that all mcmhers of the chain have eight or less ones in their 
binary representation. If this were not the case and a certain member of the chain 
had more than eight ones in its binary representation, then by Theorem 1 there 

WNM be fout small steps in the chain to this point and, hence, at feast four small 
Eteps on the way to n. Let a, denote the first member of the chain for which 
r*lu, ) = 3 and a, = W--m--W-k--W-m--l (m 3 1, k 3 3). It is quite possible that 
a, is different from n since the values of m and k could be different from those for 
n. Now cl, = a, + ar for some k s j < i. In fact, k < j since a, is odd and cannot be 
?a,. Thus, a, and u,, are distinct membcts of the chain, and I s ~(a, ), v(ar ) s 8. It 
can easily be determined with the help of Lemma I that there are 49 possibilities for 
(c’(ti, ). t+rt )) In each case it can be shown that N(a,) 2 4 from which it follows that 
f(n)3 A(n)-+4 

Certain cases such as (5.2 ) are casv to dispense with. In this case there will be no _ 

carries in al + ar where a, and uk are in their binary representation. Thus, 
A (a,) = A (a, ) which means that there is a small step between a, and a,. In other 
words /f&z, ) a N(a, 1-t PI By Theorem C, N(a,) 2 3 which implies N(a,) 2 4. 

Case (6.5) is a littlc more complex but not difficult. If there is to be a chance that 
N(a,)=3, then it must follow that A(a,)= A(a,)+ 1 and A(aj,PA(adg If Ala,)= 

~(a~), for instance, then there would be a small step between at and aI, and by 

Theorem C this would imply N(a,)* 4. Bv Lemma 3 it can be assumed that if 
A (a, ) = A (a& ) + tn for some m * I then Zn& 3 Q,. Otherwise N(aj) 2 N(& ) + 1 2 

4. Ats(). by Lemma 1 there are four carries in the binary addition of Q, + a&. With 
these restrictions placed ijn a, and uk there are two ways of obtaining 4~~ in the right 
form, These are: 

(1) a, = i i_imm-- (2) a, = MT-- 
+ ak = 1 I 1 MM)-- +-& = ill-- 

a, = ll)lCI lmb- U‘ = lOlO&-. 

The arrows above the configurations indicate carries. If a, = aA, + a, bar some 
ere am # al, and if uk < urn < 0,. then it can be seen that there will be at 

least one small step between a k and r;s,. By Theorem C. N(ai ) * 3 which implies 
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(N(~J,);s& Itf Q, c ak, then A(a,) = h(ar;) sinclz 2a, 2 a,. This impks N(a&)a 
/V(d~,)+l Also, N(a,)a3 since if N(a,)S2 t’rrm l=a&a6... canSa, 
We be an addition chail for ai with less than three small steps, contradicting the 
fact that M(a, j 3 3 by Theorem C. T~JUS, N(ak ) 2 4. If there is to bc: a chance that 
,Y(u,) == 3, it ~USX follow that a, = Q~ + at for s(?me c s k < j Since the number af 

carries e = 4 in a, + ak, there is one more l/l slot in configuration (I) and no more in 
configurdon (2). In either case, when uI, is subtracted from a, to obtain a it 

follows by Lemma 2 that ~(a,) a 5. Also, A@,) = A (at ), and a, # ak. Thetefme, 

N(cik j 3 N(a,) + 1 * 4. In any event N(n) * N(ai) 34. 
Ccrtarjn of the other cases for (~(a,), ~(a~)) are easier than (6. 5) to analyze and 

others are a bit more tedious. The more tedious cases are this way e!;sentially since 
they involve more possibilities when they are broken down. They are analyzed, 
however, in the same manner. In light of the relation it has to what comes later, part 
of case (4, 3) will be discussed. 

One of the ways of obtaining a, in the right form in (4. 3) is with the following 
configuration: 

a, = J()J-~-J J--&--()()--m--() 

+ ak = 1 l--m--l 

a, = lOl--?tt--If--k--lf--m--l (m 3 1, k 93). 

It can be seen that A(q)= A(&)+ m + k + !i while a, )2m*L%~ + ?‘*L*3aks By 
Lemma 4, h’(a, j 2 N(ak ) + 1 unless a, = 2m+c+4ak + 1. This impltes that Yor, +’ divides 
a:. but 2m*k*’ is the highest power of two that divides a,. Thus. N(a, j 2 N(a,, j + 1. It 
is easy to show that if ~(a~) 2 3 then N(u~ )a 2 (see 131). It follows that 
N(s,j* ,~(a?)+ 124. 

3. The equution 1(2nj = f(n) 

Proposition A gives a lower bound for J( it j by showing that I (n j a J3 (n j + 4. The 
following consideiattions will show that A (n ) + 4 is also an upper bound for I(n j. 

If v(n)\ = 7 agd li = 161.-m--11--k--11--m--l (m a 1, k 33). then II can be 
represented in powers of two as: 

The following is an a&Won chain for n with four small steps: 

j-his result combined with Proposition A proves that if v(n) = 7 and PI = 101--m -- 
1 ~--&--I l-.fn . . ..I (m 2~ 1, k 3 31, then I(n) = h(n)+ 4. 
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It can be seen that 2n will have the same’binary representation as n except that 
there will be an additional zero at the right end of the binary form of 2n. In other 
words rc(2n)= 7 and Zn = lOl--m--l L-k-4 l--m--10 where m 2 1 and k a 3. By 
Theorem C, J(b) 2 A(2n) + 3. On the other hand 

1 b 2,2’, l * “)* ** + . . 2” 1 ~-+f+ 1,2”+‘~2”4’+2,2”*“+2”4’+2+ .q .- .C 
1, 

2(2 m +1) +~"'"t2+ 1)....,2m*44'(Z'"+4+2"C*+2+ 1). 

2 -cl"(fm*J+2~*~+2tl)+2M4)+L=.~f2=2n 

is an addition chain for Zn with three small steps. Thus, 42n) = ~(2~2) + 3. 
Consequently . 

1(2n)-~(2n)+3=(A(n)+l)+3=h(n)+J= t(n). 

Since for each m 3 I there are an infinite number of k 3 3, this establishes that 
there are infinitclv many infinite classes of integers for which 1(2n) = l(n). This will 
be stated fotmaily as a theorem. 

Theorem a. For each m 3 1, lhe sat af irWgers ~ifh u(n) = 7 ad n of the binary 
form n = IUi--m-41-4-4 l--m--l (where k 2 3 j is on infinite class of integers for 
which I(h) = I(n ). 

The first integer for which Theorem I applies is SSl7 which has the binary 
representation f~!~31l(WW)llOl. A(SSl7) = 12. and 5217 is the only integer in the 
half-open interval [- , - V’ j”) to which the theuxem applies. There is one integer n for 
which A(n) = I3 to which Theorem I applies. There are two integers each for which 
A(n) = Id and A (n ) = IS to which Theorem 1 applies, and in general there are 
m - 5 integers each for A fn ) = ha and A(n) = 2m + I to which Theorem I applies. 

The letter x will now replace n. If A(x) = 2m (m 2 6), Theorem 1 gives 

2(1-f 2 + J+ . . . + (m - 6))+ (m - 5) = (m - S)* integers in the interval [l, 2*“+‘) for 
which I(2n) = I(n). if A(x) = 201 + I (m 26), then Theorem I gives 
2(1+2+3-k.+(m - 5)) = (m - 5)(m - 4) integers in the interval [ !,12mt2) for 
which 1(2n) = I(n ). In either event it can be easily shown that there are at least 
fJ(A(x)- Il))(i(A(x)--9)) integers (A(x)2 12) in the interval [1.2”“‘+‘) for which 
1(&a) = I(n). Thu!;, h(2 """')a(!(A(x) - 1 l))(f(A(x)- 9)). 

The following krwer hound for h (2x) can now be developed. 

If x is replaced by ix, the following inequality ensues: 

h(x)a(:(A(s)- lZ)#(A(x)- IO)). 

This inequality witI still hdd if A (x) is rx?taced hy @;I X - 1, since h(X) > 
log, x - I. If this is done. it follows that h(x) * (log2 X)‘. 



It is highly probable that this result can be improved. It is concei\&abie that 
h(x) * (iogz .r)” for arbitrarily large II. It might also be asked if 

0 

This seems to be a difficult question. The density in the positive integers of all 
positive integers with exactly seven ones in their binary representation is 

In particular the integers of Theorem I have zero density in the set of positive 
in:qc’r$. An area where it seems that improvements can be made without too much 
difficujty is in lower bounds for h(x). From Knuth’s computer calculations, 
Theorem 1 of this paper and [ 15, Theorem 21, it follows tha; h(10001K)) 18 51 and 
hiI MK~j 2 65. More theoretical work and improved computer programs should 
raise t hcse bounds considerably. 

An investigation into these questions might begin by liwrking at the nature of the 
binary representation of the integers for which 1(2n) = I(n). A method for forming 
minimal or near minimal addition chains for an integer n w&s disussed briefly in 
[ 161. An integer n is written in its binary representation, and certain parts af it are 
underlined. The underlined parts are called critical numbers cl. cI, c1 etc. The 
method consists of finding a minimal chain for ct which includes c?, C~ etc. and then 
doubling cr the appropriate number of times and adding in c2, then doubling this 
result the appropriate number of times and adding in c* etc. until n is reached. As 
mentioned earlier, doubling an integer in its binary representation merely shifts all 
digits one place to the left and adds in a zero at the right end of the number. In 
Proposition A+ n has the binary form n = lOI--m--l I--k--ll--tn--1. As undttrlined, 
cI = IN--m--II and cz = 1 I--nr-4. The same technique that &as used in the case 
considered in (4 3) of Proposition A can be used here to show that a minimrll chain 
for cr which contains cr has three small steps, The chain to n is finished by dcjubiinp 
c? a total of 115 $- k f 3 times and then adding in cz which gives the fourth srnalll step. 
2% one considers 2n the underlining is as follows: 261 = 101--m--l l--k--i I--~-10. ---- -_u 
As has been shown. a minimal chain to cI = fOl--m--l1 which contains 2~7 1 l--m- 
-If) has only two small steps. Thus, the chain for 2rr, though it will have ant: more 
doubiing.W will have one less small step; hence, as has been proved for integers with 
this binary form, 1(2n) = l(n). A ‘sear& for more integers for which 1(h) = I(n) 
might well begin by trying to Ifind pairs (c,, cr) of integers for which a minimal chain, 
to ct inctnrding cfr requires one more step than one including 2~~. Some such pairs, 
are (23,7)+ (37, TV), (6% 7), (35,l I), 1(69,21) and (67,21). The pair (23,7) \ead!l’ to an 
infinite cktss t>f integers for which l(h) = l(n) as was proved in [ 15, Theorem 21. It 

is highk probable that each of the other pairs &so leads to an infinite ctass of 
integer; for which 1(2n) = I(n). 
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4. The Scholz-Brauer conjecture 

f’erhaps the most famous of the unsolved problems concerning addition chains is 

the Scholz-Brauer conjecture which states that 42” - 1)~ n + I(m)-- I. Knuth’s 

computer calculations have established that 42” - 1) = n + f(n) - 1 for n = 1 to 14. 
It will nuw be shown that equality hold:; for the additional values n = 15, 16, 17, 18, 

30. 24 and 32. Of these cases n = 15 is the most difficult to establish and will be 
saved for last. 

In each case 2” - 1 = 4, + ~4 fm some k < j. It is not possible that k = ,i since 
i jn - 1 is odd and therefore is not equal to Za,. This last step in an addition chain to 

2” - I must he a small step since 2” - 1 consists of all ones in its binary 

representation and. hence. there can be no carries in a, + a4 where aj and ar, are 
represented in their binary forms. If there were any carries. there would have to be 
at least one zero in the sum. Since there are no carries in a, + a,,, this means that 

A(? - 1) = A (a, ). Consequently. JV(2” - 1) 2 N(a,)+ 1. Also, the fact that there 

are no carries in u, + ur implies that ~(2” - 1) = I+ ) + v(uk ) by Lemma 1. 
In the case n = lb at least one of a, or a4 must have at least five ones in its binary 

representation since ~(2’~ - 1) = 16. In either event this means by Theorem C that 
N(Q, ) -3 3 which implies X(2’” - 1) 2 4. Thus, 1(2’” - 1) > h (2’” - 1) + 4 = 115 + 4 = 
I6 + I( 16) - 1. To get an upper bound for /(2’“- 1) it needs first of al1 to be 
mentioned that a star chain is an addition chain where for each i 2 1. u, = a,_ 1 + uk 

for some k 6 i - I. The minimal length of a star ‘chain for an integer n is denoted by 

I*(n). Brauer 121 proved that the Scholz-Brauer conjecture is true if f*(n) = f(n). 

and Knuth ha3found that the first integer for which I’(n) r I(n) is 12509. Thus, the 

Scholr-Brauer conjecture holds true for the first 12508 positive integers. In 

particular it holds true for n = I6 from which it can be concluded that 1(2’” - I) = 

I6 + 1(M)-- 1. 

For n = I?, 18, 20, 24 and 32 it can easily be shown that i(n) = 5. In the step 

2* - 1 = a, + aa at least one of a, or a4 has nine or more ones in its binary 

representation. In either event it can be concluded by [15, Theoren:. I] that 

N(a, )*4, which means that JV(2” - I) 2 5. Thus, in each of these five cases 

l(? - I)3 A(2” - l)+ 5 = n c l(n)- I. On the other hand the Schulz-Brauer 

conjecture holds for each of these integers, and so it follows that j(2” - 1) =: 

n + I(n)- 1. 

Case n = 15 will now be considered. Since I(1 5) = 5. it is necessary to show that 

N(2” - 1) 3 5. As in the other casts N(2” - 1) :z N(u!j + 1. If either Q, or ~4 has 

nine or more ones in its binary repres: ntation, then N(u, I* 4 by [ 1% Theorem f I- 

which implies N(2” - I) 2 5. It is possible, howevxx, that (v(u, ), k*(ak ‘t) is either 

(8,~) or (7,~). It must be shown in both of these cases that N(a, Ia 4. Propositions 

I-4 of [ 1st will simplify this task and will be cited as needed. 

It is clear fr%>m Theorem C that N(u, j 2 3 and N(& ) 3 3. If A (0,) z hb 1-t VI 

for SOme m gs c), then N(Q! ) 3 N(a4 ]r + 1 2 4 by Lemma 3 unless 2% ‘2: Q,. There- 

fore it will be assumed that 2m~k 2 Q,. Also if A (a,) = h (ak ) + 1, it will be assumed 
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for the same reasons as in case (6,5) of Proposition A that coi = QL + Q, for !!;orne 
f s k < j. Otherwise, N(cP,) 2 4. With these restrictions kept in mind four way, of 
starting the configuration tlj/uk will be listed and analyzed. 

4 

(11 Uj = fQl-- 63 a, = lo& 

+ Uk = lo-- +&3a = ll-- 
2 1s -1 = lll- 2’S_ l = ill__ 

a* = 1 IO-- (4) a, = 1.1 l-- 
J- Uk = 1 -.. + & = 

I 2 13 -1 = 11 l... 2 15 -1 = ill--. 

In each of the configurations the remaining twelve slots will be either l/O or O/l 
slots. The reason for this is that there are no carries in a, + ui, and 2’” - I consists of 
fifteen ones in its binary representation. Case (8,7) will be considered first. 

In (1 I) it can be assumed that a, = at + uE for some t s k < j. If Q& is subtracted 
from a, to obtain u,, then ~(a,) = 8 by Lemma 2. Also, it can be observed that 
A = A(a). Further, since P(Uj) = 8 and v(&) =: 7, it follows that u, # &ak. which 
means that uc and uI are two distinct members of the chain. Thus, hr(u&) 3 
B&J,) * 1 3 4 which impfiefs N(4) 2 4. 

In (2). N(ut ) 2 4 by [ 15, propositions 1 and 31 unless ur. = 11001--l 11 I--. As in (1) 
it can be assumed that a, = ~1~ + u, for some t s k <: j. Configuration (2) can now be 
developed further. and it will be looked at from a subtraction point of view. 

4 = 1013.0--oooo- 
- ui, = 110014 11 l-- 

at = 110-400 l--. 

By Lemma 2, v(u,) = 8, and by [ lS, Proposition 4). N(a,) 2 4 unless u, = 1 l-J-- 
t t-4 l--e--l 1-- where (d and e indicate the number of zeros between ones and c = d 
t>r Y = d -- 1. Also, .&hf(&) 2 A~(u#- 1 3 4 by Lemma 3 unless 2u, 3~ a&. The only 
WV to meet all of these requirements is with the following configuration: 4 

U? = 1c#)llQlloolll 
-ur = 111ocir1001111~~ 

ca,= 1lOllMKIOllll. 

Again by the same reasoning as used in case (6,s) of Proposition A, N(rrc ) ~1: 4 
unless ur = ur + u, for some s s t < k. if uI is subtracted from tik to obtain uS, it clan 
be seen that ~(a,) := 8, A(ar,) = A (a,) and uk # Us. Thus, A&,) a N(cl,) + 1 z+ 4 which 
implies A&q ) 2 4, 

In (3) it can be assumed that 2%~~ 2 Q,, which means that uk = 1 I--. As in (.Z), 
N(a& ) 23 4 unless i.zk = !! pool--1 I1 I--. The only way to meet both of these requirme- 
mcnts is with the following configuration: 
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a, = 11oomoooo1111 

+ah = 1100111110000 
2” - 1 = 1111111111111l1. 

III this case N(q) 3 4 by (15. Proposition 41. 
In (4). A(a)) = A (ak ) + m for some ?tt 30. As has been mentioned it can be 

assumed that 2% Z= a,. This means a& = 1 1 l--, and by [ 15, Proposition 11, 

JV(a& ) 2 4 which implies N(a,) 2 4. 
Since N(u, ) 2 4 in all four cases, it follows that N(2” - 1) 3 5 in (8,7). In case 

(7.8) configurations (1) and (4) can be dispensed with in essentially the same 
manner as in (8.7). The other two configurations will be considered. 

In (2) it can be assumed as before that u, = ak + Q, for some I s k < j. When ak is 
subtracted from a, to obtain a,, then A (& ) = A (a,) + m for some r‘bt 2 0. By Lemma 
2, &@(a,) = 7, and by Lemma 3, N(& ) 2 N(a,) + 1 a 4 unless 2”a, 2 ak. If this is the 
case, then Q, = 1 I--. and by Propositions 1 and 3, A&z,) 24 unless CL, = 
1 lMH--11 f l--. The configuration aFlak must then be as follows; 

a, = 1001 lOOl-- 
-at = I NM1 16 

Q, = 1100l---. 

In order that ?a, a at, it follows that uI = 1100111110000. But it is impossible to 
obtain Q, in this form since a one will appear in Q, at the extreme right of a,/& 
regardless of Ahether there is a l/O slot or a O/l slot in this place. Thus. N(q) 2 4 in 
any event . 

In (3) Gncc &+.I: ) = 7 and a, = 1 IO--, tt can he assumed that a, = 11001--l 11 l--. 
Also. it c~rr be assumed that 2’~~ 2 q, which means that ak = 1 I--. Since v(ak) = 8, 

N(a, ) 3 4 by Propositions 2 and 4 unless a4 = 1 l--d--l l--l l--e--l l-- where e = d or 
e=d--1.1f2”ak z a,, then d 6 2. With these restrictions there are two possibilities 
for a,/~, : 

@a) sr, = 110010011110000 Vb) a, = 11001o1111 

+a, = 110I101111 + ak = 11011’1D11OOW 
?I’_ ) b = 111111111111111 2 Iq -1 = 111111111111111. 

In both cases A(q)== A(a,)+t whife u, XG;, .i a&. By Lemma 4, N(a,)a 
N(cll, ) + 1 a 4 unless CN, = Ztr, + ,. This is impossible in (3b) since a, is odd. In (3a). 
A(&&= A(a&+ 1. and v(LJ~.~ ) = 7. Rv the same reasoning as used before, it can _ 

be assumed that ah,, = ul, + (I, for some I S k < k + 1. Since a, = 2ak+19 the binary 
form of Q,, +, is the same as that of Q: except that all the digits arc shifted to the right 
one place. Configuration a,. ,/dzk is as follows: 

@&.I= 11001001111000 
- U& = 91011001111 

a, =: 101110s 101001. 
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As can be seen N(ak) 3 N(a,) + 13 4. ?‘~us, N(u,) * 4. 
In all pssibjlities N(q) 24, which implies N(2’” - 1) 2 5. It can be concluded 

that 142’% - 1) 3 A (2” - I)+ 5 = 15 + 1(1$)- 1. Since the Scholz-Brauer conjecture 

holds for n = 15, it follows that 1(2” - 1) = 15 + 1(H) - 1. This now gives the 

following theorem. 

It seems too bold to conjecture that equality holds for all positive integers n.. This 
question. of course, is at least as difficult as establishing the Scholz4Iauer 
conjecture itself. It even may be somewhat difficult to find further values of n for 
which equalit) can be shown to hold. 

Recently, Schiinhage [ 111 has proved the fine result that !@)a 
log: n + log2 V(n) - 2.13. Th is improves the result of Cottrell 13) that I(n)* 
log: n + logI v(n) - I and comes close to establishing the validity of a conjecture by 
Stolarsky [ 121 that v(n) s 2’(“)-? Unfortunately, it does not appear that 

Schiinhage’s result will shorten this paper. Even if v(n) 6 2’(n)--r@‘). it need!< to be 
shown that v(n) sz 2’(rb-A’a)-’ for the integers for which 1(2n) = l(n). A slightly 
G& &cr f....-- v1 Btl, ;;? %&rskp’~ conjecture is that f(n) 2 log2 R + log2 v(n) - 1. If this is 
WC then :,t is not hard to show that there art;: infinite classes ok integers m for which 
16:” - lI= n + I(n)- 1. For instance, this equality would be satisfied by those 
intcsxs n with one or twc;, ones in their binary representation. . . 
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