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An addition chain for a positive integer n is a set 1 = a,<<a, < ... < a, = n of integers such
that for each i > 1. a, = g, + a, for some k < j < i The smallest length r for which an addition
chain for n exists is denoted by I(n). This paper introduces the function i (x) which denotes the
number of integers n less than or equal to x for which {(2n)= I(n) and proves that
h(x)>(log. x)* A necessary theorem for establishing this result is that there exist infinitely many
infinite classes of integers for which /(2n) = I(n). The proof of this theorem is outlined. Also. this
paper establishes seven new cases for which (2" ~ 1) = n + I(n) - 1. These are cases n = 15, 16,
17, 18, 20, 24 and 32.

1. Introduction

The study of how to raise x up to x" most efficiently gives rise to the concept .of
the addition chain which for a positive integer nisaset 1 =a,<a;<...<a,=n
of integers such that foreachi =1, a, = a, + a, forsome k <j <i. As x is raised up
to x" the exponenis on the various powers of x form an addition chain. The
minimal length r for which an addition chain for n exists is denoted by I(n). This
paper will investigate the equalities /(2n) = I(n) and I(2" — 1) = n .- I(n)— 1 which
are found to hold for certain values of n.

It was considered a remarkable fact when computer calculations revealed that
1(382) = 1(191) = 11. It seems efficient to construct an addition chain for 2n by first
constructing an addition chain for n and then adding n to itself to obtain 2n. In fact,
Utz [17] asks if it is not true that I(n)<I(2n) for all n=1. The computer
calculations of Knuth reveal 39 integers ranging from 191 to 8971 for which
1(2n) = I(n). In [15] it is proved that there is an infinite class of integers for which
1(2n) = I{n). Specifically, if n=2"(23)+7 where m =5, then [(2n)=I(n)=
m + 8. If h(x) denotes the number of integers n less than or equal to x for which
1(2n) = I(n), then this result implies that h(x) = log: x ~ 10 from which it follows
that h(x)> log,x. This paper will extend these results and show thar there are
infinitely many infini:e classes of integers n for which I(2n) = I(n) from which it
will follow that h(x)> (log: x)’.

Let A(n)=[log.x]. and let v(n) dencte the number of ones in the binary
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representation of n. Foreach i = 1, itis cleacthat a, < 2a;.,. If A(a) = A(a, 1), step
i is called a small step while if A(a.)= " (a, )+ 1 then step i is called a big step.
These are the only possible relations between A(a,) and A(a, ). and as Knuth [9]
points out the length r of an addition chain for n is A(n) plus the number of small
steps in the chain. If N(a;) denotes the number of small steps in the chain up to a,
then r = A(n)+ N(n).

2. Proposition A

Four lemmas from [15] and Knuth’s Theorem C in [9] will be referred to on a
number of occasions. They are listed here for convenience. The first twe lemmas
conczrn integers written in their binary representation.

Lemma . If a, = a, + a. and if ¢ represents the nuraber of carries in a, + a., then
v(a)= v(a)+ v(a)-c

Before the rext lemma is listed it needs to be menticned that if a. and a, are
written in binary notation and a; is placed above a. in order to add or subtract, the
resultant figure is called a configuration and is designated by q,/a.. If for a given
power of two a 1 appears in a, over a () in a., this is called a 1/0 slot. If a 1 appears
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temma 2. Ifa. = a, — a. and there are s 1/1 slots in a,/a. and ¢ one appears in a,
exactly p times under either a 1/1 slot or a 0/0 slot, then v(a,) = v(a;,)—s + p.

Lemma 3. If a, and a. are two members of an addition chain and if A(a,)=
Ala.)+m (m =0) and 2™a. < a,, then N(a,)= N(a.)+ 1.

Lemma 4. If a, and a. are two members of an addition chain and if A(a)=
Aa)+m (m=2) and a,>2" 'a. + 2" a., then N(a,)= N(a, )+ | unless a, =
2""0;‘ .ls

Theoremn C. Ifuv(n)y=4, theni(n)= A'n)+ 3 except when v(n) = 4 and n has one
of the four following binary forms:
(A) n =1--d--1--1--d--1-- where d irdicates the number of zervs between the first
and second one and between the third :nd fourth one.
(B) n =1--d--l--1--e--1-- where d and e again indicate zerns and e = d — 1.
(C) n =1001--11-- where the dashes indicate zeros.
(D) »r = 10000111-- where the dashes indicate zeros.
In these four cases I[(n) = A(n)+ 2.

It must be shown that there are infinitely many infinite classes of integers for
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which I(2n)=I(n). This requires a tedious proposition whose proof will be
outlined rather than done step by step. A more meticulous treatment of the
methods involved can be found in [15).

Proposition A. If v(n) =7 and n has the binary representation n = 101--m--11--k -
-11--m--1 where m and k indicate the number of zeros between ones and m =1 and
k =3 then I(n)=A(n)+ 4.

In other words in any addition chain for an integer with these binary characteristics
there will be at least four small steps.

Proof (Outline). Let 1=a,<a,< ... <a,=n be an addition chain for n
where v(n)=7and n = 101--m--11--k--11--m--1 (m =1, k = 3). By [15, Theorem
1] it can be assumed that all members of the chain have eight or less ones in their
binary representation. If this were not the case and a certain member of the chain
had more than eight ones in its binary representation, then by Theorem 1 there
would be four small steps in the chain to this point and, hence, at least four small
steps on the way to n. Let a. denote the first member of the chain for which
r(a,)=7 and a, = 101--m--11--k--11--m--1 (m =1, k = 3). It is quite possible that
a, is different from n since the vaiues of m and k could be different from those for
n. Now a, = a + a. for some k <j <. In fact, k <j since a, is odd and cannot be
2a,. Thus, a. and a. are distinct members of the chain, and 1 < v(a;), v(a.)<8. It
can casily be determined with the help of Lemma 1 that there are 49 possibilities for
(¢#(a,). ¥(a.)) In each case it can be shown that N(a,) = 4 from which it follows that
I(n)=A(n)+4.

Certain cases such as (§, 2) are easy to dispense with. In this case there will be no
carries in a, + a. where a, and a. are in their binary representation. Thus,
A(a,) = A(a,) which means that there is a small step between a; and a,. In other
words N(a,) = N(a,)+ 1. By Theorem C, N(a,)=3 which implies N(a,)=4.

Case (6. §) is a little more complex but not difficult. If there is to be a chance that
N(a,) = 3, then it must follow that A(a,)= A(a,)+1 and A(a;))>A(a:). If A(a)=
A(a.), for instance, then there would be a small step between a. and a, and by
Theorem C this would imply N(a,)=4. By Lemma 3 it can be assumed that if
A{a,)= A(a,)+ m for some m =1 then 27a, = a, Otherwisec N(a,)=N(a.)+1=
4. Also. by Lemma 1 there are four carries in the binary addition of a, + a.. With
these restrictions placed on a, and a. there are two ways of obtaining a, in the right
form. These are:

(1) a, = 11100000-- 2) a = 1101--
+a = 1111000-- tac= 111--
a. = 101011000-- a. = 10100--,

The arrows above the configurations indicate carries. If a, = a. +a, for some
s < m < j where a.. # a. and if a, < a. < a. then it can be seen that there will be at
least one small step between a. and i, By Theorem C. N(a:)= 3 which implies
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N(a)=4. If a. <a. then A(a.)= A(a:) since 2a, = a, This implies N(a.)=
N(a.)+1 Also, N(a.)=3 since if N(a,)<2 then 1=a<a;<...<a.<aq
would be an addition chain for a, with less than three small steps. contradicting the
fact that N(a,) =3 by Theorem C. Thus, N(ai) = 4. If there is to be a chance that
N(a,) = 3. it must follow that a, = a, + a, for some t < k <j Since the number of
carries ¢ = 4in a, + a., there is one more 1/1 slot in configuration (1) and no more in
configuration (2). In either case, when a. is subtracted from a, 10 obtain a, it
follows by Lemma 2 that v(a,)=S5. Also, A(a) = A(a:). and a.# a.. Therefore,
N(a.)= N(a,)+1=4. In any event N(n)=N(a)=4.

Certain of the other cases for (v(a,), v(a.)) are easier than (6, S) to analyze and
others are a bit more tedious. The more tedious cases are this way essentially since
they involve more possibilitics when they are broken down. They are analyzed.
however, in the same manner. In light of the relation it has to what comes later, part
of case (4, 3) will be discussed.

One of the ways of obtaining q, in the right form in (4. 3) is with the following
configuration:

a, = 101--m--11--k --00--m--0

+a = 11--m--1
a = 101--m--1i--k--11--m--1 (m=1k=3)
1i can be seen that A(g;)=A(a. )+ m+k +5 while a, >2™****a, +2™**"'a,. By
Lemmad, N(a,)> N(a.)+ 1 unless a; = 2™****a,.,. This imples that 2™**** divides
a. but 27°*** is the highest power of two that divides a,. Thus, N(a,) =2 N(a.)+ 1. It

is easy to show that if v(a.)=3 then N(a.)=2 (see [9]). It follows that
N(@a)=N(a)+1=4.

3. The equation I(2n) = I(n)

Propositicn A gives a lower bound for /(n) by showing that I{(n) =1 (n)+ 4. The
following considesations will show that A(n) + 4 is also an upper bound for I(n).

If v(n)=7 and n = 101--m--11--k--11--m--1 (m =1, k =3), then n can be
represented in powers of two as:

n = 22m*t47+ 22»:»&»*+2mvk04_§ 2m»t¢.\+2m42+2m4l+ l

The following is an addition chain for n with four small steps:

12,27, 27 2m g 2m 2m e T 2 2 2 M 4 2
2.,.4+2m42+ 2_!_ 1’2(2m9l+2m~2+2+ 1) 'jrjnhd(')m¢4+ ‘)m02+ ')+ l)
..... - - e e y

22ETRm L 2m I 24 ) 42" 42" =

This result combined with Proposition A proves that if »(n)=7 and n = 101--m--
H--k--11--in--1 (m 22 1, k = 3), then {(n)= A(n)+4.
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It can be seen that 2n will have the same binary representation as n except that
there will be an additional zero at the right end of the binary form of 2n. In other
words »(in) =7 and 2n = 101--m--11--k--11--m--10 where m =1 and k =3. By
Theorem C, /(2n)= A(2n)+ 3. On the other hand

R N TRt I e AR I e R AR P R
2(2m04+2m‘2+2+ l)....,Z"'"‘“(Z"’“*-2""2+2+ l).

MR 224 )4 27N ™ 4 2= 0

is an addition chain for 2n with threc small steps. Thus, I(2n)= A(2n)+3.
Consequently,

IQny=A@n)+3=(A(n)+ 1)+ 3= A(n)+ 4= I(n).

Since for each m =1 there are an infinite number of k = 3, this establishes that
there are infinitelv many infinite classes of integers for which /(2n) = I(n). This will
be stated formally as a theorem.

Theorem 1. For each m = 1, the set of integers with v(n)= 7 and n of the binary
form n = 101--m--11--k--11--m--1 (where k = 3) is an infinite class of integers for
which {(2n) = l(n).

The first integer for which Theorem 1 applies is 5517 which has the binary
representation 1013110001101, A(5517) = 12, and 5517 is the only integer in the
half-open interval [2%, 2'") to which the theorem applies. There is one integer n for
which A(n) = 13 to which Thecrem | applies. There are two integers each for which
A(n)= 14 and A(n) =15 to which Theorem 1 applies, and in general there are
m - 5 integers each for A(n) = 2m and A(n) = 2m + 1 to which Theorem 1 applies.
The letter x will now replace n. If A(x)=2m (m =6), Theorem 1 gives
21+ 243+ ... +(m—6))+(m - 5)=(m - 5) integers in the interval [1,2"""") for
which 2n)=1I(n). If A(x)=2m+1 (m =6), then Theorem 1 gives
21+2+3+...+(m ~5)=(m-5)m - 4) integers in the interval [},.2°"") for
which [(2n) = {(n). In either event it can be easily shown that there are at least
(A (x) = TDXH(A(x) - 9)) integers (A(x) = 12) in the interval [1.2*") for which
[(2n) = I(n). Thus, A" = (HA(x) - TDHXHA(x)—9)).

The following lower bound for h(2x) can now be developed.

h(2x) = Q¥ )= h(2' )= GA ) - DA x) =9
If x is replaced by ! x. the following inequality ensues:
h(x)=(CA) - 12D A(x) - 10)).

This inequality will still hold if A(x) is replaced by log:x — 1, since A(x)>
log: x — 1. If this is done, it follows that h(x)3> (log: x).
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It is highly probable that this result can be improved. It is conceivable that
h(x) > (log: x)" for arbitrarily large n. It might also be asked if

hminf h(x)/x > 0.

XX

This seems to be a difficult question. The density in the positive integers of all
positive integers with exactly seven ones in their binary representation is

wm(7)/ 7 =0

In particular the integers of Theorem 1 have zero density in the set of positive
integers. An area where it seems that improvements can be made without too much
difficulty is in lower bounds for h(x). From Knuth’s computer calculations,
Theorem 1 of this paper and [15, Theorem 2], it follows tha: h(100000):= 51 and
h (1 000000) = 65. More theoretical work and improved computer programs should
raise these bounds considerably.

An investigation into these questions might begin by looking at the nature of the
binary representation of the integers for which I(2n) = I(n). A method for forming
minimal or near minimal addition chains for an integer n was discussed triefly in
{16]. An integer n is written in its binary representation, and certain parts of it are
underlined. The underlined parts are called critical numbers ¢,. ¢;, ¢\ ctc. The
mecthod consists of finding a minimal chain for ¢, which includes c¢., ¢ etc. and then
dcubling ¢, the appropriate number of times and adding in c., then doubling this
result the appropriate number of times and adding in ¢, etc. until n is reached. As
mentioned earlier, doubling an integer in its binary representation merely shifts all
digits one place to the left and adds in a zero at the right end of the number. In
Proposition A, n has the binary form n = 101--m--i1--k--11--m--1. As underlined,
¢, = 101--m--11 and c; = 11--m--1. The same technique that was used in the case
considered in (4, 3) of Proposition A can be used here to show that a minimal chain
for ¢, which contains c: has three small steps. The chain to n is finished by doubling
c: atotal of m + k + 3 times and then adding in ¢, which gives the fourth small step.
If one considers 2n the underlining is as follows: 22 = 101--m--11--k--11--m--10.
As has been shown. a minimal chain to ¢, = 101--m--11 which contains 2¢, = 11--m-
-10 has only two small steps. Thus, the chain for 2n, though it wili have onc more
doubling. will have one less small step; hence, as has been proved for integers with
this binary form, !(2n)= l(n). A searcl for more integers for which I(2n) = [(n)
might well begin by trying to find pairs (c,, ¢:) of integers for which a minimal chain
to ¢, including ¢, requires one more step than one including 2¢.. Some such pairs
are (23,7}, (37,7), (69,7), (35, 11), (69, 21) and (67, 21). The pair (23,7) lead: to an
infinite class of integers for which [(2n) = I(n) as was proved in {15, Theorem 2]. It
is highly probable that each of the other pairs also leads to an infinite class of
integers for which I(2n) = I(n).
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4. The Scholz-Brauer conjecture

Perhaps the most famous of the unsolved problems concerning addition chains is
the Scholz-Brauer conjecture which states that [(2" — 1)< n + I(n)- 1. Knuth’s
computer calculations have established that [(2" -~ 1)=n + {(n)-1forn = 1to 14.
It will now be shown that equality holds for the additional values n = 15, 16, 17, 18,
20. 24 and 32. Of these cases n = 15 is the most difficult to establish and will b
saved for last. '

In each case 2" - 1 = @, + a. for some k < j. It is not possible that k = j since
2" - 1 is odd and therefore is not equal to 2a,. This last step in an addition chain to
2" -1 must be a small step since 2" —1 consists of all ones in its binary
representation and, hence, there can be no carries in a, + a. where a; and a, are
represented in their binary forms. If there were any carries, there would have to be
at least one zero in the sum. Since there are no carries in g, + a., this means that
AQ2" - 1) = A(a)). Consequently, N(2" - 1)= N(a,)+ 1. Also, the fact that there
are no carries in a, + a. implies that »(2" - 1)= v(a;) + v(a.) by Lemma 1.

In the case n = 16 at least one of g, or a. must have at least five ones in its binary
representation since »(2'* - 1) = 16. In either event this means by Theorem C that
N(a,) =3 which impliecs N(2" - 1)=4. Thus, I2"-1)=A2"-1)+4=15+4=
16+ I(16) - 1. To get an upper bound for I{2'-1) it needs first of all to be
mentioned that a star chain is an addition chain where foreach i = 1. a, = a,., + a.
for some k < i — 1. The minimal length of a star chain for an integer n is denoted by
[*(n). Brauer |2] proved that the Scholz-Brauer conjecture is true if I*(n) = I(n),
and Knuth has found that the first integer for which [*(n) > I(n) is 12509. Thus, the
Scholz-Brauer conjecture holds true for the first 12508 positive integers. In
particular it holds true for n = 16 from which it can be concluded that (2" - 1) =
16+ 1(16)— 1.

For n = 17, 18, 20, 24 and 32 it can easily be shown that [(n) =5. In the step
2*~1=a, +a at least one of a, or a. has nine or more ones in us binary
representation. In either event it can be concluded by [IS, Theoren: 1] that
N(a,)=4, which means that N(2" - 1)=S5. Thus, in each of these five cases
I2"-1)=A@" -1)+S=n+I(n)-1. On the other hand the Scholz-Brauer
conjecture holds for each of these integers, and so it follows that {(2" - 1) =
n+ln)-1

Case n = 15 will now be considered. Since [(15) =5, it is necessary to show that
N(2"-1)=5. As in the other cases N(2'* = 1):= N(a,) + 1. If either a, or a. has
nine or more ones in its binary repres: ntation, then N(a,) =4 by [15, Theorem 1},
which implies N(2'*— 1)=5. It is possible, however, that (v(a,), v(a}) is either
(8,7) or (7. 8). It must be shown in both of these cases that N(a,)=4. Propositions
1-4 of [15] will simplify this task and will be cited as needed.

It is clear from Theorem C that N(a,)=3 and N(a.)=3. If A(a)=Ala)+m
for some m =0, then N(¢,)= N(a,)+1=4 by Lemma 3 unless 2"a. > a,. There-
fore it will be assumed that 2™a, = a,. Also if A(a,) = Ala.)+ 1, it will be assumed
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for the same reasons as in case (6, 5) of Proposition A that g, = a. + a, for some
t < k <j. Otherwise, N(a,) = 4. With these restrictions kept in mind four ways of
starting the configuration a;/a. will be listed and analyzed.

) a=101- (2) a, = 100--

+a. = 10-- +aq = 11--

2¥-1 =111-- 2%-1 =111--

3) a=110- @ a =111
+a= 1 +a =

2% -1 =111 2% -1 =111--

In each of the configurations the remaining twelve slots will be either 1/0 or 0/1
slots. The reason for this is that there are no carries in a, + a. and 2" — 1 consists of
fiftcen ones in its binary representation. Case (8,7) will be considered first.

In (1) it can be assumed that g, = a, + a, for some ¢ < k <j. If a. is subtracted
from a, to obtain a, then v(a,) =8 by Lemma 2. Also, it can be observed that
A(a.) = A(a.). Further, since v(a;) = 8 and v(a.) = 7, it follows that a, # 2a.. which
means that a. and a, are two distinct members of the chain. Thus, N(a.)=
N(a.)+ 1 =4 which implies N(q;,)=4.

In (2), N(a.) =4 by [15, propositions 1 and 3] unless a, = 11001--1111--. Asin (1)
it can be assumed that a, = a, + a, for some ¢ < k < j. Configuration (2) can now be
developed further, and it will be looked at from a subtraction point of view.

a, = 100110--0000--
- a. 11001--1111--
a, 110---0001--.

By Lemma 2, v(a,)= 8, and by [15, Proposition 4], N(a,)=4 unless a, = 11--d--
11--11--e--11-- where d and e indicate the number of zeros between onesand e = d
of ¢ =d — 1. Also, N(a.)= N(a,)+1=4 by Lemma 3 unless 24, = a.. The only
way to meet all of these requirements is with the following configuration:

a, =100110110000111
~a = 11001601111000
a, = 1101100001111,

Again by the same reasoning as used in case (6,5) of Proposition A, N(a,)::4
unless . = a, + a, for some s <t < k. If a, is subtracted from a. to obtain a,, it can
be seen that v(a.) =8, A(a.) = A(a.) and a, # a.. Thus, N(a,) = N(a,) + | =4 which
implies N(a,)=4.

In (3) it can be assumed that 2°a, = a;, which means that a, = 11--. As in ),
N(a.)= 4 unless a, = 11001--1111--. The only way to meet both of these require-
ments is with the following configuration:
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a, = 110011000001111
+a. = 1100111110000
2"—1 =11t

In this case N(a,) =4 by [15, Proposition 4].

In (4), A(a,)=A{a.)+ m for some m =0. As has been mentioned it can be
assumed that 2"a, =a, This means a. =111--, and by [15, Proposition 1]
N(a.) =4 which implies N(a,)=4.

Since N(a,)=4 in all four cases, it follows that N(2" - 1)=5 in (8 7). In case
(7.8) configurations (1) and (4) can be dispensed with in essentially the same
manner as in (8.7). The other two configurations will be considered.

In (2) it can be assumed as before that a, = a. + a, for some ¢ < k < j. When a, is
subtracted from a, to obtain a. then A(a.) = A(a,) + m for some m =0. By Lemma
2, ¥(a,)= 7, and by Lemma 3, N(a.)= N(a.)+ 1 =4 unless 2™a, = a.. If this is the
case, then a =11--, and by Propositions 1 and 3, N(a)=4 unless a =
11001--1111--. The configuration a,/a. must then be as follows:

a, = 10011001--
-a. = 1100110--
a = 11001---

In order that 2a, = a.. it follows that a, = 1100111110000. But it is impossible to
obtain a, in this form since a one will appear in a, at the extreme right of a,/a.
regardless of wheiher there is a 1/0 slot or a (/1 slot in this place. Thus, N(a;) =4 in
any event.

In (3) since v(a,)=7 and a, = 110--, 1t can be assumed that q, = 11001--1111--,
Also, it can be assumed that 2°a, = a,, which means that a, = 11--. Since v(a.)= 8,
N(a.) = 4 by Propositions 2 and 4 unless a, = 11--d--11--11--e--11-- where e = d or
e =d-1.1f 2’a, = a, then d < 2. With these restrictions there are two possibilities
for a,/a. :

(3a) a, = 110010011110000  (3b) a, = 110010000001111
+a, = 1101100001111 +a.= 1101111110000
2%~1 =11t 2" -1 = 1111111111

In both cases A(a,)= A(a.)+2 while a >2u. * a. By Lemma 4, N(q)=
N(a.)+ 1 =4 unless a, = 2a..,. This is impossible in (3b) since g, is odd. In (3a),
A(a..))=A(a.)+ 1. and v(a..,) = 7. By the same reasoning as used before, it can
be assumed that a,., = a. + a, for some 1 < k < k + 1. Since a, = 2a..,. the binary
form of a. ., is the same as that of a, except that all the digits are shifted to the right
one place. Configuration a..,/a. is as follows:

a.., = 1001001111006
= 1101100001111
a, 1011101101001.

{

]

4
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As can be seen N(a.)= N{a,)+ 1=4. Thus, N(a,)=4.

In all possibilities N(a,) =4, which implies N(@2"-1)=5. It can be concluded
that I{2"-1)=A(2" - 1)+ 5= 15+ [(15) - 1. Since the Scholz-Brauer conjecture
holds for » =15, it follows that 1(2"°—1)= 15+ [(15)~ 1. This now gives the
following theorem.

Theorem 2. (2"~ 1)= n + I(n) — 1 for the first eighteen positive integers n and for
n =20, 24 and 32.

It seems too bold to conjecture that equality holds for all positive integers n. This
question, of course, is at least as difficult as establishing the Scholz-Bauer
conjecture itself. It even may be somewhat difficult to find further values of a for
which cquality can be shown to hold.

Recently, Schonhage [11] has proved the fine result that [(n)=
log:n +log,v(n)—2.13. This improves the result of Cottrell [3] that I(n)=
log: n + log. v(n)— 1 and comes close to establishing the validity of a conjecture by
Stolarsky [12] that v(n)<2'""**) Unfortunately, it does not appear that
Schonhage’s result will shorten this paper. Even if v(n)<2'"*™_ it needs to be
shown that »(n)=:2"""*""" for the integers for which /(2n)= I(n). A slightly
weaker form of Sioiarsky’s conjecture is that I(n) = log: n +log. v(n)— 1. If this is
irae then .t is not hard to show that there are infinite classes of integers n for which
" -D=n+Kn)- 1. For instance. this equality would be satisfied by those
integzr< n with one or twa ones in their binary representation.
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