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We introduce a *-calculus with symmetric reduction rules and
``classical'' types, i.e., types corresponding to formulas of classical
propositional logic. The strong normalization property is proved to hold
for such a calculus, as well as for its extension to a system equivalent
to Peano arithmetic. A theorem on the shape of terms in normal form is
also proved, making it possible to get recursive functions out of proofs
of 6 0

2 formulas, i.e., those corresponding to program specifications.
] 1996 Academic Press, Inc.

1. INTRODUCTION

The possibility of extracting recursive functions out of
intuitionistic proofs of formulas expressing their specifica-
tions, i.e., in general, the feature of effectiveness of construc-
tive mathematics, has had a leading role in the development
of computer science. This role, not just limited to founda-
tional aspects, has been played in a wide spectrum of
research fields, with the aim of supporting the working com-
puter scientist. In particular, the correspondence between
logical constructive systems and several *-calculi, known as
the Curry�Howard analogy, has been used to construct
prototypes of systems for the design and development of
provably correct programs [Con 86, NPS 90, PN 90].

Classical logics were always left out of the investigations
on the relationships between logics, type-theories, and
programming languages. This, however, was not caused by
its alleged lack of effective features. Indeed, as far as the part
of logics relevant for computer science is concerned, this is
absolutely not the case. Quite old and well-known theoretic
results (for instance, [Kre 58]) made sure that it is possible
to get, out of a classical proof of \x _y .P(x, y) (with P
decidable), a recursive function f such that, for any x,
P(x, f (x)) holds. What was still preventing classical logics
to have a more relevant role in computer science, was
instead the lack of clear and practical methods to extract
their constructive contents from classical proofs, and
systems that helped to understand their constructive
features.

In the recent years, many efforts have been made in this
direction, among which has to be mentioned the interpreta-
tion of classical logics into calculi with continuations

[Gri 90, Mur 90], originating from Friedman's A-transla-
tion [Fri 78]. An investigation of Prawitz's set of reductions
for classical logic [Pra 65, Pra 81] was the starting point for
a method for extracting the constructive content from classi-
cal proofs devised in [BB 91], which has an interpretation
in terms of a valuation semantics [BB 92]. All the above-
mentioned methods have natural deduction versions of
classical logics at their roots. On the sequent calculus-side,
research efforts have led to the *+-calculus of Parigot
[Par 92] and to Coquand's game-theoretical interpretation
[Coq 92].

These preliminary results, at least those on the natural
deduction-side, share a common problem: that of a complex
syntax. This, of course, represents a serious obstacle to a
neat and full understanding of classical logics from a com-
putational point of view.

Our main aim in the present paper is then to define a
system for classical program extraction which is simple
enough. Our starting point, in Section 2, will be to define a
classical simply typed *-calculus (*Sym

Prop), i.e., a *-calculus
which is in a Formulas-as-Types correspondence to
propositional classical logics. In this system, negation is not
a primitive connective, and we manage to identify a type
(formula) A with its double negation A==. This enables us
to get a system where we have a symmetric application, such
that either component of an application can be looked at
virtually indifferently as function or argument. Because of
this symmetry, all the reductions of the calculus have a dual
version. It is relevant to stress that the reductions we define
are simple and natural, and, differently from what was done
in other systems for classical program extraction, no ad hoc
reduction is introduced. Our system *Sym

Prop is then proved in
Section 5 to be strongly normalizable using a non-trivial
version of Tait and Girard's computability method: sym-
metric candidates. In Section 3 system *Sym

Prop is extended with
first order features in order to obtain a system corresponding
to Peano arithmetic (*Sym

PA ), still strongly normalizable, as
proved in the Appendix. Moreover, a Shape of Normal
Forms Theorem, proved in Section 4, makes it possible to
extract the constructive contents of terms corresponding to
proofs of formulas of the form \x _y .P(x, y), with P
decidable.
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2. *Sym
Prop : A SYMMETRIC SIMPLY TYPED

CLASSICAL *-CALCULUS

In this section, we will introduce the system *Sym
Prop . In such

a system, types correspond to formulas and terms to proofs
of propositional classical logic. We shall then often use indif-
ferently the words type, formula, and proposition as well as
term and proof.

The basis for building the types of our system consists of
two sets of base types: A=[a, b, ...] (atomic types) and
A==[a=, b=, ...] (negated atomic types). These two sets
are used to build, as shown below, m-types and types.

Definition 2.1. (i) The set of m-types is defined by
the grammar:

A ::=: | := | A 7 A | A 6 A,

where : ranges over A and := over A=.

(ii) The set of types is defined by the grammar

C ::=A | =.

We need to define the m-types first since we wish to have
a calculus where formulas do not contain the absurdity
proposition as a proper subtype. Such a choice is motivated
by technical reasons, which will be made clear in Section 5.
It is easy to check, however, that this is no restriction at all
(a formula A 7 = can always be identified with =, and
A6 = with A). It is also no restriction to prevent = being
used as assumption in a derivation, as we do��that is, in the
calculus, not to have variables of type =.

In the following we shall denote m-types by A, B, A1 ,
A2 , ..., while types will be denoted by C, D, C1 , C2 , ... .

By having a set of atomic types and a set of negated
atomic types, it is easy to see that we have a propositional
calculus where negation is neither primitive nor defined in
terms of =.

Definition 2.2. We define the negation A= of an
m-type A as follows:

1. (:)==:=

2. (:=)==:

3. (A 7 B)==A= 6 B=

4. (A 6 B)==A= 7 B=.

We then get a calculus with involutive negation.

Lemma 2.3.

A===A.

Proof. By induction on A, using Definition 2.2. K

Definition 2.4. (*Sym
Prop -Rules). The terms of the system

*Sym
Prop are defined by the following rules:

(var) xA : A

(( , ) )
P1 : A1 P2 : A2

(P1 , P2) : A1 7 A2

(_i)
Pi : Ai

_A1 , A2
i (Pi ) : A1 6 A2

(i=1, 2)

[xA : A]

b

(*)
P : =

*xA .P : A=

(C)
P1 : A= P2 : A
(P1 C P2) : =

In the following the type of a term will often be denoted
by superscripts while the superscripts A1 , A2 in terms such
as _A1, A2

i (Pi) will often be omitted.

Remark 2.5. The propositional classical logic asso-
ciated with our system is complete. Rules and connectives
not given above can be derived as is usual in classical logic.
We show below the (type part) of the derivation of the con-
junction�elimination rule and the implication�elimination
rule.

A1 7 A2#(A=

1 6 A=

2 )=

[A=

i ]
A=

1 6 A=

2

=

Ai

A � B=Def A= 6 B

A � B#A= 6 B
A [B=]

(A= 6 B)=#A 7 B=

=

B

We call the operator ``C'' symmetric application since,
given the terms PA=

and QA, both PA=

C QA and QA C PA=

are correct *Sym
Prop -terms. This symmetry is reflected by the

(pairwise dual, except for rule (Triv)) reductions rules
defined below.
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Definition 2.6 (*Sym
Prop-Reduction Rules).

{(;)
(;=)

*x .P C Q
Q C *x .P

�;

�;=

P[Q�x]
P[Q�x]

{(')
('=)

*x . (P C x)
*x . (x C P)

�'

�'=

P if x � FV(P)
P if x � FV(P)

{(?)
(?=)

(P1 , P2) C _i (Qi )
_i (Qi ) C (P1 , P2)

�?

�?=

Pi C Qi (i=1, 2)
Qi C Pi (i=1, 2)

(Triv) E[P] �Triv P if E[��] is a context with

type = and {[��], P has type = and E[��] does

not bind any free variables in P.

In the following �1 will denote the union of the reduc-
tions defined above. � will denote the reflexive, transitive
closure of �1 .

Remark 2.7. Rule (?), which is inspired by the sequent
calculus, looks as follows in terms of derivations:

A1 A2

A1 7A2

A=

i

A=
1 6A=

2

=
�

Ai A=
i

=

This rule in our system plays the rôle of the usual reduction
rule for removing, in natural deduction, an introduction of
a conjuction followed by its elimination. As we have seen in
Remark 2.5, the elimination of conjunction can be derived
in our system. It is then easy to see that, by using that
derived rule, the usual reduction rule can be defined in terms
of one (?)-reduction and one (')-reduction.

Notice that, by defining the (?) rule as we have done
above, we manage easily to dualize it.

Definition 2.8. Let k be an integer and P a term.

(i) k is a bound for P if the reduction tree of P has finite
height smaller or equal to k.

(ii) P strongly normalizes if it has a bound.

Thus a term strongly normalizes if and only if its reduc-
tion tree is finite.

The above definition has been chosen since it is intui-
tionistically stronger than the usual ``each reduction
sequence out of P is finite'' (classically, they are equivalent
through Ko� nig's Lemma).

Notation. The following notations will be used:

VarC=[variables of type C ]

TermC=[terms of type C ]

SNC=[P # TermC | P strongly normalizes].

One of the main properties enjoyed by the system *Sym
Prop

that will be essential for its applications is that of strong
normalization.

Theorem 2.9 (Strong Normalization for *Sym
Prop). Let C

be a type. Then

TermC=SNC .

The proof of this theorem will be the argument of
Section 5.

It is no surprise that *Sym
Prop does not have the Church�

Rosser property, even without taking into account rule
(Triv). The following is a simple example of the non-con-
fluence of *Sym

Prop by Schivalocchi [Schi 95]:

*x:= 7 : . (*y: .x C _:, :=

1 ( y)) C (*z:=

.x C _:, :=

2 (z)).

The above closed term can be reduced either by rule (;)
or by rule (;=), yielding the two following distinct closed
normal forms:

*x:= 7 : . (x C _:, :=

1 (*z:=

.x C _:, :=

2 (z)))

*x:= 7 : . (x C _:, :=

2 (*y: .x C _:, :=

1 ( y))).

More complex examples of non-confluence are given and
discussed in [Schi 95], together with concrete examples of
proofs in *Sym

PA (the system to be defined in the next section).

3. *SYM
PA : A CALCULUS FOR PEANO ARITHMETIC

In Section 2 we have defined a calculus based on a version
of propositional classical logic. This logic, however, even
when considered as a possible basis for a (simply) typed
*-calculus with symmetric application and classical types, is
too poor for our present purposes, i.e., the investigation of
the computational content of classical reasoning. In fact, we
defined it only as a starting point.

We want to deal with a logic in which it is possible to
express and prove meaningful specifications of programs.
We choose Peano arithmetic. In the following we shall
define a calculus that corresponds to a natural deduction
version of Peano arithmetic and is based on system *Sym

Prop .
We shall call this calculus *Sym

PA .
We begin by defining Peano arithmetic terms (PA-terms)

in our context. They denote integers and (possibly higher
order) functions, and are built out of numerical and func-
tion variables, the constant 0, the successor function s,
primitive recursion, abstraction, and application.

Definition 3.1 (PA-Terms). (i) PA-terms are all the
terms possible to build using the following term-formation
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rules: Let g be a numerical or function variable, and G, G1 ,
G2 types built out of the type constant Int using the arrow
constructor.

gG : G 0: Int

[ gG1 : G1]

b

p : G2

*gG1 .p : G1 � G2

p1 : G1 � G2 p2 : G1

( p1 p2) : G2

u : Int
su : Int

u : Int p : G f : Int � G � G
Rec(u, p, f ) : G

(ii) On PA-terms the following well-known notions of
reductions are defined:

(;PA) (*g .p) q �;PA p[q�g]

(Rec0) Rec(0, p, f ) � Rec0
p

(Recs) Rec(su, p, f ) � Recs
f (u) Rec(u, p, f )

We denote by �1PA the union of all the above reductions,
and by �PA its reflexive and transitive closure.

(iii) We denote by & the least congruence obtained
from �PA .

In what follows, numerical variables (i.e., of type Int) will
be denoted by n, m, ..., while generic PA-terms will be
denoted by u, v, t, ... .

Lemma 3.2. [Tait 67]. All PA-terms are strongly nor-
malizable.

Given a PA-term t, its normal form will be denoted by
nf(t). t will be said to be a numeral if it is 0 or sk+10 for some
k, where s00=0 and sk+10=s(sk0).

The types of system *Sym
PA will be like the types of system

*Sym
Prop considering as m-types also those corresponding to

existential and universal quantification and with the sets of
atomic and negated atomic types defined as follows:

A =[u=v | u, v PA-terms of type Int]

A==[u{v | u, v PA-terms of type Int].

The definition of negation (Definition 2.2) is naturally
extended as follows:

5. (_n .A)==\n .A=

6. (\n .A)==_n .A=.

A type is said to be PA-closed if it does not contain free
PA-term variables.

Definition 3.3 (*Sym
PA -Rules). Atomic rules:

(PA1)
PA1 : (u=u)

(PA2)
P : (u=t)

PA2(P) : (t=u)

(PA3)
P : (u=v) Q : (v=t)

PA3(P, Q) : (u=t)
(PA4)

P : (s0=0)
PA4(P) : =

(PA5)
P : (u=v)

PA5(P) : (su=sv)
(PA6)

P : (su=sv)
PA6(P) : (u=v)

By ``atomic rule'' we will always mean a rule with atomic
formulas as premises and conclusion.

Logical rules:

(var) xA : A

(( , ) )
P1 : A1 P2 : A2

(P1 , P2) : A1 7 A2

(_i)
Pi : Ai

_A1, A2
i (Pi) : A1 6 A2

(i=1, 2)

[xA : A]

b

(*)
P : =

*xA .P : A=

(C)
P1 : A= P2 : A

P1 C P2 : =

(*\)
P : A

*\ n .P : \n .A
for all xB # FV(P), n � FV(B)

(_t)
P : A(t)

_t(P) : _n .A(n)

[n : Int][x : A(n)]

b

(Ind)
u : Int P : A(0) F : A(sn)

Indn, x(u, P, F ) : A(u)

n not free in types of assumptions different

from A(n).

(Conv)
P : A(u)
P : A(u$)

if u&u$

Rules (( , ) ), (_i), (_t), and (*\) will be called introduc-
tion rules in the following.

We shall say that a term P represents the proof of a for-
mula A (is a term of type A) if it is possible to derive P : A.

We shall denote by 1 V*PA
Sym P : A the fact that P : A is

derivable in *Sym
PA from the set of assumptions 1.

We shall call a term atomic if it is formed only by atomic
rules.
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It is easy to show that all other rules of first order logic
natural deduction can be derived from the ones given above.

A term will be called PA-closed if its type is so and if it
contains no free PA-term variables.

Definition 3.4 (*Sym
PA -Reduction Rules). We add to the

reduction rules of Definition 2.6 the following reductions.

(;\)
(;=

\ )
(*\ n .P) C _t(Q)
_t(Q) C (*\ n .P)

�;\

�;\
=

P[t�n] C Q
Q C P[t�n]

(Ind0)
(Inds)

Ind(0, P, F )
Indn, x(sk+10, P, F )

�Ind0

� Inds

P
F[sk0, Indn, x(sk0, P, F )]

F[sk0, Indn, x(sk, 0, P, F )] is short for

F[sk0�n, Indn, x(sk0, P, F )�x]

(Comp) u �cmp u$ if u and u$ are PA-terms and

u � PA u$ (We have this rule in order to be

able to reduce PA-terms when they are

inside *Sym
PA terms).

The choice of the rule (Inds) instead of the more liberal

Indn, x(su, P, F ) � Inds
F[u, Indn, x(u, P, F )]

for any u : Int

has been made just to simplify the proof of the strong nor-
malization theorem. Such a proof can easily be modified to
take into account the more liberal version of the rule.

By close inspection of the reduction rules and of the term
formation rules, it is easy to check that types are preserved
by reduction (subject reduction property).

The property of strong normalization holds for *Sym
PA -

terms.

Theorem 3.5 (Strong Normalization for *Sym
PA ). Terms

of *Sym
PA are strongly normalizable.

The proof of this theorem will be given in the Appendix
and can be obtained by an extension of the proof of strong
normalization for the system *Sym

Prop . This latter proof will be
presented separately in Section 5 since the simplicity of the
system allows a better understanding of the main ideas.

4. SHAPE OF NORMAL FORMS IN *SYM
PA AND

EXTRACTION OF CONSTRUCTIVE CONTENTS

We introduce now two sets of types. From terms of which
the types are in one of these sets, namely 7 0

1 , it will be
possible to extract the constructive contents expressed by
the types, seen as specifications.

Definition 4.1. (i) The set of 7 0
1 types (formulas) is

composed out of PA-closed m-types containing neither
elements of the set A=, nor universal quantifications, i.e.,

7 0
1 is the restriction to PA-closed elements of the set defined

by the grammar

S ::=A | S 7 S | S6 S | _n .S,

where n ranges over the category of numerical variables.

(ii) The set of 6 0
1 types (formulas) is composed out of

the types D such that D= # 7 0
1 , i.e., 6 0

1 is the restriction to
PA-closed elements of the set defined by the grammar

P ::=A= | P7 P | P 6 P | \n .P,

where n ranges over the category of numerical variables.

It is worthwhile to outline that all results of the present
section, as well as that of Strong Normalization, hold also
in case one considers any (consistent) set 2 of atomic rules
instead of those for Peano arithmetic. We use *Sym

2 for the
calculus obtained out of *Sym

PA replacing its set of atomic
rules by a set of atomic rules 2.

Definition 4.2. (i) A set 2 of atomic rules is consis-
tent if there exists no atomic and closed proof of =.

(ii) A system *Sym
2 is consistent if there exists no closed

term of type =.

Lemma 4.3. The set of atomic rules PA is consistent.

We state now the main theorem of this section.

Theorem 4.4 (Normal Form Theorem). Let C be either
= or in 7 0

1 and let P be a closed and PA-closed normal term
of type C. Then

(i) C is atomic O P is atomic.

(ii) C is not atomic O P ends with one of the following
rules: (( , ) ), (_i), or (_t).

The statement of the above theorem is clearly analogous
to well known properties of simply typed *-calculus (it says
that the results of a computation over a 7 0

1-type has a con-
crete meaning). Its proof, however, is not at all trivial, since
here we are dealing with classical logics.

It is worth remarking that the restriction to 7 0
1-types in

the Normal Form Theorem is essential. For instance, the
two closed terms in normal form at the end of Section 2, of
type (: 6 :=), are not of the form _i (P), because we can
classically prove (: 6 :=) without proving neither : nor :=.

From the Normal Form Theorem, to the proof of which
the next subsection will be devoted, it descends easily the
consistency of any system *Sym

2 , in case the set 2 of atomic
rules is consistent.

Corollary 4.5.

2 consistent O *Sym
2 consistent;

in particular, by Lemma 4.3, *Sym
PA is consistent.
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It is easy to see that Theorem 4.4 shows an easy and clear
way to get what Kreisel obtained in [Kre 58], i.e., the
extraction of computational contents out of classical proofs.
By Theorem 4.4, from normalized proof of a disjunction we
can get a proof of one of the disjuncts, and from a proof of
an existentially quantified formula, we can get a witness of
it. More generally, given a closed proof of a 7 0

1 formula in
*sym

PA , it is possible to get, by a simple inspection of the nor-
malized proof, the witnesses of all the subformulas of the
form _n .A(n). This means also that, if we have a formula
corresponding to a program specification, i.e., of the form
\m ._n .A(m, n), we can get, out of a proof P of it, a recursive
function f : N � N such that for all k # N, A(k, f (k)) holds.
For a fixed k # N, to get f (k) we have simply to normalize
the proof *x\n .A=(k, n) . (_k(x) C P).

We enphasize once more that the reduction rules of our
calculus are quite simple and natural, and not devised ad
hoc for constructive content extraction purposes.

4.1. Proof of the Normal Form Theorem

This section will be devoted to the proof of Theorem 4.4.
First of all we introduce the class of minimal proofs. Our
proof will then proceed by first showing, after a series of
technical lemmas, that the statement of Theorem 4.4 holds
for minimal proofs and then that indeed each closed proof
of a sentence in 7 0

1 is minimal.

Definition 4.6. A term (proof) of *Sym
PA is minimal if it

is built out only of rules (( , ) ), (_i), and (_t) and of atomic
rules.

Lemma 4.7. Let u be a PA-term in normal form. Then
either u ends with an introduction (0, s, or *), or it is formed
only by eliminations (Rec or application) followed by a
variable.

Proof. By induction on u.

v u is a variable. Immediate.
v u ends with an introduction rule. Immediate.
v u ends with an elimination rule. The thesis follows by

the induction hypothesis, since if the leftmost immediate
subterm of u ended with an introduction rule, u would not
be in normal form. K

Lemma 4.8. Let u be a closed PA-term of type Int. Then
its normal form is a numeral; i.e., nf(u)#sk0 for a k�0.

Proof. Immediate from Lemma 4.7. K

Lemma 4.9. (i) Let P be a PA-closed normal term.
Then P does not begin with Ind (even if ind can occur
inside P).

(ii) Let P1 C P2 be a PA-closed term in normal form.
Then either P1 or P2 is a variable.

Proof. (i) Let us assume, towards a contradiction,
that P is of the form Ind(u, Q, F ). By Lemma 4.8 it follows
that u#sk+10 for k�0. We get a contradiction since the
reduction (Inds) or (Ind0) could be applied.

(ii) Let us assume, towards a contradiction, that neither
P1 , of type, say, A=, nor P2 , of type A, is a variable. First
of all we notice that neither P1 nor P2 can be of the form
*x .Q, Ind(u, P, F ) or be an application. The first case is
excluded since, otherwise, P1 C P2 would not be normal,
the second by (i), while the third case would imply that
A#=, which is impossible. Therefore, both P1 and P2 end
either with an introduction or with an atomic rule. We can
show that even the latter of these cases is to be excluded
since, if one of the two terms ends with an atomic rule, the
other one would have a negated atomic type and hence
could end neither with an introduction nor with an atomic
rule, contradicting what we have just proved. Thus both P1

and P2 end with an introduction. It is easy to check that
if one ends with (( , ) ) the other has to end with (_i) or,
alternatively, if one ends with (*\) the other has to end with
(_t). In both cases, however, we get a contradiction; i.e.,
P1 C P2 would not be normal, since it would then be
possible to apply reduction ?(?=) or ;\(;=

\ ), respectively.
We then conclude that one of P1 , P2 is necessarily a
variable. K

To continue now towards the complete proof of the Nor-
mal Form Theorem we need to introduce one more notion:
that of 7 0

1-term.

Definition 4.10. Let P be a term and C its type. P is a
7 0

1-term if:

1. is PA-closed.

2. C # 7 0
1 or C#=.

3. For all x # FV(P), if D is the type of x then D # 6 0
1 .

Lemma 4.11. Let P be a 7 0
1 -term in normal form, and Q

a subterm of P. Then:

1. Q is a variable x iff it has type in 6 0
1 and

2. Q is not a variable iff it is a 7 0
1 -term.

Moreover, if Q is a variable x then it is on one side of some
application x C Q$, or Q$ C x, occurring in P.

Proof. By induction over the structure of P.

v P#x. This case can never occur, since, by the defini-
tion of 7 0

1 -term, P has to have its type in 7 0
1 and to have the

types of its free variables in 6 0
1 , and this is impossible.

v P#(P1 , P2). Then P : A1 7 A2 with A1 and A2

both in 7 0
1 . Moreover, the free variables of P1 and P2 have

types in 6 0
1 . Thus P1 and P2 are 7 0

1-terms. Since the strict
subterms of P are all the subterms of P1 and P2 , we obtain
the thesis by the induction hypothesis.
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v P#_i (Pi). As in the previous case, we deduce that Pi

is a 7 0
1-term and hence we can obtain the thesis by invoking

the induction hypothesis.

v P#*x .P$. Since *x .P$ is a 7 0
1-term , we get that the

type of x is in 6 0
1 . Moreover, P$ as type = and

FV(P$)�FV(P) _ [x]. We then infer that P$ is a 7 0
1-term

on which it is possible to apply the induction hypothesis to
get the thesis.

v P#P1 C P2 . By Lemma 4.9 (ii), since P is in normal
form and 7 0

1-terms are PA-closed by definition, it follows
that P1 or P2 , say P1 , is a variable x. Then we have that the
type of x is in 6 0

1 and therefore P2 has type in 7 0
1 and

FV(P2)�FV(P). This means that P2 is a 7 0
1-term. By

applying the induction hypothesis on P2 we get the thesis for
P, since the strict subterms of P are x or subterms of P2 .

v P#*\n .P$. This can never be the case since the type
of P would be of the form \n .A and hence P would not be
a 7 0

1-term.

v P#_t(P$). In this case the type of P is of the form
_n .A(n) with A(t) the type of P$ and FV(P$)�FV(P). It is
then easy to check that P$ is a 7 0

1-term. By applying the
induction hypothesis on P$ we get the thesis for P since the
strict subterms of P are the subterms of P$.

v P#PAi (P1 , ..., Pn) (1�i�6). The thesis follows
immediately from the induction hypothesis on P, ..., Pn that
have necessarily atomic types and free variables all in
FV(P).

v P#Ind(u, Q, F ). This case can never occur, since
otherwise we would have a contradiction with Lemma 4.9
(i), since a 7 0

1-term is PA-closed by definition. K

Corollary 4.12. Let P be a normal 7 0
1-term. Then

(i) P does not contain *\ symbols.

(ii) P does not contain Ind symbols.

Proof. (i) If there were a term of the form *\ n .P, it
would have type of the form \n .A(n) which, by not being
7 0

1 , would lead to a contradiction with Lemma 4.11.

(ii) Towards a contradiction, let Ind(u, R, F ) be the
maximal subterm of P beginning with Ind. u is in PA-normal
form by hypothesis and since P is in normal form, u has
necessarily to have at least one free PA-variable n. By the
PA-closedness of P, n is necessarily bound by an outer *\ ,
contradicting (i). K

We can now prove the statement of the Normal Form
Theorem, restricted to minimal terms.

Lemma 4.13. Let P be a minimal, PA-closed term and let
: be = or an element in A.

(i) P : : O P is atomic.

(ii) P : A1 7 A2 O P is of the form (P1 , P2)
with P1 and P2 minimal.

(iii) P : A1 6 A2 O P is of the form _i (Pi)

with Pi minimal.
(iv) P : _n .A O P is of the form _t(P$)

with P$ minimal.

Proof. (i) By induction on the structure of P. Since P
contains only atomic rules and introductions and has an
atomic type, it has necessarily the form PAi (P1 , ..., Pn)
(1�i�6). Since the Pi 's are minimal, we get the thesis by
applying the induction hypothesis to them all.

(ii) (iii) (iv) Since P contains only atomic rules and
introductions and has a non-atomic type, we have
necessarily that it has the form (P1 , P2) , _i (Pi), _t(P$),
respectively. P1 , P2 , Pi , and P$ are minimal because P is. K

As last step, we prove now that closed normal 7 0
1-terms

are minimal. The Normal Form Theorem will then follow
by Lemma 4.13.

Lemma 4.14. Let P be a closed normal 7 0
1 -term

(i) If P contains no * symbol, then it is minimal.
(ii) P contains no * symbol.

Proof. (i) Let P be a closed 7 0
1-term with no *-symbol

in it. By definition, to prove that it is minimal, we have to
prove that it does not contain free or bound term variables,
symmetric applications or Ind or *\ symbols. Since it is
closed, and variables are bound only by *'s, P cannot con-
tain variables. If P contained an application then, by
Lemma 4.9 (ii), it would contain a variable, contradicting
what we have just proved. Corollary 4.12 can instead be
invoked to make sure that no Ind or *\ symbol is present
in P.

(ii) We begin by first proving that there exist no sub-
terms of P of the form *x .Q with x # FV(Q). In order to do
this, let us assume, towards a contradiction, that there exists
some subterm of the form *x .Q with x # FV(Q), and let us
take one of the shortest (w.r.t. the subterm inclusion), say
*x$ .Q$. Since x$ # FV(Q$) and P is a normal 7 0

1-term,
by Lemma 4.11 x$ occurs necessarily in a subterm x$ C Q"
or Q" C x$. Let us now consider the shortest among
such terms, in such a way that x � FV(Q"). Thus
Q$#C[x$ C Q"] (or C[Q" C x$]) for a context C[ ].
Since *x$ .Q$ is among the shortest subterms with this
form and with x$ # FV(Q$), we get that FV(x$ C Q")
(FV)(Q" C x$))�FV(Q$). It follows that Q$#x C Q"
(Q" C x), i.e., C[ ]#[ ]; otherwise Q �Triv x$ C Q"
(Q" C x$), contradicting the hypothesis of normality of P.
Even in such a case, however, we get a contradiction since,
by the fact that x$ � FV(Q"), we could apply an '- ('=-)
reduction on *x$ .x$ C Q" (*x$ .Q" C x$). Therefore we can
infer that there exist no subterms of P of the form *x .Q with
x # FV(Q). From this fact then follows that no variables are
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discharged in P and hence, since P is closed, all its subterms
are.

We can now proceed to prove that there exist no sub-
terms of P of the form *x .Q at all. Towards a contradiction,
let us assume that there exist subterms *x$ .Q$ and take one
of the shortest, in such a way that no * occurs in Q$. Since
Q$ : =, Q$ is not a variable and, by Lemma 4.11, it is a closed
normal 7 0

1-term. By point (i)1 it follows that Q$ is a closed
minimal proof of =, and, by Lemma 4.13(i) an atomic one.
This contradicts the consistency of the set of atomic
rules. K

Lemma 4.15. Let P be a closed normal 7 0
1 -term. Then P

is minimal.

Proof. Immediate from Lemma 4.14 (ii) and (i). K

We can now give the Proof of Theorem 4.4.

Proof of Theorem 4.4. Immediate from Lemmas 4.13
and 4.15.

4.2. A Further Improvement

From the Lemmas proved above it is possible to derive a
further lemma which is quite interesting from both a
theoretical and an applicative point of view.

Lemma 4.16. Let P(xN1
1 , ..., xNk

k ) be a normal 7 0
1-term.

Then either it is minimal (and hence closed) or it contains a
subterm xi C Qi (or Qi C xi ), where QNi

=

i is minimal.

Proof. If P is closed (k=0), apply Lemma 4.15.
Otherwise, any xi has necessarily to occur, by Lemma 4.11,
in subterms of the form xi C Qi (or Qi C xi ). Let us take one
of the shortest among such terms. We get that, for such
term, Qi is closed and, by Lemma 4.11, is a 7 0

1-term.
Lemma 4.15 enables us now to get the thesis. K

From a theoretical point of view the above lemma states
that for any

xN1
1 , ..., xNk

k V*2
Sym P : A with A # 7 0

1 and Ni # 6 0
1 ,

P contains either an example for A or a counterexample for
some of Ni . This agrees with the Curry�Howard interpreta-
tion of P.

P can be seen as a classical proof of

``If N1 , ..., Nk then P''

and the classical meaning of this is

``Either N =

1 or } } } or N =

k or P''.

From an applicative point of view, Lemma 4.16 can be
used to speed up the process of extraction of constructive
content. If a 7 0

1 -proof P[R1 �x1 , ..., Rk �xk] contains closed
terms R1 , ..., Rk having 6 0

1-types, we do not need to consider
them during the normalization process. We can instead
replace them by fresh variables, since all normal forms of P
are indeed normal forms of P[R1 �x1 , ..., Rk �xk].

To prove this fact, it sufficies to observe that if the normal
form of P is minimal then it is closed, and hence it is also a
normal proof of P[R1�x1 , ..., Rk�xk]. Otherwise, by
Lemma 4.16, the normal form of P should have some sub-
terms xi C Qi (or Qi C xi ) with Qi minimal. This, however,
leads to a contradiction since, by replacing xi by Ri , we
would get a closed proof of =, which is impossible.

Informally speaking, as G. Kreisel often said, when we
have a proof P of a 6 0

1-type N, we only know that N is
inhabited, and nothing else. We can use a fresh variable xN

to build an inhabitant of N, being sure that x will disappear
during the normalization process.

5. STRONG NORMALIZATION FOR *SYM
PROP

This section will be devoted to the proof of Theorem 2.9.
We shall use a non-trivial variant of Tait's well-known com-
putability method. We first assign to each type C a set �C�

(symmetric candidate) of computable terms of type C and
show that for all P # �C�, P strongly normalizes. Then we
prove that for each type C, if P has type C, then P # �C�.

The main property the candidate assignment has to
enjoy, in order to make the proof work, consists in the fact
that the set of computable terms of a m-type A reflects the
way these terms are built. In the present case these proper-
ties are the ones stated in the following claim.

Claim 5.1. There exists an assignment ���� : A [
�A��TermA such that �=�=SN= and

(i) VarA ��A�.

(ii) (P1 , P2) # �A1 7 A2 � � P1 # �A1 � and P2 # �A2 �.

(iii) _i (Pi ) # �A1 6 A2 � � Pi # �Ai � (i=1, 2).

(iv) *x .P # �A� � \Q # �A=� .P[Q�x] # �=�.

For simply typed *-calculi, the properties required for the
candidate assignment can be also considered as an inductive
definition of the sets �A�. Unfortunately, this is not the case
for our system. The properties stated above cannot be con-
sidered as a definition of �A�, since clause (iv) would cause
a circularity (�A=� would be defined in terms of �A� which,
since A#A==, would be defined in terms of �A=� itself).
We have therefore to define candidates using a different
method. This will be done in Subsection 5.1 where, besides,
properties (i)�(iv) will be proved. Until then we shall
assume Claim 5.1 to hold, i.e. that the candidates are
already well-defined for all m-types, and that properties
(i)�(iv) are already proved.
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Lemma 5.2. Let C be a type. Then

�C��SNC .

Proof. By induction on the structure of C, considering
the different shapes of P # �C�.

v P#xC. Trivially, xC # SNC .

v P#(P1 , P2). Then C#C1 7 C2 . By Claim 5.1 (ii)
follows that Pi # �Ci � (i=1, 2). Now, by the induction
hypothesis on �Ci �, we get Pi # SNCi . Since each reduction
on (P1 , P2) is a reduction on P1 or P2 , we get (P1 , P2) #
SNC1 7 C2

.

v P#_i (Pi ). Then C#C1 6 C2 . By Claim 5.1 (iii)
follows that Pi # �Ci �. Now, by the induction hypothesis
and the fact each reduction on _i (Pi ) is indeed a reduction
on Pi we get _i (Pi ) # SNC1 6 C2

.

v P#*x .P$. Since, by Claim 5.1(i), x # �C=�, follows,
by Claim 5.1(iv), that P$ # SN= . Each reduction on *x .P$ is
indeed either a reduction on P$ or a '('=)-reduction and
P$#P$1 C x(P$#x C P1). Therefore *x .P has a bound that
is at most 1+m, where m is the bound of P.

v P#P1 C P2 . In such a case P # �=�#SN= . K

Lemma 5.3. Let P # TermA . Then

(i) \Q # �A=� . (P C Q # SN=) O P # �A�.

(ii) \Q # �A=� . (Q C P # SN=) O P # �A�.

Proof. Because of the symmetry of application, it is
enough to prove just one of (i) and (ii), say (i).

Assume \Q # �A=� . (P C Q # SN=). We shall prove
P # �A� by induction on the structure of A. We distinguish
now different cases according to the shape of P. Note that,
since A cannot be =, the case P#P1 C P2 cannot occur.

v P#xA. Then P # �A� by Claim 5.1(i).

v P#(P1 , P2). Then A#A1 7 A2 . By Claim 5.1(ii),
it suffices to prove that Pi # �Ai � (i=1, 2). By the induction
hypothesis this can in turn be proved by showing that,
for all Qi # �A=

i �, we have that Pi C Qi # SN= . Since
(P1 , P2) C _i (Qi ) �1 Pi C Qi , it would be enough to
prove (P1 , P2) C _i (Qi ) # SN= . By the assumption
\Q # �A=� . (P C Q # SN=), this descends from _i (Qi ) #
�A=

1 6A=
2 � which, in turn, is a consequence of

Claim 5.1(iii) and of Qi # �A=

i �.

v P#_i (Pi ). This case can be treated similarly to the
previous one.

v P#*x .P1 . By hypothesis we have that \Q # �A=� .
((*x .P1) C Q # SN=), from which it immediately follows
that \Q # �A=� .P1[Q�x] # SN= . Hence, by Claim 5.1(iv),
we get *x .P1 # �A�. K

Lemma 5.4.

P # �C�, P �1 P$ O P$ # �C�.

Proof. By induction on C, considering the different
forms of P # �C�.

v P#xC. It can never be that xC �1 P$.

v P#(P1 , P2). In such a case P#(P1 , P2) ,
C#C1 7C2 , and either P1 �1 P$1 or P2 �1 P$2 . In either
case we get the thesis by the induction hypothesis and
Claim 5.1(ii).

v P#_i (Pi ). This case is similar to the previous one.

v P#*x .P1 . In this case we have two possibilities:
either P$#*x .P$1 and P1 �1 P$1 or P1#Q1 C x
(P1 #x C Q1) and P$#Q1 (we performed an '('=)-reduc-
tion).

In the first case, by Claim 5.1(iv), to check that
*x .P $1 # �C� it suffices to show, by Claim 5.1, that
\Q # �C� .P $1[Q�x] # SN= . This fact follows immediately
from P $1[Q�x] # SN= , which in turn follows from the
hypothesis and Claim 5.1(iv).

In the second case, by Lemma 5.3, it suffices to show that
\S # �C =� .Q1 C S # SN= (or equivalently \S # �C =� .S C
Q1 # SN=). This follows from the fact P#*x .Q1 C x
(*x .x C Q1) # �C� and from Claim 5.1(iv), since x �
FV(Q1) and therefore P1[S�x]#Q1 C S.

v P#P1 C P2 . Then P # �=�#SN= and P �1 P $
implies P $ # SN= #�=�. K

Lemma 5.5.

P # �A�, Q # �A=� O P C Q # SN= .

Proof. By Lemma 5.2, there exist n and m, bounds for P
and Q, respectively. We prove P C Q # SN= by double
induction: primary induction on the structure of A and
secondary induction on n+m.

It is easy to see that proving the thesis is equivalent to
proving that

\S . (P C Q � 1 S O S # SN=).

We have eight cases, pairwise symmetric, to consider.

1. {P#*x .P1 ,
Q=*x .Q1 ,

S#P1[Q�x]
S#Q1[P�x]

2. {P � 1 P $, S#P $ C Q
Q � 1 Q$, S#P C Q$

3. {P C Q �Triv S, S subterm of P
P C Q �Triv S, S subterm of Q

4. {P#(P1 , P2) ,
P#_i (Pi ),

Q#_i (Qi),
Q#(Q1 , Q2) ,

S#Pi C Qi

S#Pi C Qi .
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1. For these cases, the thesis follows immediately from
Claim 5.1(iv).

2. By Lemma 5.4, we have that P $ # �A� or Q$ # �A�.
We then get P $ C Q # SN= or P C Q$ # SN= by the induc-
tion hypothesis, since in both cases the sum of the two
bounds decreased.

3. Since S is a subterm of P or Q, the thesis follows
immediately from the hypothesis and Lemma 5.2.

4. Immediate by primary induction. K

We now need a last lemma in order to prove strong nor-
malization.

Lemma 5.6. Let C be a type and P # TermC with
FV(P)�[xA1

1 , ..., xAn
n ]. Then

\P1 # �A1 � } } } Pn # �An � .P[P1 �x1 , ..., Pn �xn] # �C�.

Proof. By induction on P.

v P#x. In such a case P#xi and C#Ai for some i, by
hypothesis. Hence P[P1 �x1 , ..., Pn �xn]#Pi # �Ai �#�C�.

v P#(P1 , P2) , _i (Pi), P1 C P2 . In all these cases the
thesis follows by the induction hypothesis on P1 , P2 , and
Pi , and by Claim 5.1(ii), Claim 5.1(iii), and Lemma 5.5.
respectively.

v *x .P $. Since we can rename bound variables, it is
not restrictive to assume that x � [xA1

1 , ..., xAn
n ]. Now, by

Claim 5.1(iv), to prove that

(*x .P $)[P1 �x1 , ..., Pn �xn]

#*x .P $[P1 �x1 , ..., Pn �xn] # �C�.

it is enough to prove that, for all Q # �C =�,
P $[Q�x, P1 �x1 , ..., Pn �xn] # �=�. This last fact follows by
the induction hypothesis. K

We can now present the proof of Theorem 2.9.

Proof of Theorem 2.9. One inclusion is immediate
by definition. For the other one, let P # TermC with
FV(P)=[xA1

1 , ..., xAn
n ]. By Claim 5.1(i), we get xi # �Ai�

(i=1, ..., n) and therefore, by Lemma 5.6, P#

P[x1 �x1 , ..., xn �xn] # �C�. Lemma 5.2 now makes it
possible to infer P # SNC . K

5.1. Symmetric Candidates: Definition and Main Properties

This subsection will be devoted to the definition of sets of
computable terms, which we shall call symmetric candidates.
From such a definition the properties of Claim 5.1 will easily
descend.

We have spoken before about the impossibility of con-
sidering the properties of Claim 5.1 as an inductive defini-

tion for the symmetric candidates. So what we do is to define
first an operator on sets of terms of given type for each term
constructor, except for the symmetric application (Pair(&),
Sigma(&), Lambda(&)). Out of these operators we then
define an operator for the negation (Neg(&)), reflecting the
possible way of obtaining terms whose type can be seen as
a negation. Since we wish the involutive property of nega-
tion to be reflected in the symmetric candidates, we define a
candidate as a fixed point of the composition of Neg with
itself. Since this composition turns out to be an increasing
operator, the fixed-point exists by Tarski's Theorem. The
definition of Neg uses the notion of symmetric candidate.
This is why the definitions of Neg and of symmetric
candidate will have to be given simultaneously on the struc-
ture of the type.

Definition 5.7. Let A, A1 , A2 be m-types. We define
the operators

PairA1, A2
: P(TermA1

)_P(TermA2
) � P(TermA1 7A2

)

Sigmai
A1, A2

: P(TermAi) � P(TermA1 6 A2
)

LambdaA : P(TermA=) � P(TermA)

as follows:

PairA1, A2
(X1 , X2)

=Def [(P1 , P2) : A1 7 A2 | P1 # X1 and P2 # X2].

Sigma i
A1, A2

(Xi)

=Def [_i (Pi) : A1 6 A2 | Pi # Xi] (i=1, 2)

LambdaA(X )

=Def [*x .P : A | \Q # X .P[Q�x] # SN=].

Definition 5.8. Let A be an m-type. By induction on
the structure of A we simultaneously define

(a) The operators

{NegA : P(TermsA=) � P(TermsA)
NegA= : P(TermsA) � P(TermsA=),

(b) The sets �A� and �A=�.

as follows:

(a) Let X�TermA and Y�TermA= . By the involutive
property of negation in our system it is not restrictive to
consider only the cases for A atomic and A a conjunction.

�� A#:.

{Neg:(Y )=Def Var: _ Lambda:(Y )
Neg:=(X )=Def Var:= _ Lambda:=(X ).
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�� A#A1 7A2 (A=#A=

1 6 A=

2 ):

{
NegA(Y )=Def VarA _ Pair(�A1 �, �A2 � )

_ LambdaA(Y )

NegA=(X )=Def VarA= _ \.
2

i=1

Sigmai (�A=

i � )+
_ LambdaA=

1 6 A=
2
(X ).

(b) For all A, NegA is a decreasing operator (w.r.t. set
theoretical inclusion), since LambdaA is so. Then, once one
has defined NegA for some A, it is possible to get, by
Tarski's Fixed-Point Theorem, the smallest fixed-point of
the (increasing) operator corresponding to the composition
of NegA with NegA= , i.e. NegA b NegA= . Let us call X0 such
a fixed-point. We then define

{�A�

�A=�

=Def X0

=Def NegA=(X0).

We extend the definition of computable set of terms to all
types by defining �=�=Def SN= .

Note that, for our strong normalization proof, the use of
the smallest fixed point in the above definition is not essen-
tial. Any other possible fixed-point would work.

Since �A� is a fixed-point of NegA b NegA= , we get what
we were looking for, i.e., an operator with the property
�A�#NegA(�A=�). Given an m-type A, from the fact
�A�#NegA(�A=�) and the definition of NegA , the proper-
ties (i)��(iv) of Claim 5.1 descend easily.

Because of the use of the fixed-point theorem, our proof
of strong normalization requires the full power of
Generalized Inductive Definitions. Such a requirement,
however, is not proved to be a minimal one. Therefore it
could be the case a proof can be found needing a strictly
weaker requirement.

APPENDIX: STRONG NORMALIZATION OF *SYM
PA

In this appendix, we will prove the strong normalization
property for terms of *Sym

PA .
We first modify system *Sym

PA as follows: in the formation
of types, instead of the sets

A=[u=v | u, v PA-terms of type Int]

A==[u{v | u, v PA-terms of type Int]

we take as atomic and negated atomic types the singletons

A
�

=[U] A==[U=].

The term formation rules and the reduction rules remain
unchanged but for the fact that we replace U for any atomic

formula of the form t=v, and U= for any negated atomic
formula of the form t{v.

We call the system so obtained *Sym
PA&U .

It is straightforward to check that, for any term of *Sym
PA ,

there exists a term of *Sym
PA&U and these two terms have

isomorphic reduction trees. For instance, the term

(*\ n .PA1 , xt=v) C y_n .n{n 6 t{v

has

(*\ n .PA1 , xU) C y_n .U= 6 U=

as its counterpart in *Sym
PA&U .

We will prove the strong normalization property for
terms of *Sym

PA&U , thus immediately obtaining strong nor-
malization for terms of *Sym

PA .
It is worthwhile to stress that the proof given in the

present section works also for *Sym
2 for any 2.

Our proof will consist in an extension of the one of
Theorem 2.9. Most of the Lemmas of Section 5 have exactly
the same statement when we consider *Sym

PA&U instead of *Sym
PA

and need simply to have their proofs extended. Even more,
the extensions will consist mostly in adding new induction
cases. For such lemmas, instead of restating them we will
gives only the parts to be added to their proofs.

Of course also Claim 5.1 need to be extended by adding
the following clauses to it.

Extension of Claim 5.1.

(v) If v : Int with nf(v)#0, then

Ind(v, P, F ) # �A� � P # �A� & SNA 6 F # SNA

(vi) If v : Int with nf(v)#sk+10, then

Ind(v, P, F ) # �A�

� P # SNA 6 F[sk0, Ind(sk0, P, F )] # �A� & SNA

(vii) If v : Int and nf(v) is not a numeral, then

Ind(v, P, F ) # �A� � P, F # SNA

(viii) *\ n .P # �\n .A� � \t : IntP[t�n] # �A�

(ix) _t(P) # �_n .A� � P # �A�

(x) PA i (P1 , ..., Pni) � \j # [0, ..., ni] .Pj # SNU

(1�i�6).

From now on by ``Claim 5.1'' (or simply ``the claim'') we
will intend its extension for the *Sym

PA&U case. Also for the
lemmas, once we have extended them, any reference to them
will be to their versions for system *Sym

PA&U .
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Extension of the proof of Lemma 5.2.

v P#Ind(v, Q, F ). Let a be a bound for v, b a bound
for Q, and c a bound for F if nf(v)#0 or nf(v) is not a
numeral, and a bound for F[sk0, Ind(sk0, Q, F )], too, if
nf(v)#sk+10. a, b, and c exist by the claim and Lemma 3.2.
It is now easy to check that a+b+2c is a bound for
Ind(v, Q, F ). In fact, in the worst case, when nf(v)#sk+10,
one could reduce v, Q and F inside Ind(v, Q, F ), to sk+10,
Q$ and F $, respectively, and then reduce F $[sk0,
Ind(sk0, Q$, F $)].

v P#_t(Q). Then C#_n .C1 . By point (ix) of the
claim and the induction hypothesis we get Q # SNC and
then _t(Q) # SNC .

v P#*\ n .Q. Then C#\n .C1 . By point (viii) of the
claim and applying the induction hypothesis we get
\t : Int .Q[t�n] # SNC and then Q # SNC , from which it
follows that *\ n .Q # SNC .

v P#PAi (P1 , ..., Pni) (1�i�6). Immediate by the
claim. K

By Lemma 5.2, points (v) and (vi) of the claim can be
simplified as follows:

(v) If v : Int with nf(v)#0, then

Ind(v, P, F ) # �A� � P # �A� 6 F # SNA

(vi) If v : Int with nf(v)#sk+10, then

Ind(v, P, F ) # �A�

� P # SNA 6 F[sk0, Ind(sk0, P, F ) # �A�

Extension of the proof of Lemma 5.3. Because of the
presence of terms of the form Ind(v, R, F ), the lemma has to
be proved by double induction, the secondary one being on
the normalization tree of P.

v P#Ind(R, F ) with nf(v)#0. By the claim, we have
to prove R # �A� and F # SNA . F # SNA follows by
hypothesis, since F is a subterm of Ind(v, R, F ) C Q. The
fact that Ind(v, R, F ) C Q � Ind(0, R, F ) C Q � 1 R C Q
enables us to infer \Q # �A=� .R C Q # SN= from the
hypothesis and to apply the secondary induction
hypothesis, from which R # �A� follows.

v P#Ind(v, R, F ) with nf(v)#sk+10. By the claim,
the thesis follows by checking that F[sk0, Ind(sk0, R, F )] #
�A� and R # SNA . From the hypothesis and the fact that
Ind(v, R, F ) � Ind(sk+10, R, F ) � 1 F[sk0, Ind(sk0, R, F )],
\Q # �A=� .F[sk0, Ind(sk0, R,F )] C Q # SN= follows. Then,
by the secondary induction hypothesis F[sk0, Ind(sk0,R, F )]
# �A�, while by hypothesis R # SNA .

v P#Ind(v, R, F ) with nf(v) not a numeral. By the
hypothesis, we trivially get R, F # SNA . The thesis follows
by point (vii) of the claim.

v P#*\ n .P1 . Then A#\n .A1 . By point (viii) of the
claim we need to prove P1[t�n] # �A1 � for all t : Int. By the
hypothesis and point (ix) of the claim we can infer that, for
all t : Int, \Q$ # �A=

1 � . (*\ n .P1) C _t(Q$) # SN= , and hence
for all t : Int, \Q$ # �A=

1 � .P1[t�n] C Q$ # SN= . We can now
apply the induction hypothesis to get P1[t�n] # �A1 � for
all t : Int.

v P#_t(P1).Then A#_n .A1 . By point (ix) of the
claim we have to prove P1 # �A1 �. By the hypothesis and
point (ix) of the claim we can infer \Q$ # �A=

1 � ._t(P1) C
(*\m .Q$) # SN= for m � FV(Q$), since Q$[t�m]#Q$ for
all t : Int. Therefore we have also \Q$ # �A=

1 � .P1 C
Q$ # SN= .P1 # �A1 � now descends from the induction
hypothesis.

v P#PAi (P1 , ..., Pni) (1�i�6). Immediate by the
claim. K

Extension of the proof of Lemma 5.4. Because of the
presence of terms of the form Ind(v, R, F ), the lemma has to
be proved by double induction, the secondary one being on
the normalization tree of P, which is finite by Lemma 5.2

v P#Ind(v, R, F ) with nf(v)#0. We have four dif-
ferent cases to take into account: Ind(v, R, F ) can reduce
either to Ind(v, R, F $), or to Ind(v, R$, F ) or to Ind(v$, R, F )
or to R (when v#0). In the first case F �1 F $ and, by the
hypothesis and the claim, R # �C� and F # SNC . Then, since
also F $ # SNC , the claim allows us to infer Ind(v, R, F $) #
�C�. In the second case R �1 R$ and R # �C� by the claim.
Since Ind(v, R, F ) � Ind(0, R, F ) �1 R we get, by the
secondary induction hypothesis, that R$ # �C�. The thesis
now can be inferred by the claim since, by the hypothesis
and the claim, F # SNC . In the fourth case the thesis easily
descends from the hypothesis and the claim. Also in the
third case, when v �1 v$, the thesis easily descends from the
hypothesis and the claim.

v P#Ind(v, R, F ) with nf(v)#sk+10. We have
four cases to take into account: Ind(v, R, F ) can reduce
either to Ind(v, R, F $) or to Ind(v, R$, F ) or Ind(v$, R, F )
or to F[sk0, Ind(sk0, R, F )] (in case v#sk+10). In the
first case, by the hypothesis and the claim, we have
that F[sk0, Ind(sk0, R, F )] # �C� and R # SNC . Since
Ind(v, R, F ) � Ind(sk+10, R, F) �1 F[sk0, Ind(sk0, R, F $)],
we get, by the secondary induction hypothesis, F[sk0,
Ind(sk0, R, F $)] # �C�. With the same argument we get
F $[sk0, Ind(sk0, R, F $)] # �C�. The thesis now is a conse-
quence of the claim. For the second case, by the hypothesis
and the claim, we get F[sk0, Ind(sk0, R, F )] # �C�

and R # SNC . Since Ind(v, R, F ) � Ind(sk+10, R, F ) �1

F[sk0 , Ind(sk0 , R , F )] �1 F[sk0 , Ind(sk0 , R$ , F )], we
can apply the secondary induction hypothesis and get
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F[sk0, Ind(sk0, R$, F )] # �C�. The thesis is now a conse-
quence of the claim when we observe that R # SNC implies
R$ # SNC . In the third and fourth case we get the thesis as
immediate consequence of the hypothesis and the claim.

v P#Ind(v, R, F ), with nf(v) not a numeral. We have
to consider three cases according to which one among v, R,
and F reduces. In the first case we get the thesis immediately
by the claim. For the second case we have to consider that
R$ # SNC , by the fact that, by the claim, R # SNC . This fact
enables us to infer the thesis using the claim. The third case
can be proven similarly.

v P#*\ n .P1 , _t(Q). In both such cases the thesis is
an immediate consequence of the hypothesis and the claim.

v P#Indi (P1 , ..., Pni) (1�i�6). Immediate by the
claim. K

Extension of the proof of Lemma 5.5. We have to con-
sider two more, pairwise symmetric, cases.

5. {P#*\ n .P1 , Q#_t(Q1), S#P1[t�n] C Q
P#_t(P1), Q#*\ n .Q1 , S#P1 C Q1[t�n].

We prove the first case, the second one is similar. By the
claim we have that P1[t�n] # �A1 � for all t : Int, and
Q1 # �A=

1 �. By the induction hypothesis, P1[t�n] C Q for
all t : Int in particular for the t considered. K

For the proof of strong normalization for *Sym
PA&U we need

to have a stronger version of Lemma 5.6.

Extended Lemma 5.6. Let C be a type and P #
TermC with FV(P)�[xA1

1 , ..., xAn
n ] _ [g1 , ..., gm], where xi

(1�i�n) is a term variable of type Ai and gj (1� j�m) is
a PA-terms variable of PA-type Gj . Then

\t1 : G1 } } } tm : Gm .\P1 # �A1� } } } Pn # �An� .

P[t1 �g1 , ..., tm �gm][P1 �x1 , ..., Pn �xn] # �C�.

Proof. By double induction: primary on the structure of
P and secondary on the sum of the values of numerals in P
(by numerals we mean closed PA-terms of type Int). To sim-
plify notation, we denote [Q1 �y1 , ..., Qk �yk] by [Q�y]. We
recall that, in *Sym

PA&U , C#C[t�g] for any type C, PA-term
variable g, and PA-term t.

v P#x, (P1 , P2) , _i (Pi), P1 C P2 . As in the proof of
Lemma 5.6.

v *x .P$. We have to prove (*x .P$)[t�g][P�x] # �C�.
We have that (*x .P$)[t�g][P�x]#*x .P$[t�g][P�x] since
we can assume, by the possibility of renaming bound
variables, that xC=

� [xA1[t, g]
1 , ..., xAn[t�g]

n ]. By the claim,

what we have to prove is then that, for all Q # �C=�,
P$[t�g][Q�x, P�x] # �=�, a fact that follows by the induc-
tion hypothesis.

v P#Ind(v, R, F ) with nf(v)#0. By the induction
hypothesis we get R[t�g][P�x], F[t�g][P�x] # �C�. More-
over, by Lemma 5.2, F[t�g][P�x] # SNC . The thesis is now
a consequence of the claim, since Ind(v, R, F )[t�g][P�x]#

Ind(v[t�g][P�x], R[t�g][P�x], F[t�g][P�x]) and since,
by the hypothesis, nf(v)#nf(v[t�g][P�x]).

v P#Indn, x(v, R, F ) with nf(v)#sk+10. By the
induction hypothesis we get R[t�g][P�x], F[t�g][P�x] #
�C�. By the claim, what we have to prove is F[t�g][P�x]
[sk0, Indn, x(sk0, R, F )[t�g][P�x]] # �C�. Since, by our
notational convention, F[t�g][P�x][sk0, Indn, x(sk0, R, F )
[t�g][P�x]]#F[t�g, sk0�n][P�x, Indn, x(sk0, R, F )[t�g]
[P�x]�x] and n and x are bound in Indn, x(v, R, F ), we have
that the thesis follows by the induction hypothesis once we
have shown that Indn, x(sk0, R, F )[t�g][P�x] # �C�. This
fact follows by the secondary induction hypothesis.

v P#Ind(v, R, F ) with nf(v) not a numeral. By the
induction hypothesis we get R[t�g][P�x], F[t�g][P�x] #
�C�. Hence by Lemma 5.2, R[t�g][P�x], F[t�g][P�x]
# SNC . The thesis now is a consequence of the claim.

v P#PAi (P1 , ..., Pni) (1�i�6). In all these cases the
thesis follows by the claim and the induction hypothesis. K

Proof of Theorem 3.5. Let P : C be a term with
FV(P)=[xA1

1 , ..., xAn
n ] _ [g1 , ..., gm]. By Claim 5.1(i) we

get xi # �Ai � (i=1, ..., n) and therefore, by Lemma 5.6
P#P[x1 �x1 , ..., xn �xn][ g1 �g1 , ..., gm �gm] # �C�.
Lemma 5.2 allows now to infer P # SNC .

Symmetric Candidates for *Sym
PA&U . We extend now the

notion of symmetric candidate given in Subsection 5.1, in
such a way it can satisfy the additional clauses of the claim.

Definition 5.7 is extended with the additional operators

Ind0, A , Ind s , A ,

Ind v , A , IndA , INDA : P(TermA) � P(TermA)

ForAlln, A : P(TermA) � P(Term\n } A)

Existsn, A : P(TermA) � P(Term_n } A)

AxPA i : P(TermU )_ } } } _P(TermU )

� P(TermU ) (1�i�6),

which are defined as follows:

Ind0, A(X )

=Def [Ind(v, P, F ) : A | nf(v)#0,

P # X & SNA , F # SNA]
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Inds , A(X )

=Def [Ind(v, P, F ) : A | nf(v)#sk+10, P # SNA ,

F[sk0, Ind(sk0, P, F )] # X & SNA]

Ind v , A(X )

=Def [Ind(v, P, F ) : A | nf(v) not a numeral,

P, F # SNA]

IndA(X )

=Def Ind0, A(X ) _ Ind s , A(X ) _ Ind v , A(X )

INDA(X )

=Def least fixed-point of the increasing

map Y [ X _ IndA(Y )

ForAlln, A(X )

=Def [*\n .P : \n .A | \t : Int .P[t�n] # X]

Existsn, A(X )

=Def [_t(P) : _n .A | t : Int, P # X]

AxPA i (X1 , ..., Xni)

=Def [PA i (P1 , ..., Pni) | P1 # X1 , ..., Pni # Xni]

(1�i�6)

Because of the presence of terms we define, besides the
operator Neg, whose definition is also extended, the
operator NEG. A candidate is now a fixed-point of the
composition of NEG with itself.

Definition (Symmetric Candidates for *Sym
PA&U). Let A

be an m-type. By induction on the structure of A we
simultaneously define

(a) The operators

{NegA : P(TermsA=) � P(TermsA)
NegA= : P(TermsA) � P(TermsA=)

(b) The operator

NEG: P(TermsA) � P(TermsA=)

(c) The sets �A� and �A=�

as follows:

(a) Let X�TermA and Y�TermA= . By the involutive
property of negation in our system it is not restrictive to
consider only the cases A atomic, A conjunction, and A
universally quantified formula:

�� A#U.

{
NegU (Y ) =Def VarU _ \.

6

i=1

AxPA i (SNU , ..., SNU )+
_ LambdaU (Y )

NegU=(X )=Def VarU= _ LambdaU=(X ).

�� A#A1 7 A2 (A=#A=

1 6 A=

2 ).

{
NegA(Y ) =Def VarA _ PairA(�A1 �, �A2� )

_ LambdaA(Y )

NegA=(X )=Def VarA= _ \.
2

i=1

Sigmai(�A=
i � )+

_ LambdaA1
=

6 A2
=(X ).

�� A#\n .A1 (A=#_n .A=

1 ).

{
NegA(Y ) =Def VarA _ ForAlln, A1

(�A1 � ) _ LambdaA(Y )

NegA=(X)=Def VarA= _ Existsn, A=(�A=

1 � )

_ LambdaA1
=

6 A2
=(X ).

(b) For all A, once we have defined NegA , we can define
NEGA as follows: Let X�TermA= ;

NEGA(X )=Def INDA(NegA(X )).

(c) For all A, NegA is a decreasing operator (w.r.t. set
theoretical inclusion), since LambdaA is so. Moreover, since
INDA is increasing, NEGA is decreasing as well. Then, once
one has defined NEGA for some A, it is possible to get, by
Tarsky's Fixed-Point Theorem, the smallest fixed-point of
the (increasing ) operator NEGA b NEGA= . Let us call it X0 .
We then define

{�A�

�A=�

=Def X0

=Def NEGA=(X0).

We extend the definition of a computable set of terms to
all types by defining �=�=Def SN= .

The clauses of the claim are now an immediate conse-
quence of the definition of �A�, because of the definition of
NEGA and the fact that, being a fixed-point, we have that
�A�#NEGA(�A=� ).

We recall, once again, that the proof provided works also
for *Sym

2 for any 2.
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