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a b s t r a c t

The classical functional delta method (FDM) provides a convenient tool for deriving the
asymptotic distribution of statistical functionals from the weak convergence of the respec-
tive empirical processes. However, for many interesting functionals depending on the tails
of the underlying distribution this FDM cannot be applied since the method typically re-
lies on Hadamard differentiability w.r.t. the uniform sup-norm. In this article, we present
a version of the FDM which is suitable also for nonuniform sup-norms, with the outcome
that the range of application of the FDM enlarges essentially. On one hand, our FDM, which
we shall call the modified FDM, works for functionals that are ‘‘differentiable’’ in a weaker
sense than Hadamard differentiability. On the other hand, it requires weak convergence
of the empirical process w.r.t. a nonuniform sup-norm. The latter is not problematic since
there exist strong respective results on weighted empirical processes obtained by Shorack
andWellner (1986) [25], Shao and Yu (1996) [23],Wu (2008) [32], and others.We illustrate
the gain of the modified FDM by deriving the asymptotic distribution of plug-in estimates
of popular risk measures that cannot be treated with the classical FDM.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we consider estimators for the functional ρg defined by

ρg(F) := −
∫
∞

−∞

x dg(F(x)), (1)

where the domain of ρg is the set of all distribution functions (df) F on the real line for which the integral in (1) exists, and
g is some fixed df on the interval [0, 1]. Our considerations are motivated by the fact that, in recent years, functionals of the
form (1) have commonly received interest in financial and actuarial mathematics as risk measures. More precisely, in this
field the functional ρg is called distortion risk measure with distortion function g . At the end of the introduction we will
explain the meaning of ρg in this context and we will provide some examples.
At first, however, we would like to point out that ρg is strongly related to functionals used to represent L-statistics. It is

indeed well known (see, e.g., [21, p. 265]) that a wide class of L-statistics can be represented as−ρg(Fn), where Fn denotes
the empirical df of n i.i.d. randomvariableswith df F . The asymptotic distribution of−ρg(Fn)was already derived in [26]; see
also [21, Section 8.2.4]. Thus, if ρg(F) is estimated by ρg(Fn) based on i.i.d. data, the results in [26,21] immediately provide
the asymptotic distribution of the plug-in estimate ρg(Fn). However, there are several situations where the estimate Fn of
F differs from the empirical df or where the data are dependent. Then the results in [26,21] do not apply any longer. A
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unifying approach for overcoming this problem is the functional delta method (FDM) in the sense of [8,10,15]; see also
[28, Section 3.9] or [29, Section 20.2]. Once one has shown the Hadamard differentiability of ρg w.r.t. the sup-norm ‖ · ‖∞,
the asymptotic distribution can be immediately derived from the weak limit w.r.t. to ‖ · ‖∞ of the corresponding empirical
process

√
n(Fn − F). For an illustration and examples see, e.g., [8,10,20,28].

However, there is an unsatisfactory fact. The Hadamard differentiability of ρg at F w.r.t. the sup-norm requires quite a
restrictive assumption on g . If g (regarded as a measure) has compact support strictly within the open interval (0, 1) then
the functional ρg is easily seen to be Hadamard differentiable (cf. [29, Lemma 22.10]), and there are several related results
assuming that the compact support of g is strictly within (0, 1); see, e.g., [11,16,22]. On the other hand, if the compact
support supp(g) of g contains at least one of the boundary points 0 or 1 (which is the case for several popular distortion risk
measures), then Hadamard differentiability may fail. To see this, we first note that ρg(F) has the alternative representation

ρg(F) =
∫
(−∞,0)

g(F(t))dt −
∫
[0,∞)

(
1− g(F(t))

)
dt (2)

provided the integral in (1) exists; recall that g is a df on [0, 1], so g(F(·)) is a df on the real line (If we use (2) as the definition
of ρg , then g may be any nondecreasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1). In view of (2), the
candidate for the Hadamard derivative is easily identified to be ρ̇g,F (V ) :=

∫
R g
′(F(t))V (t)dt for bounded and continuous

directions V . To verify that ρ̇g,F does indeed provide the Hadamard derivative of ρg at F w.r.t. the sup-norm ‖ · ‖∞, one has
to show that ‖V − Vn‖∞ → 0 implies |ρ̇g,F (V )− h−1n (ρg(F + hnVn)− ρg(F))| → 0, i.e.

lim
n→∞

∣∣∣∣∫
R

(
g ′(F(t))V (t)−

g(F(t)+ hnVn(t))− g(F(t))
hn

)
dt
∣∣∣∣ = 0, (3)

for any sequence (hn) ⊂ R\ {0} converging to 0. However, if supp(g) = [0, 1] (or at least 0 ∈ supp(g) or 1 ∈ supp(g)), then
in general (3) cannot be deduced from ‖V − Vn‖∞ → 0. To give a simple example, we set g(x) := x (so ρg(F) is nothing but
the negative mean of F ). In this case we have g ′ ≡ 1 and therefore (3) reads as

lim
n→∞

∣∣∣∣∫
R

(
V (t)− Vn(t)

)
dt
∣∣∣∣ = 0. (4)

Now, it is obvious that ‖V − Vn‖∞ → 0 does not imply (4). It was already emphasized in, e.g., [29, Section 22.1] that
methods based on Hadamard differentiability w.r.t. the sup-norm do not cover the simplest L-statistic: the sample mean.
Similar arguments apply to more interesting distortion functions g with 0 ∈ supp(g); see, e.g., (6) below.
The convergence in (3) would hold if we had assumed that Vn converges to V w.r.t. the nonuniform sup-norm ‖ · ‖λ :=

‖(·)φλ‖∞ based on the weight function φλ(t) := (1 + |t|)λ, t ∈ R, with λ > 1. So one might tend to replace the uniform
sup-norm by the nonuniform sup-norm (λ-norm) in the classical FDM (in the sense of [10,28,29]) applied to the functional
ρg . However, then the argument F of ρg would not have a finite norm: As limt→∞ F(t) = 1, we clearly have ‖F‖λ = ∞ for
all λ > 0. Therefore the classical FDM does not work. Nevertheless the approach of the nonuniform sup-norm is not that
bad. Studying the proof of the FDM in detail, one easily observes that the imposed norm is essential only for the tangential
space. And in contrast to F itself, the empirical process

√
n(F − Fn) may perfectly have a finite λ-norm under suitable

assumptions on the tails of F , so that the space of all continuous functions with finite λ-norm should be suitable for being
the tangential space. In Section 2,wewill present a corresponding notion of differentiabilitywhich isweaker thanHadamard
differentiability but still strong enough for obtaining a (modified) FDM. The modified FDMwill be given in Section 4. Before,
in Section 3, we will illustrate our method by means of three examples. We will consider the case where Fn is a smooth
empirical df, and the cases of censored and dependent data. The examples show in particular how powerful the method
presented is.
Beforewe turn to our theoretical results, wewill briefly discuss themotivation of ρg in financial economics. For a random

variable X , regarded as a financial position, the value ρg(FX ) should be seen as the minimal amount of capital (solvency
capital requirement; SCR) which has to be added to the position X in order to make it acceptable; see, e.g., [2,6,9]. A naive
choice of the SCR would be the negative mean ρI(FX ) := −

∫
∞

−∞
xdFX (x), so that ‘‘on average’’ the position X will not erode

more capital than the SCR. However the mean does not take into account the riskiness of a position. One can overcome this
problem by manipulating the df FX using a risk-averse (i.e. concave) distortion function g , i.e. by choosing the SCR as the
negative mean of the conservatively distorted df g(FX (·)) (cf. [12,30,31]). This leads to the functional ρg in (1) which has the
alternative representation (2).
Surprisingly, most of the popular risk measures in practice can be represented as in (2). Let us give two examples. First,

the Value-at-Risk at level α ∈ (0, 1) of a position X with df F is defined by

VaRα(F) := −F→(α), (5)

where F→(α) := inf{t ∈ R : F(t) > α} is the right-continuous inverse of F at α. It is a distortion risk measure
w.r.t. g(x) = 1(α,1](x). If the position X is secured by the capital VaRα(FX ) (SCR), then the position will not erode more
capital than the SCRwith probability 1−α (with α preferably close to 0). This comprehensible interpretation is impaired by
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the fact that the Value-at-Risk does not take into account themagnitude of loss ‘‘on the rare occasions’’. Second, the Average
Value-at-Risk at level α ∈ (0, 1) of a random variable X with df F is defined by

AVaRα(F) :=
1
α

∫ α

0
VaRa(F)da, (6)

provided the integral exists. It is a distortion risk measure w.r.t. g(x) = (x/α) ∧ 1. If FX (F→X (α)) = α, then we have
AVaRα(FX ) = E[−X | − X ≥ VaRα(FX )] indicating that the Average Value-at-Risk overcomes the drawback of the Value-
at-Risk. This is why the Average Value-at-Risk is that popular in practice. We emphasize that the distortion function g
corresponding to AVaRα has the interval [0, α] as compact support (in particular 0 ∈ supp(g)) and has a similar behavior at
the left boundary of [0, 1] as the identity g(x) = x. Thus, according to our preceding discussion, in general the asymptotic
distribution of empirical estimates ρg(Fn) of ρg(F) cannot be derived by using the classical FDM. However, it can be derived
by using the modified FDM to be presented in this article.

2. Quasi-Hadamard differentiability, and the asymptotic distribution of nonparametric estimates of ρg (F)

Recall that tangential Hadamard differentiability is the right type of differentiability in connectionwith the deltamethod;
see, for example, [10,28,29]. As indicated in the introduction,we start our considerationswith introducing a slightlymodified
notion of tangential Hadamard differentiability which we call quasi tangential Hadamard differentiability (or just quasi-
Hadamard differentiability). It is shown in Section 4 that this type of ‘‘differentiability’’ is sufficient for proving a FDM.

Definition 2.1 (Quasi-Hadamard Differentiability). Let V be a vector space, (V′, ‖ · ‖V′) be a normed vector space, and f be a
mapping f : Vf → V′ defined on a subset Vf of V. Let V0 be a subspace of V equipped with a norm ‖ · ‖V0 , and C0 be a subset
of V0. Then f is said to be quasi-Hadamard differentiable at θ ∈ Vf tangentially to C0〈V0〉 if there is some continuous map
DHadθ;C0〈V0〉f : C0 → V′ such that

lim
n→∞

∥∥∥∥DHadθ;C0〈V0〉f (v)− f (θ + hnvn)− f (θ)hn

∥∥∥∥
V′
= 0 (7)

holds for each triplet (v, (vn), (hn)) with v ∈ C0, (vn) ⊂ V0 satisfying ‖vn − v‖V0 → 0 as well as θ + hnvn ∈ Vf for every
n ∈ N, and (hn) ⊂ R0 := R \ {0} satisfying hn → 0. In this case the map DHadθ;C0〈V0〉f is called the quasi-Hadamard derivative
of f at θ tangentially to C0〈V0〉.

Of course, the norm ‖ · ‖V0 induces a topological structure on C0: If C0 is not a subspace but only a subset of V0, then we
may regard ‖ · ‖V0 at least as a metric. Actually the definition of quasi-Hadamard differentiability still makes sense if the
norms ‖·‖V0 and ‖·‖V′ are replaced bymetrics; see Remark 4.2 below. The notion of quasi-Hadamard differentiability differs
from the ‘‘classical’’ tangential Hadamard differentiability (in the sense of [1,10,28]) primarily in that V is not required to be
a normed vector space. Also notice that in Definition 2.1 it is not required that θ ∈ V0. It is further worth mentioning that if
‖ · ‖V0 provides a norm on all of V and if C0 = V0, then the two notions of ‘‘differentiability’’ coincide. Finally we emphasize
that the notion of quasi-Hadamard differentiability differs from the concept of quasi-differentials introduced in [21, p. 221].
The latter concept was introduced to simplify themethod of checking ‘‘Fréchet differentiability’’ (in the sense of [21, p. 217])
of statistical functionals; the benefit of this concept is illustrated in [21, p. 255] in the context of M-estimates.
We are now going to show that the functional ρg given by (1) (resp. (2)) is quasi-Hadamard differentiable tangentially

to some suitable tangential space. We denote by D the vector space of all càdlàg functions on R, where R denotes the usual
two-point compactification of R. We write Fg for the set of all df F on R for which the integral in (1) exists. Recall that
φλ : R→ [1,∞]was defined by φλ(t) = (1+|t|)λ, t ∈ R, for some λ > 1. WewriteDλ for the space of all càdlàg functions
V : R→ R satisfying ‖V‖λ := ‖Vφλ‖∞ <∞. Notice that ‖ · ‖λ provides a norm on Dλ, that Dλ is a subspace of D, and that
‖ · ‖λ does not provide a norm on all of D. We write Cλ for the subspace of all continuous functions of Dλ, and note that D,
Fg , R, ρg , Dλ, Cλ and ‖ · ‖λ will play the roles of V, Vf , V′, f , V0, C0 and ‖ · ‖V0 (respectively) in the setting of Definition 2.1.
Now, g as a nondecreasing function is differentiable dt-almost everywhere, the setDP g of all differentiability points is

a Borel set, and the derivative g ′(x) is nonnegative for every x ∈ DP g . We set g ′ :≡ 0 outsideDP g , so that the derivative
g ′ is a Borel measurable function. Thus we may set for every F ∈ Fg ⊂ D

ρ̇g,F (V ) :=
∫

R
g ′(F(t)) V (t) dt, V ∈ Cλ, (8)

provided the integral exists (for instance if g ′ is bounded). The following result shows that if g and F are sufficiently regular,
then the map ρ̇g,F defined in (8) is the quasi-Hadamard derivative of ρg at F tangentially to Cλ〈Dλ〉.

Theorem 2.2 (Quasi-Hadamard Differentiability of ρg ). Suppose that
(a) g is continuous and piecewise differentiable, and g ′ is bounded above by some constant M > 0,
(b) F ∈ Fg takes the value d ∈ (0, 1) at most once if g is not differentiable at d.
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Then the mapping ρg : Fg → R is quasi-Hadamard differentiable at F tangentially to Cλ〈Dλ〉 with quasi-Hadamard derivative

DHadF;Cλ〈Dλ〉ρg(V ) = ρ̇g,F (V ), V ∈ Cλ.

Example 2.3. Condition (a) is fulfilled for, e.g., g(x) = (x/α) ∧ 1 which corresponds to the Average Value-at-Risk at level
α ∈ (0, 1) defined in (6). �

Proof of Theorem 2.2. The operator ρ̇g,F is clearly linear. It is also ‖ · ‖λ-bounded (and therefore ‖ · ‖λ-continuous) since g ′
is (dt-almost everywhere) bounded above by some constantM > 0:

|ρ̇g,F (V )| ≤
∫

R
M‖V‖λ φλ(t)−1 dt ≤

(
M
∫

R
φλ(t)−1dt

)
‖V‖λ, V ∈ Cλ.

Thus, according to Definition 2.1, it only remains to show that∣∣∣∣ρg(F + hnVn)− ρg(F)hn
−

(∫
R
g ′(F(t)) V (t) dt

)∣∣∣∣→ 0, n→∞ (9)

holds true for each triplet (V , (Vn), (hn)), with V ∈ Cλ, (Vn) ⊂ Dλ satisfying ‖Vn−V‖λ → 0 as well as F+hnVn ∈ Fg , n ∈ N,
and (hn) ⊂ R \ {0} satisfying hn → 0.
Using the representation (2) one plainly verifies that the expression on the left-hand side of (9) is bounded above by∫

R

∣∣∣∣g(F(t)+ hnVn(t))− g(F(t))hn
− g ′(F(t)) V (t)

∣∣∣∣ dt. (10)

We denote the integrand of the integral in (10) by In(t). The distortion function g is differentiable dt-almost everywhere
and F takes the value d at most once if g is not differentiable at d. Thus In(t) converges to 0 as n→∞ for dt-almost all t . By
the dominated convergence theorem it thus suffices to find some Lebesgue integrable majorant of (In).
With the help of the triangle inequality and the mean value theorem (along with the continuity and piecewise differen-

tiability of g) we obtain for dt-almost every t ∈ R

In(t) ≤
∣∣∣∣g(F(t)+ hnVn(t))− g(F(t))hn

∣∣∣∣+ g ′(F(t)) |V (t)|
=

∣∣∣∣g ′(ξn(t))hnVn(t)hn

∣∣∣∣+ g ′(F(t)) |V (t)|
≤ M |Vn(t)| +M |V (t)|

for some suitable function ξn in between F and F+hnVn. SinceVn converges toV in (Dλ, ‖·‖λ), wehaveM1 := supn∈N ‖Vn‖λ <
∞. Therefore we obtain

In(t) = In(t)φλ(t)φλ(t)−1

≤

(
M sup

n∈N
|Vn(t)φλ(t)| +M |V (t)φλ(t)|

)
φλ(t)−1

≤

(
M M1 +M ‖V‖λ

)
φλ(t)−1. (11)

The latter expression obviously provides a Lebesgue integrable majorant of (In). �

For the bound (11), more precisely for finding some dt-integrable majorant of (In), it is essential that we work with the
nonuniform sup-norm ‖·‖λ and not, as usual, with the uniform sup-norm ‖·‖∞. Of course, other weight functions φ instead
of φλ for which (11) holds andwhich satisfy

∫
R φ(t)

−1dt <∞ are also possible. If F has compact support or if g has compact
support in the open interval (0, 1) then we could also work with ‖ · ‖∞ (and D instead of Dλ). However, we do not want
to rule out standard (claim) distributions (as, e.g., the Pareto distribution) or the Average Value-at-Risk at level α (which
corresponds to g(x) = (x/α) ∧ 1 whose compact support is [0, α]). For this obvious reason we work with the norm ‖ · ‖λ.
The next remark illustrates how one can proceed if g does not fulfill the continuity requirement of Theorem 2.2. The remark
shows in particular that our proposed method works also for the Value-at-Risk at level α defined in (5) (although in this
case one would certainly apply the classical FDM).

Remark 2.4. Suppose that the distortion function g can be written as g(x) = w0 g0(x) +
∑m
i=1wi 1[αi,1](x), x ∈ [0, 1],

with w0, . . . , wm ∈ R, α1, . . . , αm ∈ (0, 1) and g0 as in Theorem 2.2. Notice that ρgi(F), with gi = 1[αi,1](x), is nothing
but −F→(αi), i.e. the upper αi-quantile of F multiplied by −1. As is generally known, it is easy to show that, if F is
differentiable at F→(αi) with derivative F ′(F→(αi)) > 0, the mapping ρgi is Hadamard differentiable at F tangentially
to C := {v ∈ D : v is continuous} with Hadamard derivative ρ̇gi,F (V ) := V (F→(αi))/F ′(F→(αi)). Using exactly the
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same arguments, one easily obtains that ρgi is also quasi-Hadamard differentiable at F , tangentially to Cλ〈Dλ〉 with the
same ‘‘derivative’’ ρ̇gi,F . Thus, if g0 and F are as in Theorem 2.2, and F is in addition differentiable at F

→(αi)with derivative
F ′(F→(αi)) > 0 for every i = 1, . . . ,m, we immediately obtain that ρg is quasi-Hadamard differentiable at F , tangentially
to Cλ〈Dλ〉with quasi-Hadamard derivative

∑m
i=0wiρ̇gi,F , where ρ̇g0,F is defined as in (8). �

Typically, one is interested in the asymptotic distribution of the estimate ρg(Fn); for example, to obtain asymptotic
confidence intervals for ρg(F) or for hypotheses tests. Theorem 2.2 along with the modified FDM of Theorem 4.1 now yields
a corresponding result (Theorem 2.5). Illustrating examples for Fn can be found in Section 3.We equipDλ with the σ -algebra
Dλ := D ∩Dλ to make it also a measurable space, whereD is the σ -algebra generated by the usual coordinate projections
πt : D→ R, t ∈ R. Recall that D is the space of all càdlàg functions on R. Also notice thatDλ coincides with the σ -algebra
on Dλ generated by the ‖ · ‖λ-closed balls (this can easily be shown by following the instructions in [14, Problem IV.2.4]
adapted to the norm ‖ · ‖λ). For every n ∈ N, we let Fn be a mapping from a probability space (Ωn,Fn, Pn) to D.

Theorem 2.5 (Asymptotic Distribution of ρg(Fn)). Suppose that g and F satisfy conditions (a) and (b) of Theorem 2.2, respec-
tively. Moreover let λ > 1 and suppose that

(i) Fn is (Fn,D)measurable, and Fn ∈ Fg for every n ∈ N,
(ii) Fn − F takes values only in Dλ for every n ∈ N,
(iii) there is some random element B of (Dλ,Dλ) with continuous samples such that

√
n(Fn − F)

d
→ B (in (Dλ,Dλ, ‖ · ‖λ)).

Then, if ρ̇g,F is defined as in (8),

√
n(ρg(Fn)− ρg(F))

d
→ ρ̇g,F (B) (in (R,B(R))). (12)

Proof. First of allwe note that Fn−F is (Fn,Dλ)-measurable becausewe assumed that Fn is (Fn,D)-measurable, Fn−F ∈ Dλ
and Dλ = D ∩ Dλ. Moreover, ρ̇g,F (B) is well defined because B takes values in Cλ. Thus, since the subspace Cλ of all
continuous functions ofDλ is ‖·‖λ-separable, assertion (12) is a consequence of the Theorems 2.2 and 4.1. For an application
of Theorem 4.1 it only remains to ensure that the mapping ω̃ 7→ ρg(W (ω̃) + F) is (F̃ ,B(R))-measurable wheneverW is
a measurable mapping from some measurable space (Ω̃, F̃ ) to (Dλ,Dλ) such thatW (ω̃)+ F ∈ Fg for all ω̃ ∈ Ω̃ . SinceW
is (F̃ ,Dλ)-measurable andDλ is the projection σ -field, we obtain in particular (F̃ ,B(R))-measurability of ω̃ 7→ W (t, ω̃)
for every t ∈ R. Along with the representation (2), this yields (F̃ ,B(R))-measurability of ω̃ 7→ ρg(W (ω̃)+ F). �

Remark 2.6 (Asymptotic Normality). If B in Theorem 2.5 is a Gaussian process with zero mean and measurable covariance
function Γ satisfying σ 2 :=

∫
R

∫
R g
′(F(s))Γ (s, t)g ′(F(t)) ds dt < ∞, then the random variable ρ̇g,F (B) is normally

distributed with mean 0 and variance σ 2. This can easily be shown via the characteristic functions by approximating the
integral

∫
R g
′(F(t))B(t) dt by Riemann sums (of Gaussian variables). For the sake of brevity we omit the details. If one

is interested in confidence intervals or hypotheses tests then, of course, the asymptotic variance σ 2 has to be estimated
consistently. In the next section we also take this problem into account (cf. Remarks 3.3 and 3.8). �

3. Examples

3.1. Uncensored i.i.d. data; smoothed empirical df

Suppose X1, X2, . . . are i.i.d. random variables on some probability space (Ω,F , P) with df F . We denote by F̂n :=
1
n

∑n
i=1 1[Xi,∞) the corresponding empirical df at stage n. For some purposes it might be beneficial to consider a smoothed

version Fn of F̂n (smoothed versions of F̂n have already been studied in [33]). For instance, for the estimation of the Value-
at-Risk VaRα(F) by ρg(Fn) (with g(x) = 1[α,1](x)) a smoothing leads to a significantly smaller mean square error; cf. [24].
Analogous statements concerning the estimation of the Average Value-at-Risk AVaRα(F) by ρg(Fn) (with g(x) = (x/α)∧ 1)
can be found in [5,19].
Here, we consider a smoothing by the heat kernel (Gaussian kernel). We set pε(y) := (2πε)−1/2 exp(−y2/(2ε)) (ε > 0,

y ∈ R), and we denote by (Pε)ε≥0 the corresponding (heat) semigroup, i.e., Pεψ(.) :=
∫

R ψ(y)pε(. − y)dy for ε > 0, and
P0 := I. We focus on the following estimate of F :

Fn(t) := Pεn F̂n(t) =
1
n

n∑
i=1

∫
R
1[Xi,∞)(y)pεn(t − y)dy, t ∈ R.

The next result specifies the asymptotic distribution of the estimate ρg(Fn) of ρg(F). For a Lebesgue absolutely continuous g
the case without smoothing (εn = 0 for all n) was already treated in [26] in the context of L-statistics. A related problemwas
also treated in [18] by use of the ‘‘classical’’ FDM but the conditions on the distortion function g were essentially stronger: g
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was assumed to have compact support in the open interval (0, 1). Here, and at several places later on, we will assume that
F satisfies

lim sup
t→−∞

F(t)|t|γ <∞ and lim sup
t→∞

F(t)tγ <∞ (13)

for some suitable exponent γ , where F := 1− F is the tail function of F .

Theorem 3.1 (Asymptotic Normality). Suppose that
(a) g satisfies assumption (a) of Theorem 2.2,
(b) F ∈ Fg is Lipschitz continuous, and satisfies assumption (b) of Theorem 2.2 and condition (13) for some γ > 2,
(c)
√
n εθn → 0 for some θ ∈ (1/4, (γ − 1)/(2γ )).

Then

law
(√
n(ρg(Fn)− ρg(F))

) w
→ N(0, σ 2)

with

σ 2 :=

∫
R

∫
R
g ′(F(s))Γ (s, t)g ′(F(t)) ds dt, (14)

whereΓ (s, t) = F(s∧t)F(s∨t). In the case εn = 0, n ∈ N, the df F only needs to be continuous rather than Lipschitz continuous.

Examples for a distortion function g , which satisfies condition (a) of Theorem 2.2, were already given in Example 2.3.
Theorem 3.1 yields in particular consistency of ρg(Fn) for ρg(F). For results on strong consistency see [35].

Proof of Theorem 3.1. First of all notice that (13) with γ > 2 implies that σ 2 is finite. The limit process of
√
n(Fn − F)

is known to be an F-Brownian bridge B◦F . Corollary A.2 shows that the weak convergence holds in (Dλ,Dλ, ‖ · ‖λ) with
λ := γ −2γ θ(∈ (1, γ /2)). Thus, in view of Theorem 2.5 and Remark 2.6, the assertion of Theorem 3.1 holds if we can verify
conditions (i)–(ii) of Theorem 2.5 and that B◦F has continuous samples. Condition (i) was already verified in [35, Lemma 3],
and condition (ii) follows from Corollary A.2. Moreover B◦F has continuous samples since F is continuous and B

◦

F has the
same law as B◦(F) for some classical Brownian bridge (cf. [25, p.103]) with continuous samples. Thus the result follows from
Theorem 2.5 and Remark 2.6. If εn = 0, n ∈ N, wemay use Theorem A.1 instead of Corollary A.2. In this case F does not need
to be Lipschitz continuous. However, continuity of F is still needed in order to apply Theorem 2.5. �

Remark 3.2. It is worth mentioning that for εn = 0 for all n ∈ N, Theorem 3.1 specifies the asymptotic distribution of
L-statistics. The conditions imposed here are very similar to those imposed in [26] for the proof of the asymptotic normality
of L-statistics. However, the above result is not restricted to the case where the estimate Fn of F (to be plugged in ρg ) is given
by the empirical df F̂n. Furthermore, the result shows that even in the case where g does not have compact support strictly
within the open interval (0, 1), L-statistics can be analyzed by a (modified) FDM. We can, for example, choose g(x) = x
leading to the sample mean (cf. the introduction). �

Remark 3.3. In order to derive fromTheorem3.1 asymptotic confidence intervals forρg(Fn) one needs a consistent estimate
of the asymptotic variance σ 2. A natural estimator is given by the right-hand side of (14) with F replaced by the empirical df
at stagen, whichwedenote byσ 2n . In this case, strong consistency ofσ

2
n forσ

2 is known from [26, Theorem1].More generally,
one can replace F by the smoothed empirical df Fn (defined in (13)) with εn ↓ 0. Then, in the setting of Theorem 3.1, one can
still prove strong consistency of σ 2n for σ

2. For the sake of brevity we omit the details. �

3.2. Censored data

In insurance practice one often encounters the problem that the data set is censored. For instance, one might have the
relation X = X̃/C between the actual (but unobservable) claim X and the observable fraction X̃ , where C is some random
variable taking values in the interval (0, 1]. HereX and X̃ are nonpositive randomvariables (a negative value ofX corresponds
to a payout to the client), and X̃ and C are assumed to be independent. A similar assumption appears in the factor model for
claim reserving which is the basis of the widely used chain ladder method. We denote by F , F̃ and H the df of X , that of X̃
and that of C (respectively), and we assume that H is known. The goal is the estimation of

ρg(F) = −
∫

R
x dg(F(x)) =

∫ 0

−∞

g(F(t))dt

based on i.i.d. copies X̃1, . . . , X̃n of X̃ . We clearly have the representation F(t) =
∫ 1
0 F̃(tz)dH(z), t ≤ 0, for the df F . Thus a

natural estimator Fn for F based on the censored observations X̃1, . . . , X̃n is

Fn(t) =
∫ 1

0
F̃n(tz)dH(z) =

1
n

n∑
i=1

H((X̃i/t) ∧ 1), t < 0, (15)
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with F̃n := 1
n

∑n
i=1 1[X̃i,0] the empirical df of X̃1, . . . , X̃n.

We now turn to the asymptotic distribution of the estimate ρg(Fn) of ρg(F). It will be given in Theorem 3.7 below. For
every bounded V ∈ Dwe set

τH(V )(t) :=
∫ 1

0
V (zt)dH(z), t ∈ R. (16)

The following lemma shows that τH provides a continuous linear operator onDλ ifH ’s mass near the origin is onlymoderate;
Lemma 3.5 below gives a more transparent sufficient condition.

Lemma 3.4. If H satisfies

sup
t∈R

φλ(t)
∫ 1

0
φλ(zt)−1dH(z) <∞ (17)

then (16) provides a continuous linear operator τH : Dλ → Dλ, V 7→ τH(V ).

Proof. For V ∈ Dλ we obtain

‖τH(V )‖λ = sup
t∈R
|τH(V )(t)φλ(t)|

= sup
t∈R

φλ(t)
∫ 1

0
φλ(zt)−1 {φλ(zt)V (zt)} dH(z)

≤ K‖V‖λ

with K := supt∈R φλ(t)
∫ 1
0 φλ(zt)

−1dH(z). Since K is finite by (17), τH restricted toDλ is indeed a continuous linear operator
from Dλ to Dλ. �

Lemma 3.5. Let K > 0, δ > 1, and suppose that H possesses a Lebesgue density h which satisfies h(x) ≤ Kxδ−1 for all x ∈ (0, 1].
Then assumption (17) of Lemma 3.4 is satisfied for every λ ∈ (1, δ).

Proof. We have

φλ(t)
∫ 1

0
φλ(tz)−1dH(z) ≤ (1+ |t|)λ

∫ 1

0

1
(1+ |tz|)λ

Kzδ−1dz

= K
(1+ |t|)λ

|t|δ

∫
|t|

0

uδ−1

(1+ u)λ
du.

The latter term is bounded above uniformly in t ∈ R, which proves (17). �

Example 3.6. Let H be the df of the beta distribution on (0, 1] with parameters a, b > 0. If a > 1, then H satisfies the
conditions of Lemma 3.5 for δ := a. �

Theorem 3.7 (Asymptotic Normality). Suppose that

(a) g satisfies assumption (a) of Theorem 2.2,
(b) F ∈ Fg satisfies assumption (b) of Theorem 2.2 and condition (13) for some γ > 2,
(c) F̃ is continuous,
(d) H satisfies the assumptions of Lemma 3.5.

Then

law
(√
n(ρg(Fn)− ρg(F))

) w
→ N(0, σ 2) (18)

with

σ 2 :=

∫
R

∫
R
g ′(F(s))Γ (s, t)g ′(F(t)) ds dt, (19)

where Γ (s, t) :=
∫ 1
0

∫ 1
0 [F̃(xt ∧ ys)(1− F̃(xt ∨ ys))]dH(x)dH(y).

Theorem3.7 yields in particular consistency ofρg(Fn) forρg(F). For results on strong consistency see again [35]. Examples
for a distortion function g , which satisfies condition (a) of Theorem 2.2, were already given in Example 2.3.
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Proof of Theorem 3.7. By Lemmas 3.4 and 3.5, τH defined in (16) provides a continuous linear operator from Dλ to Dλ for
any λ ∈ (1,min{γ /2, δ}). Further, condition (13) for F implies that condition (13) also holds for F̃ , so that Theorem A.1
yields

√
n(F̃n − F̃)

d
→ B◦

F̃
(in (Dλ,Dλ, ‖ · ‖λ)).

Therefore the Continuous Mapping Theorem gives
√
n(Fn − F) =

√
n(τH(F̃n)− τH(F̃))

= τH(
√
n(F̃n − F̃))

d
→ τH(B◦F̃ ) (in (Dλ,Dλ, ‖ · ‖λ)),

where the Continuous Mapping Theorem is applicable since the process B◦
F̃
= B◦(F̃) may be assumed to be continuous (F̃

was assumed to be continuous) and the subspace of continuous functions in Dλ is ‖ · ‖λ-separable. The process τH(B◦F̃ )(t) =∫ 1
0 B
◦

F̃
(zt)dH(z), t ≤ 0, is easily seen to be Gaussian. It is centered since E[τH(B◦F̃ )(t)] = E[

∫ 1
0 B
◦

F̃
(zt) dH(z)] = 0 for all t ≤ 0

by Fubini’s theorem. Moreover its covariance function is given by

Γ (s, t) = E
[
τH(B◦F̃ )(t)τH(B

◦

F̃
)(s)

]
= E

[(∫ 1

0
B◦
F̃
(zt)dH(z)

)(∫ 1

0
B◦
F̃
(zs)dH(z)

)]
=

∫ 1

0

∫ 1

0
E
[
B◦
F̃
(xt)B◦

F̃
(ys)

]
dH(x)dH(y)

=

∫ 1

0

∫ 1

0

(
F̃(xt ∧ ys)(1− F̃(xt ∨ ys))

)
dH(x)dH(y), t, s ≤ 0,

where we again used Fubini’s theorem. Now ρ̇g,F (τH(B◦F̃ )) ∼ N(0, σ
2) follows from Remark 2.6.

Thus, in view of Theorem 2.5 and Remark 2.6, for (18) it remains to verify conditions (i), (ii) of Theorem 2.5. Condition (i)
was already verified in [35, Lemma 5] under the assumptions of Lemma 3.5, and condition (ii) with λ ∈ (1,min{γ /2, δ}) is
included in the statement of Theorem A.1. �

Remark 3.8. In order to derive fromTheorem3.7 asymptotic confidence intervals forρg(Fn) one needs a consistent estimate
of the asymptotic variance σ 2. A natural estimator is given by the right-hand side of (19) with F replaced by Fn, which we
denote by σ 2n . One can indeed show that σ

2
n converges P-almost surely to σ 2, provided g ′ is Lebesgue almost everywhere

continuous and F̃ takes the value d at most once if d is a discontinuity of g ′. So as not to break the flow of presentation we
do not go into details. �

3.3. Dependent data

Finally, we briefly discuss how the method can be used to estimate ρg(F) based on dependent data. Let (Xi) be a strictly
stationary sequence of random variables on some probability space (Ω,F , P), and let Fn = 1

n

∑n
i=1 1[Xi,∞) be the corre-

sponding empirical df at stage n. We will consider two popular dependency structures: α- and %-mixing. For the definition
of these (and other) mixing conditions and for examples of strictly stationary α- or %-mixing sequences see, e.g., [3,7,13].
As usual, the corresponding mixing coefficients will be referred to as α(n) and ρ(n), respectively.
If (Xi) is strictly stationary and α-mixing, then we can combine Theorem 2.5 and results of [23] on weighted empirical

processes of α-mixing sequences to derive the asymptotic distribution of ρg(Fn).

Theorem 3.9. Let (Xi) be a strictly stationary α-mixing sequence of random variables with common df F . Suppose that

(a) g satisfies assumption (a) of Theorem 2.2,
(b) α(n) = O(n−θ ) for some θ > 1+

√
2,

(c) F ∈ Fg is continuous, and satisfies assumption (b) of Theorem 2.2 and condition (13) for some γ > 2θ
θ−1 .

Then

law
(√
n(ρg(Fn)− ρg(F))

) w
→ N(0, σ 2) (20)

with

σ 2 :=

∫
R

∫
R
g ′(F(s))Γ (s, t)g ′(F(t)) ds dt,
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where

Γ (s, t) = F(s ∧ t)F(s ∨ t)+
∞∑
k=2

[
Cov(1{X1≤s}, 1{Xk≤t})+ Cov(1{X1≤t}, 1{Xk≤s})

]
.

Proof. Theorem 2.2 of [23] (along with our assumptions (b) and (c)) and a transformation of the process (Fn(·)− F(·))φλ(·)
to a uniform empirical process yield that

√
n(Fn − F)weakly converges to a centered Gaussian process B◦F , with covariance

function Γ , in (Dλ,Dλ, ‖ · ‖λ) for any λ ∈ (1,
γ (θ−1)
2θ ). Thus, in view of Theorem 2.5 and Remark 2.6, it remains to verify

conditions (i) and (ii) of Theorem 2.5 and that B◦F has continuous samples. Condition (i) obviously holds by (2) and the
fact that Fn(t) = 0, t < t1(ω), and Fn(t) = 1, t > t2(ω). Condition (ii) is ensured by Theorem 2.2 of [23] (along with
the aforementioned transformation). Finally, the continuity of B◦F follows from the fact that the limit process of the above
uniform empirical process has continuous samples (cf. the proof of Theorem 2.2 of [23] and apply the Kolmogorov–Čentsov
Theorem), the continuity of F and the Continuous Mapping Theorem. Notice also that σ 2 is finite due to the facts that g ′ is
bounded and that B◦F lies in Dλ. �

For the particular case g(x) = (x/α) ∧ 1 (which corresponds to the Average Value-at-Risk at level α) and a kernel
estimator see also [19]. Notice that for an i.i.d. sequence (Xi) condition (b) of Theorem 3.9 is fulfilled for θ arbitrarily large.
Thus, in that case, conditions (b) and (c) of Theorem 3.9 are equivalent to the conditions imposed on F in Theorem 3.1 for
the case without smoothing (i.e. εn = 0 for all n ∈ N).
For strictly stationary GARCH(p, q) processes, which are often used in mathematical finance, one has under some mild

regularity conditions that α(n) ≤ c%n, n ∈ N, for some constants c > 0 and % ∈ (0, 1); cf. [13]. Thus, these GARCH processes
always satisfy assumption (b) of Theorem 3.9.
If (Xi) strictly stationary and %-mixing, then we can combine Theorem 2.5 and a result of [23] on weighted empirical

processes of %-mixing sequences to derive the asymptotic distribution of ρg(Fn).

Theorem 3.10. Let (Xi) be a strictly stationary %-mixing sequences of random variables with common df F . Suppose that

(a) g satisfies assumption (a) of Theorem 2.2,
(b) F ∈ Fg is continuous, and satisfies assumption (b) of Theorem 2.2 and condition (13) for some γ > 2,
(c)

∑
∞

k=2

∣∣Cov(1{X1≤s}, 1{Xk≤t})+ Cov(1{X1≤t}, 1{Xk≤s})
∣∣ <∞,

(d)
∑
∞

n=1 %(2
n) <∞.

Then

law
(√
n(ρg(Fn)− ρg(F))

) w
→ N(0, σ 2) (21)

with σ 2 (and Γ ) as in Theorem 3.9.

Proof. The proof follows along the lines of the proof of Theorem 3.9 (with any λ ∈ (1, γ /2)) by using that Theorem 2.3
of [23] is applicable due to our assumptions (b)–(d), and is therefore omitted. �

Finally, it is worthmentioning that results similar to those of Theorems 3.9 and 3.10 can be derived for other dependency
concepts by using the quasi-Hadamard differentiability of the map ρg(F) and the modified FDM. For instance, analogous
results can be proven for strictly stationary associated sequences of random variables by again using results of [23], or
for strictly stationary sequences fulfilling the dependence concept of Wu [32]. Strictly stationary associated sequences of
randomvariables arise naturally inmathematical finance. For instance, ARCH(∞)processes are oftenused tomodel financial
log-returns, and it is well known that strictly stationary squared ARCH(∞) processes are associated.

4. Modified functional delta method

In this section we present our modification of the FDM. For a discussion of the classical FDM see, e.g., [1,10,16,17,20,25,
28,29].
Let V and V′ be vector spaces, and V0 be a subspace of V. Let ‖ · ‖V0 and ‖ · ‖V′ be norms on V0 and V′, respectively.

Moreover let V0 and V ′ be σ -algebras on V0 and V′, respectively. Suppose that V0 is nested between the open ball and the
Borel σ -algebra onV0, and thatV ′ is not larger than the Borel σ -algebra onV′.We emphasize again that ‖·‖V0 is not required
to be a norm on all of V. For every n ∈ N, let (Ωn,Fn, Pn) be a probability space, and Tn be a map from Ωn to V. We then
have the following result which involves the notion of quasi-Hadamard differentiability introduced in Definition 2.1. For the
notion of weak convergence in metric spaces we refer to [14, Chapter IV].

Theorem 4.1 (Modified Functional Delta Method). Let f : Vf → V′ be a map defined on some subset Vf of V, let θ ∈ Vf , let C0
be some subset of V0 being separable w.r.t. ‖ · ‖V0 (we regard ‖ · ‖V0 as a metric if C0 is not a vector space), and suppose that
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(i) Tn takes values only in Vf ,
(ii) Tn − θ takes values only in V0, is (Fn,V0)-measurable and satisfies

√
n(Tn − θ)

d
→ V (in (V0,V0, ‖ · ‖V0)) (22)

for some random element V of (V0,V0), on some probability space (Ω,F , P), taking values only in C0,
(iii) ω̃ 7→ f (W (ω̃)+ θ) is (F̃ ,V ′)-measurable whenever W is a measurable mapping from some measurable space (Ω̃, F̃ ) to

(V0,V0) such that W (ω̃)+ θ ∈ Vf for all ω̃ ∈ Ω̃ ,
(iv) f is quasi-Hadamard differentiable at θ tangentially to C0〈V0〉 with quasi-Hadamard derivative DHadθ;C0〈V0〉f .

Then
√
n(f (Tn)− f (θ))

d
→ DHadθ;C0〈V0〉f (V ) (in (V

′,V ′, ‖ · ‖V′)). (23)

Proof. We may and do follow the arguments of the proof sketch for Theorem 3 in [10]. First of all we have to clarify some
measurability issue: In order to ensure that assertion (23) makes sense, we have to show that both f (Tn) and DHadθ;C0〈V0〉f (V )
areV ′-measurable. SettingVn :=

√
n(Tn−θ) andnoting thatn−1/2Vn is (Fn,V0)-measurable by (ii) and thatn−1/2Vn+θ = Tn

takes values only in Vf by (i), the (Fn,V ′)-measurability of f (Tn) = f (n−1/2Vn + θ) is an immediate consequence of (iii).
Further, V (seen as a mapping fromΩ toC0) is clearly (F ,V0∩C0)-measurable. SinceC0 is ‖ · ‖V0-separable, the σ -algebra
V0 ∩ C0 coincides with the Borel σ -algebraB(C0) on C0 w.r.t. ‖ · ‖V0 . Because D

Had
θ;C0〈V0〉

f as the quasi-Hadamard derivative
is (‖ · ‖V0 , ‖ · ‖V′)-continuous and V ′ was assumed to be not larger than the Borel σ -algebra, we also have (B(C0),V ′)-
measurability of DHadθ;C0〈V0〉f . That is, D

Had
θ;C0〈V0〉

f (V ) is indeed (F ,V ′)-measurable.
Now, the convergence in (22) and the Skorohod–Dudley–Wichura almost sure representation theorem (see, e.g., [10,

Theorem 2]) imply the existence of some random elements Ṽ , Ṽ1, Ṽ2, . . . of (V0,V0) on a common probability space
(Ω̃, F̃ , P̃) with V d

= Ṽ , Vn
d
= Ṽn as well as ‖Ṽ − Ṽn‖V0 → 0 and Ṽ ∈ C0 P̃-almost surely (for the application of Theorem 2

in [10] we need the assumptions that V takes values only in C0 and that V0 is nested between the open ball and the Borel
σ -algebra). We set T̃n := n−1/2Ṽn + θ and note that Tn

d
= T̃n. We may and do modify Ṽ and Ṽn in such a way that Ṽ takes

values only in C0, that n−1/2Ṽn + θ takes values only in Vf , and that ‖Ṽ − Ṽn‖V0 → 0 everywhere. As above we then obtain
that both f (T̃n) = f (n−1/2Ṽn + θ) and DHadθ;C0〈V0〉f (Ṽ ) are (F̃ ,V

′)-measurable. Further, we plainly have

√
n (f (T̃n)− f (θ)) =

f (θ + n−1/2
√
n(T̃n − θ))− f (θ)
n−1/2

. (24)

By the quasi-Hadamard differentiability of f at θ tangentially to C0〈V0〉 (along with ‖Ṽ − Ṽn‖V0 → 0 and the fact that Ṽ
takes values only in C0), we have that the right-hand side of (24) converges P̃-almost surely to DHadθ;C0〈V0〉f (Ṽ ) in ‖ · ‖V′ (the
role of hn in (7) is played by n−1/2), and so does the left-hand side in (24). Thus, since the left-hand side in (23) and the
left-hand side in (24) clearly induce the same law on (V′,V ′) and since almost sure convergence induces convergence in
distribution, this implies the claim of Theorem 4.1. �

The measurability assumption (iii) in the preceding theorem is similar to the one in Corollary 1 in [10]. It ensures that
the left-hand sides in (23) and (24) are indeed random elements of V′. This assumption could be dropped by employing the
concept of outer integrals; see, for example, [28,29] for this concept.

Remark 4.2. The result of Theorem 4.1 still holds if in Definition 2.1 and in Theorem 4.1 the norms on V0 and V′ are replaced
by metrics. The above proof obviously still works in this setting. �
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Appendix. Weak convergence of empirical processes in Dλ

Let D, φλ, Dλ and ‖ · ‖λ be defined as in Section 2, and equip D and Dλ with the sup-norm ‖ · ‖∞ and the λ-norm ‖ · ‖λ,
respectively. Further, letD andDλ be defined as in Section 2 before Theorem 2.5. Suppose F is a df on the real line. Further
suppose X1, X2, . . . are i.i.d. random variables with df F on some probability space (Ω,F , P), and let F̂n := 1

n

∑n
i=1 1[Xi,∞)

denote the corresponding empirical df at stage n. It is well known that the empirical process V̂n :=
√
n(F̂n − F) converges

in distribution in (D,D, ‖ · ‖∞) to an F-Brownian bridge B◦F , i.e. to a centered Gaussian process with covariance function
Γ (s, t) = F(s ∧ t)F(s ∨ t).
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For our purposes we need a stronger convergence result. In fact we need the weak convergence w.r.t. the more stringent
norm ‖ · ‖λ, i.e. V̂n :=

√
n(F̂n − F)

d
→ B◦F in (Dλ,Dλ, ‖ · ‖λ). In Section 2 we chose λ > 1, but the results to be given in this

section hold for arbitrary λ ≥ 0. In order to obtain the required convergence we have to impose an additional assumption
on F . We assume

∃ γ > 2λ : lim sup
t→−∞

F(t)|t|γ <∞ and lim sup
t→∞

F(t)tγ <∞, (A.1)

where F := 1−F denotes the tail function of F . The claim of the following theorem is an immediate consequence of Theorem
6.2.1 in [25] since under condition (A.1) we have

∫
R φ2λ(t)dF(t) <∞.

Theorem A.1. Set V̂n :=
√
n(F̂n − F). If F satisfies (A.1) then ‖V̂n − B◦F‖λ

p
→ 0. In particular, V̂n

d
→ B◦F (in (Dλ,Dλ, ‖ · ‖λ)).

The convergence result of Theorem A.1 remains true when replacing the empirical df F̂n by its smoothed version
Fn := Pεn F̂n (cf. (12)), provided εn converges to 0 sufficiently fast and F is sufficiently regular. For corresponding results
on the weak convergence in the sup-norm see, e.g., [27,34].

Corollary A.2. Set Vn :=
√
n(Fn − F), and suppose that F is Lipschitz continuous and satisfies (A.1). Further suppose that

√
n ε(γ−λ)/(2γ )n → 0. Then we have ‖Vn − B◦F‖λ

p
→ 0. In particular, Vn

d
→ B◦F (in (Dλ,Dλ, ‖ · ‖λ)).

For the proof of Corollary A.2 we need the following lemma. Let Bλ be the space of all measurable functions f on Rwith
‖f ‖λ <∞. Moreover, letBλ,0 be the space of all boundedmeasurable functions f onR satisfying f (t)φλ(t)→ 0 as |t| → ∞.

Lemma A.3. Let λ ≥ 0. For every f ∈ Bλ there is some constant Cλ > 0 such that

‖Pεf ‖λ ≤ Cλ‖f ‖λ (A.2)

for all ε ∈ (0, 1]. Moreover, if f ∈ Bλ,0 then

lim
ε↓0
‖Pεf − f ‖λ = 0. (A.3)

Proof. It can easily be shown that
∫

R φλ(y)
−1pε(t − y)dy ≤ Cλφλ(t)−1 for some suitable constant Cλ > 0 independent of t

(cf. [35, Lemma 1]). In view of this inequality the bound (A.2) is more or less obvious.
In order to verify (A.3) pick f ∈ Bλ,0. First we notice that

φλ(y)−1|φλ(t)− φλ(y)| ≤ Cλ
(
|t − y| + |t − y|λ

)
(A.4)

for some suitable constant Cλ > 0. For λ ∈ [0, 1] the inequality (A.4) is obvious, and for λ > 1 it can be obtained as follows:

φλ(y)−1|φλ(t)− φλ(y)| ≤ (1+ |y|)−λ |t − y|λ
(
1+ (|t| ∨ |y|)

)λ−1
≤ λ|t − y|

(
1+ (|t| ∧ |y|)+ |t − y|

)λ−1
(1+ |y|)λ

≤ λ2(λ−2)∨0
(
|t − y| + |t − y|λ

)
.

With the help of (A.4) we obtain

|Pεf (t)− f (t)|φλ(t) =
∣∣∣∣∫

R
pε(t − y)

(
f (y)− f (t)

)
φλ(t)dy

∣∣∣∣
≤

∣∣∣∣∫
R
pε(t − y)

(
f (y)φλ(y)− f (t)φλ(t)

)
dy
∣∣∣∣+ ∣∣∣∣∫

R
pε(t − y)f (y)

(
φλ(t)− φλ(y)

)
dy
∣∣∣∣

≤ ‖Pε(f φλ)− f φλ‖∞ + ‖f ‖λ

∫
R
pε(t − y)φλ(y)−1

(
φλ(t)− φλ(y)

)
dy

≤ ‖Pε(f φλ)− f φλ‖∞ + ‖f ‖λ

∫
R
pε(t − y)Cλ

(
|t − y| + |t − y|λ

)
dy

=: S1(t, ε)+ S2(t, ε).

Since f ∈ Bλ,0, the function f φλ lies in the space of all bounded measurable functions on R vanishing at infinity. Since on
the latter space the operator semigroup (Pε) is ‖ · ‖∞-continuous on [0,∞), the summand S1(t, ε) converges to 0 as ε ↓ 0
uniformly in t ∈ R. Further, for every κ > 0 we have

∫
R |t − y|

κpε(t − y)dy ≤ Cκεκ/2 for all t ∈ R and ε ∈ (0, 1], where
Cκ > 0 is some suitable constant independent of t and ε (see [4]). Thus the summand S2(t, ε) converges to 0 as ε ↓ 0
uniformly in t ∈ R. Hence, S1(t, ε)+ S2(t, ε) converges to 0 as ε ↓ 0 uniformly in t ∈ R. This gives (A.3). �
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Proof of Corollary A.2. We have

‖Vn − B◦F‖λ = ‖
√
n(Fn − F)− B◦F‖λ

≤ ‖Pεn(
√
n(F̂n − F)− B◦F )‖λ + ‖PεnB

◦

F − B
◦

F‖λ +
√
n ‖(PεnF − F)‖λ

=: S1(n)+ S2(n)+ S3(n).

In [35, proof of Lemma 2] it is shown that the assumptions on F in Corollary A.2 ensure ‖PεnF − F‖λ ≤ Cγ ,λε
(γ−λ)/(2γ )
n for

some suitable constant Cγ ,λ > 0 (this is the only pointwherewe need the Lipschitz continuity of F ). Thus, by the assumption
on εn, we obtain S3(n)→ 0.
Further, notice that B◦F lies in Bλ,0 (which was introduced before Lemma A.3) P-almost surely. To see this, it suffices to

show lim sup|t|→∞ B◦F (t)φλ(t) = 0. Let us suppose the contrary, i.e. suppose there is some δ > 0 and a sequence (tn) with
|tn| → ∞ and |B◦F (tn)|φλ(tn) ≥ δ for all n. On the other hand we have

E[(B◦F (t)φλ(t))
2
] = φλ(t)2F(t)F(t). (A.5)

Assumption (A.1) implies in particular that F(t)φλ(t)2 and F(t)φλ(t)2 converge to 0 as t →−∞ and t →∞, respectively.
Along with (A.5) this implies limn→∞ B◦F (tn)φλ(tn) → 0 in L2(Ω,F , P). In particular we can find some subsequence
(tnk) ⊂ (tn) such that limk→∞ B◦F (tnk)φλ(tnk) → 0 P-almost surely. This gives a contradiction. So we do indeed have
B◦F ∈ Bλ,0 P-almost surely. The second part of Lemma A.3 then implies that S2(n) converges to 0 P-almost surely.
Finally, we have

√
n(F̂n− F)− B◦F ∈ Bλ since both the minuend and the subtrahend lie in Bλ. The first part of Lemma A.3

then implies that S1(n) is bounded above by Cλ‖
√
n(F̂n − F)− B◦F‖λ for some constant Cλ > 0. By Theorem A.1 we deduce

S1(n)
p
→ 0.

Hence, we have S1(n)+ S2(n)+ S3(n)
p
→ 0, from which we can deduce ‖Vn − B◦F‖λ

p
→ 0 (cf. Corollary 2.3.1 of [25]). �
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