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a b s t r a c t

We show that to test the equivalence of two D0L sequences over an n-letter alphabet
generated by marked morphisms it suffices to compare the first 2n + 1 initial terms of
the sequences. Under an additional condition it is enough to consider the 2n initial terms.
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1. Introduction

Let X be a finite alphabet, let g : X∗
→ X∗ and h : X∗

→ X∗ be morphisms and let w ∈ X∗ be a word. The problem of
deciding whether or not

g i(w) = hi(w)

for all i ≥ 0 is known as the D0L sequence equivalence problem. This problem is decidable which was first proved by Culik II
and Fris [2]. For other solutions see [4,3,9–12,5]. However, the D0L sequence equivalence problem remains one of the most
intriguing problems concerning free monoid morphisms. This is illustrated by the fact that in the general case all known
algorithms to decide the equivalence of two given D0L sequences by comparing initial terms of the sequences require a
great amount of work. On the other hand it is possible that it suffices to consider the 2n initial terms of the sequences where
n is the cardinality of the underlying alphabet (see [13]). At least, no counterexamples are known. The claim that this simple
algorithm always gives the correct answer is called the 2n-conjecture. The validity of the 2n-conjecture has been shown by
Karhumäki if n = 2 (see [6]). All other cases remain open.

In this paper we study the sequence equivalence problem for marked D0L systems. A D0L system is marked if the
underlying morphism g : X∗

→ X∗ is marked meaning that the first letters of the images of the letters of X are different.
We prove that to test the equivalence of two D0L sequences over an n-letter alphabet generated by marked morphisms it
is enough to consider the 2n + 1 initial terms. We will also give an additional condition which makes it possible to replace
the bound 2n + 1 by 2n.

We assume that the reader is familiar with the basics concerning D0L systems (see [7,8]).

2. Definitions and results

We use standard language-theoretic notation and terminology. The cardinality of a finite set X is denoted by card(X).
Two words u and v are called comparable if u is a prefix of v or vice versa. The first letter of a nonempty word w is denoted
by first(w).
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Let X be a finite alphabet. A set L ⊆ X+ is called marked if first(w1) ≠ first(w2) whenever w1, w2 ∈ L and w1 ≠ w2. If
L ⊆ X+ is marked, then card(L) is less than or equal to card(X).

A nonerasing morphism g : X∗
→ X∗ is called marked if first(g(a)) ≠ first(g(b)) whenever a, b ∈ X and a ≠ b. Marked

morphisms were introduced by Karhumäki and used, e.g., in [6].
A D0L system is a triple G = (X, g, w), where X is a finite alphabet, g : X∗

→ X∗ is a morphism and w ∈ X∗ is a word.
The sequence S(G) generated by G consists of the words

w, g(w), g2(w), g3(w), . . . .

The set L(G) = {gn(w) | n ≥ 0} is called the language of G. A D0L system G = (X, g, w) is called reduced if there is no proper
subset Y of X such that L(G) ⊆ Y ∗. In the sequel it is tacitly assumed that all D0L systems under consideration are reduced.

Two D0L systems G and H are called sequence equivalent if S(G) = S(H). In other words, the D0L systems G = (X, g, u)
and H = (X, h, v) are sequence equivalent if

g i(u) = hi(v) for all i ≥ 0.

We now state our main result.

Theorem 1. Let X be an alphabet having n letters. Let g : X∗
→ X∗ and h : X∗

→ X∗ be marked morphisms and let w ∈ X∗ be
a word. Then

g i(w) = hi(w) for all i ≥ 0

if and only if

g i(w) = hi(w) for i = 0, 1, . . . , 2n.

Theorem 1 will be proved in the following section.
It is an open problem whether the bound 2n in Theorem 1 can be replaced by the bound 2n − 1 required for the

2n-conjecture. The following example shows that for marked D0L systems over a binary alphabet it is necessary to test
four initial terms.

Example 1. Let X = {a, b} and define the morphisms g : X∗
→ X∗ and h : X∗

→ X∗ by g(a) = bba, g(b) = abbaa and
h(a) = bbaabba, h(b) = a. Then g and h are marked morphisms and

g i(ba) = hi(ba)

for i = 0, 1, 2, but

g3(ba) ≠ h3(ba).

Note that this example is essentially the same as Example I.1.5 in [7] due to Nielsen; only the order of letters is reversed to
obtain marked morphisms.

Under an additional condition the bound required for the 2n-conjecture can be obtained.
Let g : X∗

→ X∗ and h : X∗
→ X∗ be morphisms. Then the pair (g, h) is called 1-incomparable if there is a letter a ∈ X

such that g(a) and h(a) are not comparable.

Theorem 2. Let X be an alphabet having n letters. Let g : X∗
→ X∗ and h : X∗

→ X∗ be marked morphisms and let w ∈ X∗ be
a word. Assume that the pair (g, h) is 1-incomparable. Then

g i(w) = hi(w) for all i ≥ 0

if and only if

g i(w) = hi(w) for i = 0, 1, . . . , 2n − 1.

Theorem 2 will be proved in the following section.

3. Proofs

In this section we assume that X is an alphabet having n letters and we assume that g : X∗
→ X∗ and h : X∗

→ X∗ are
marked morphisms.

Define

E(g, h) = {w ∈ X∗
| g(w) = h(w)}

and

D = {w ∈ X∗
| g i(w) ∈ E(g, h) for i = 0, 1, . . . , n − 1}.

The sets E(g, h) and D are submonoids of X∗. The next two lemmas show that as a submonoid of X∗ the set D is generated
by a marked set.
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Lemma 3. Let w, u1, u2 ∈ X∗. If wu1 ∈ D and wu2 ∈ D but w ∉ D, then first(u1) = first(u2).

Proof. Suppose wu1 ∈ D and wu2 ∈ D but w ∉ D. Because w ∉ D, there is an integer i ∈ {0, 1, . . . , n − 1} such that
g i(w) ∉ E(g, h). Because wu1 ∈ D, the words gg i(w) and hg i(w) are comparable. Assume that hg i(w) is a prefix of gg i(w),
say gg i(w) = hg i(w)v, where v ∈ X∗. Because g i(w) ∉ E(g, h), v is nonempty. Now

vgg i(uj) = hg i(uj)

for j = 1, 2. Hence

first(hg i(u1)) = first(hg i(u2)).

Because h and g are marked, it follows that first(u1) = first(u2). �

Lemma 4. Let

P = (D \ ε) \ (D \ ε)2.

Then P is a marked set and

D = P∗. (1)

Proof. Eq. (1) follows because D is a submonoid of X∗. To prove that P is marked, suppose on the contrary that there are
nonempty words w1, w2 ∈ P such that first(w1) = first(w2) and w1 ≠ w2. Suppose first that one of w1 and w2 is a prefix
of the other, say w1 is a prefix of w2. Then there is a nonempty word w3 such that w2 = w1w3. Because w1, w2 ∈ D, the
definition of D implies thatw3 ∈ D. But thenw2 is a product of two nonempty words of Dwhich contradicts the assumption
that w2 ∈ P . Hence the words w1 and w2 have to be incomparable. Then we can write w1 = wu1 and w2 = wu2 where
w, u1, u2 ∈ X∗ are nonempty words and first(u1) ≠ first(u2). If w ∈ D, then u1 ∈ D and w1 would be a product of two
nonempty words of D which is not possible. Hence w ∉ D. Now Lemma 3 implies that first(u1) = first(u2) which is a
contradiction. �

The following lemma shows that if w ∈ D, then the length of gg i(w) equals the length of hg i(w) for all i ≥ 0. To prove
this fact we use results concerning rational sequences. For the definition and basic properties of rational sequences we refer
to [1,14].

Let f : X∗
→ X∗ be a morphism and let X = {x1, x2, . . . , xn}. Then thematrix M associated with f is defined by

M = (mij)1≤i,j≤n,

wheremij is the number of occurrences of xi in f (xj).

Lemma 5. If w ∈ D, then |gg i(w)| = |hg i(w)| for all i ≥ 0.

Proof. Fix a word w ∈ D and define the sequence (ai)i≥0 by

ai = |gg i(w)| − |hg i(w)|

for i ≥ 0. Let M and N be the matrices associated with g and h, respectively, and let β be the Parikh vector of w. Let
α = η(M − N), where η is the row vector whose all entries equal 1. Then

ai = αM iβT

for i ≥ 0. Hence (ai)i≥0 is a rational sequence of rank at most n. Because w ∈ D, we have ai = 0 for i = 0, 1, . . . , n− 1. Now
the claim follows by Corollary II.3.6 in [1]. �

The next two lemmas show that if w is a word such that g i(w) ∈ D for i = 0, 1, . . . , card(P), then g i(w) ∈ D for all
i ≥ 0. To prove this we write the words g i(w), i = 0, 1, . . . , card(P), as products of words of P and show that if R is the set
of words of P which appear in these products, then g(R) ⊆ R∗.

Lemma 6. Let t be a positive integer and let w1, . . . , wt ∈ P. Suppose g(w1w2 · · · wt) ∈ D. Then g(wα) ∈ D for α = 1, . . . , t.

Proof. Because w1, . . . , wt ∈ D, Lemma 5 implies that

|gg i(wα)| = |hg i(wα)| (2)

for all i ≥ 0 and α = 1, . . . , t . Because g(w1w2 · · · wt) ∈ D we have

gg ig(w1w2 · · · wt) = hg ig(w1w2 · · · wt)

for i = 0, 1, . . . , n − 1. This together with (2) implies that

gg ig(wα) = hg ig(wα)

for i = 0, 1, . . . , n − 1 and α = 1, . . . , t . Hence g(wα) ∈ D for α = 1, . . . , t . �

Lemma 7. Let w ∈ X∗ be a nonempty word. Suppose g i(w) ∈ D for i = 0, 1, . . . , card(P). Then g i(w) ∈ D for all i ≥ 0.



J. Honkala / Theoretical Computer Science 432 (2012) 94–97 97

Proof. For i = 0, 1, . . . , card(P), let Pi be the smallest subset of P such that

{g j(w) | j = 0, 1, . . . , i} ⊆ P∗

i .

Then

P0 ⊆ P1 ⊆ · · · ⊆ Pcard(P).

Because P0 contains at least one word and Pcard(P) contains at most card(P) words, there is an integer β ∈ {0, 1, . . . ,
card(P) − 1} such that

Pβ = Pβ+1.

By Lemma 6 we have

g(Pβ) ⊆ P∗

β+1.

Hence

g(Pβ) ⊆ P∗

β .

It follows inductively that

g i(gβ(w)) ∈ P∗

β

for all i ≥ 0. This implies the claim. �

Now we are in a position to prove Theorems 1 and 2.

Proof of Theorem 1. Suppose g i(w) = hi(w) for i = 0, 1, . . . , 2n. Then

gg i(w) = g i+1(w) = hi+1(w) = hhi(w) = hg i(w)

for i = 0, 1, . . . , 2n − 1. Hence g i(w) ∈ D for i = 0, 1, . . . , n. Because card(P) ≤ n, Lemma 7 implies that g i(w) ∈ D for all
i ≥ 0. Hence gg i(w) = hg i(w) for all i ≥ 0. It follows inductively that g i(w) = hi(w) for all i ≥ 0. �

Proof of Theorem 2. If the pair (g, h) is 1-incomparable, there is a letter a ∈ X such that g(a) and h(a) are incomparable.
Hence no word of E(g, h) begins with a. It follows that no word of D or P begins with a. Because P is marked, we have
card(P) ≤ n − 1.

The rest of the proof of Theorem 2 is analogous with the proof of Theorem 1.
If g i(w) = hi(w) for i = 0, 1, . . . , 2n − 1 we get gg i(w) = hg i(w) for i = 0, 1, . . . , 2n − 2. Hence g i(w) ∈ D for

i = 0, 1, . . . , n − 1. Now Lemma 7 implies that g i(w) ∈ D for all i ≥ 0. This again implies that g i(w) = hi(w) for all
i ≥ 0. �
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