
Theoretical Computer Science 317 (2004) 209–225
www.elsevier.com/locate/tcs

The concept of computability
Carol E. Cleland

Department of Philosophy & Institute for Cognitive Science, University of Colorado,
Boulder, CO 8009, USA

Received 8 August 2003; received in revised form 1 November 2003

Abstract

I explore the conceptual foundations of Alan Turing’s analysis of computability, which still
dominates thinking about computability today. I argue that Turing’s account represents a last ves-
tige of a famous but unsuccessful program in pure mathematics, viz., Hilbert’s formalist program.
It is my contention that the plausibility of Turing’s account as an analysis of the computational
capacities of physical machines rests upon a number of highly problematic assumptions whose
plausibility in turn is grounded in the formalist stance towards mathematics. More speci5cally,
the Turing account con6ates concepts that are crucial for understanding the computational ca-
pacities of physical machines. These concepts include the idea of an “operation” or “action” that
is “formal,” “mechanical,” “well-de5ned,” and “precisely described,” and the idea of a “symbol”
that is “formal,” “uninterpreted,” and “shaped”. When these concepts are disentangled, the intu-
itive appeal of Turing’s account is signi5cantly undermined. This opens the way for exploring
models of hypercomputability that are fundamentally di:erent from those currently entertained
in the literature.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Entscheidungsproblem; Hilbert; Turing machine; Computable

1. Introduction

Alan Turing’s analysis still dominates thought about the nature of computability
and the capacities of physical computing machines. 1 This is somewhat ironic because
Turing explicitly designed it to solve a problem arising out of an unsuccessful early
20th century program in the foundations of pure mathematics. The program, known as

E-mail address: cleland@colorado.edu (C.E. Cleland).
1 There is disagreement about whether the received view on Turing’s analysis is historically correct—

accurately represents Turing’s actual views (e.g., Copeland [6]). This is an interesting and historically im-
portant debate. Nevertheless I am going to ignore it in this paper because my target is not the historical
Turing but the contemporary view of computability, a view that is (correctly or not) commonly attributed
to Turing.

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.12.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82449835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cleland@colorado.edu


210 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

formalism, originated with the work of David Hilbert. Hilbert was responding to the
discovery of paradoxes in Georg Cantor’s remarkably fruitful new set theory. In this
paper I trace the development of the formalist school of thought in mathematics and
analyze its impact on current conceptions of computability. I argue that the plausibility
of Turing’s account as an analysis of the computational capacities of physical machines
rests upon a number of highly problematic tacit assumptions. When these concepts are
disentangled, the intuitive appeal of Turing’s account (as providing an analysis of
the general concept of computability) is signi5cantly undermined. I conclude with a
discussion of the consequences of my 5ndings for the possibilities for hypercomputation
(computation beyond the so-called “Turing limit”).

2. Paradise lost

The discovery of paradoxes (e.g., Bertrand Russell’s set of all sets that are not mem-
bers of themselves) in Cantor’s wonderful new set theory plunged mathematics into
crisis; for a more extensive discussion of the history, see [12,15]. Designed to clar-
ify the foundations of mathematical analysis, Cantor’s set theory sanctioned the full
strength of the controversial real number system with its mysterious irrational num-
bers. His predecessors had found irrational numbers problematic because they seem to
involve actual in5nities, e.g., Leibniz’s in5nitesimals. The actually in5nite transcends
all possible experience. It is perceptually indistinguishable from the unending and the
inde5nitely large or small. Indeed, before Cantor, most mathematicians doubted the
intelligibility (let alone the existence) of the concept of actual in5nity. Limit processes
were introduced by Weierstrass to circumvent the actual in5nite by systematizing a
notion of the merely potentially in5nite, potential in5nity being characterized as an in-
complete entity that is inde5nitely increasable or decreasable. Irrational numbers were
de5ned (by Weierstrass and follow travelers) in terms of the limits of sequences or
series of rational numbers. By the late 18th century, however, it was clear that limit
processes could not keep the actual in5nite at bay; understanding the irrational numbers
required a coherent concept of completed in5nities. Cantor cut the Gordian knot (so-to-
speak) by developing a revolutionary set theory that explicitly introduced hierarchies
of completed in5nite sets into mathematics. Classical arithmetic, with its problematic
irrationals, was reconstructed in terms of these hierarchies. The importance of Can-
tor’s work to mathematics cannot be overstated. Without analysis much of modern
mathematics (including the calculus, geometry, abstract algebra, and most of applied
mathematics) would disappear. The discovery of paradoxes in Cantor’s set theoretic
paradise was thus a serious blow to mathematicians.

David Hilbert hoped to save Cantor’s set theory from the ravages of the paradoxes
by radically reconceptualizing mathematics. 2 Mathematics is not the study of abstract

2 Hilbert was the originator of formalism but there is signi5cant disagreement about his actual views. It is
generally conceded that his version of formalism is weaker than the position now associated with formalism.
Indeed, he has been criticized for his fence-straddling realism about mathematics; he identi5ed the content
of mathematics with physical marks and their manipulations. My concern in this paper, however, is not with
the history of Hilbert’s ideas so much as the contemporary understanding of the formalist position. For a
detail discussion of Hilbert’s early views and their relation to those of later formalists, see [12,15].



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 211

entities (e.g., the number 2) and their interrelations (e.g., less than). Mathematics is
the study of formal systems. The terms and operations of formal systems consist of
5nite numbers of primitive symbols (marks or “strokes”) and 5nite numbers of “purely
mechanical” operations on these symbols. Considered as part of a formal system, the
symbols are meaningless. They may stand for anything whatsoever or nothing at all.
All that matters is their structure—their proverbial “shape”. Any structural feature may
play the role of symbol so long as di:erent primitive symbols are represented by
distinct structures. The operations of a formal system are sensitive only to the structure
(vs. meaning) of a symbol. Their purpose is to construct strings of symbols (formulae)
and to transform them into other strings of symbols in a step-by-step fashion (i.e., to
construct proofs).

Hilbert’s plan was to formalize enough of classical arithmetic for doing analysis
while avoiding the paradoxes. To accomplish this he needed the right kind of formal-
ism, namely, a formalism whose formal consistency corresponds to the logical consis-
tency of the relevant portion of classical arithmetic. The basic idea was to start with
an axiomatization of classical arithmetic (of which a number were already available,
including Whitehead and Russell’s, in Principia Mathematica), and then formalize it.
In the process of formalization, the traditional content of mathematics is stripped away.
The features that remain are purely formal. The task of the formalist was to show that
the resultant formalism provides a consistent and complete formal theory of classical
arithmetic. Proofs of consistency and completeness could not, however, employ meth-
ods resting upon suspect trans5nite ideas; this would defeat the whole purpose of the
formalist program. The powerful existence proofs of classical mathematics were thus
unavailable. As a consequence, one of the central problems facing the formalist was
that of 5nding a de5nite 5nitary formal procedure that could be used to unequivocally
decide the provability of any claim in formalized mathematics. This decision problem
became known as Hilbert’s Entscheidungsproblem. 3

The similarity between Turing’s account of computability and the formalist account
of mathematics is obvious. The symbols of Turing machines are “uninterpreted” (mean-
ingless) structures that are manipulated solely on the basis of their “shapes”. Indeed,
despite the popular conception of Turing machines as ultimately simple, abstract mech-
anisms, mathematicians and theoretical computer scientists analyze Turing machines as
formal mathematical structures. This is hardly an accident. Turing did not invent his
“machines” to provide an analysis of the computational capacities of physical ma-
chines. He designed them to solve the Entscheidungsproblem, a problem speci5c to
the formalist program in the foundations of pure mathematics. Not all programs in
the foundations of mathematics would 5nd a formalist proof convincing. Indeed, the
two other major schools of thought, intuitionism and Platonism, reject the idea that
everything important to classical arithmetic can be captured in a formalization; for
more on this, see [12]. Something meaningful and unformalizable that renders arith-
metic logically (vs. merely formally) inconsistent or consistent could have been left

3 Hilbert oKcially introduced the Entscheidungsproblem in 1928 in a textbook on logic co-authored with
his student Ackermann.



212 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

out of the formalism. The point is Turing’s account of computability is founded upon
an idiosyncratic philosophical view about the nature of mathematics.

Nevertheless, it did not take long for Turing’s analysis to be extended to the com-
putational capacities of physical machines, a position which (as the title of Martin
Davis’s recent book, Engines of Logic, illustrates) still dominates in the 5elds of com-
puter science and mathematics. If the formalist program had been successful this would
make good theoretical sense. Classical arithmetic would have been fully captured in
a formal system. As a consequence, the formal possibilities for computing functions
would have exhausted all the possibilities, setting an absolute logical limit on what
functions are computable. But as is well known, Kurt GModel e:ectively demolished
the formalist program with the discovery of his famous incompleteness theorems. In
a nutshell, GModel proved that a formal system rich enough to encapsulate elementary
arithmetic (let alone classical arithmetic) could not be both consistent and complete;
if arithmetic is consistent, arithmetical truth goes beyond what can be proven in any
(recursively axiomatisable) formal system. This means that formalism cannot provide
us with a satisfactory account of the nature of arithmetic.

In light of the failure of the formalist program, the claim that Turing machines cap-
ture the computable functions is highly suspect, ultimately resting upon non-mathe-
matical suppositions about the nature of computation and physical processes. Turing
embraced a highly anthropomorphic view of computation. He unselfconsciously in-
troduced his “machines” in the context of a person plugging away at arithmetical
calculations with pencil and paper [18, p. 135]. Given that physical devices can do
many things (e.g., escape the pull of Earth’s gravitational 5eld, withstand tremendous
pressures at great ocean depths) that cannot be done by unaided human beings, why
would any one be convinced that human beings provide a good model for the com-
putational capacities of physical machines? Furthermore, it is clear that the capacities
of nature are not just a matter of having the right formal structure. Build the walls of
a deep sea submersible out of the wrong material and it will quickly implode. It is
not enough for defenders of the Turing view to retort that Turing machines represent
idealized human beings, and thus are not subject to human frailties. For this merely
side steps the central question, which is why model computability on the capacities of
limited creatures like human beings in the 5rst place!

Besides, there are many di:erent ways in which one could idealize the computational
activity of human beings. Turing opted for setting no upper bound on the number of
actions his “machines” could perform; he allowed them unlimited space and time in
which to operate. But he could have idealized human action in other ways. He could
have set no upper bound on the speed with which they perform their actions, for
instance. What justi5es selecting one idealization of human action over another? An
obvious retort is that there is an upper limit to the speed of physical processes in
our universe. Einstein’s theory of relativity tells us that no real-valued mass can travel
faster than light. But this is an empirical consideration. Why not invoke empirical
considerations in the case of space and time too? Entropy, for example, sets limits to
the capacities of physical objects to perform actions. No physical device can go on
and on, performing actions forever. What justi5cation can there be for preferring one
empirically unrealistic idealization of human action to another?



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 213

Just because humans who are consciously performing calculations do it in a step-
by-step (sequential and discrete) fashion, does not mean that all calculation must be
done in this manner, i.e., must actually be constituted by a sequence of discrete prim-
itive sub calculations. Insofar as functions are identi5ed with sets of ordered pairs, it
seems that any process that achieves the requisite pairings ought to count as a compu-
tation. Why take human computational behavior as the paradigm for all computational
processes?

The familiar retort to those who raise such concerns is that Turing’s account says
nothing about how physical processes actually compute functions. It merely says that
(however they do it) no physical processes can compute something that a Turing
machine could not compute. But given the failure of the formalist program in math-
ematics, what could motivate such a claim? Again, there is a familiar response. Tur-
ing’s analysis initially faced two competitors, Herbrand-GModel general recursiveness
and Church’s lambda-calculus. Turing demonstrated that all three accounts are exten-
sionally equivalent vis-Qa-vis the computation of the number-theoretic functions. There
is thus strong inductive support for the claim that mathematicians have captured the
decidable (a.k.a. computable) number-theoretic functions. But this response ignores the
fact that all three accounts are grounded in the formalist perspective on mathematics.
Indeed, each proposal was explicitly designed to solve Hilbert’s Entscheidungsprob-
lem. Viewed in this light, it is not so surprising that they end up classifying the same
functions as computable; they are built on the same conceptual bedrock. Finally, the
oft-repeated allegation that no one has been able to come up with a function that can-
not be computed by a Turing machine but can nonetheless be computed by some other
means provides little support for the oKcial Turing view. For it studiously ignores
the growing body of literature on inductive machines (e.g., Burgin [1], Gold [11] and
Putnam [13]), analogue chaotic neural nets (e.g., Siegelmann [16]), and accelerating
(Zeus) machines (e.g., Copeland [7] and Steinhart [17]) claiming to have done just
this! Defenders of the received view on computability ignore this literature because
they are not willing to countenance an activity that fails to conform to the strictures
of the oKcial Turing line as a computation. There is more than a whi: of circularity
here.

It is high time that the conceptual foundations of the oKcial Turing account be
laid bare and subject to critical scrutiny. For we cannot reach an informed decision
about its relevance to the capacities of physical machines unless we understand the
assumptions upon which it rests. The remainder of this paper is devoted to this task.
It reviews work that has been presented elsewhere (Cleland [2–5]). I argue that the
plausibility of the received view of computability rests upon some highly problematic
concepts, more speci5cally, the idea of an “operation” or “action” that is “formal,”
“mechanical,” “well-de5ned,” and “precisely described,” and the idea of a “symbol”
that is “formal,” “uninterpreted,” and “shaped”. These concepts play pivotal roles in
motivating the claim that Turing’s account captures the general intuitive concept of
computability. Turing machines are typically characterized as providing paradigms of
de5nite methods in virtue of (1) the “precision” with which their instructions specify
the actions that they prescribe and (2) the “purely mechanical” nature of those actions.
But as I show, a close look at these claims reveals that Turing machines cannot live up



214 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

to their vaunted reputation of providing perfectly precise speci5cations of action and
the claim that Turing machine operations are “purely mechanical” confuses di:erent
meanings of the word “mechanical”. Similarly, the source of the great generality of
Turing machines is reputed to lie in the “purely formal” character of their symbols
and operations. But the level of generality is too high. One cannot get bona 5de
actions out of purely formal symbols and operations. I conclude by defending the
radical claim that Turing machines do not provide us with genuine procedures. They
provide us with mere procedure schemas. When these schemas are 5lled in with genuine
action, we get authentic procedures. As I argue in the 5nal sections, understanding the
capacities of physical machines to compute functions requires more than a theory of
procedural schemas. It requires a theory of authentic procedures, something that the
oKcial Turing account (lashed tightly to the conceptual framework of the formalist
account of mathematics) is intrinsically incapable of providing.

3. The received view on computability

We begin our discussion with a brief review of the structure and function of the
peculiar objects at the heart of the received view on computability, namely, Turing
machines. I shall restrict my discussion to the simplest Turing machines, namely, the
deterministic, sequential “machines” of introductory textbooks; everything that I say
applies fairly straightforwardly to the more complex non-deterministic and multidimen-
sional Turing machines. 4

Turing machines are characterized in the literature in two quite di:erent ways,
namely, as abstract mechanisms and as mathematical structures. The former charac-
terization is much more machine-like than the latter. A Turing machine is described
as consisting of a “mechanism,” known as a “5nite state machine,” coupled to an ex-
ternal storage medium, known as the “tape,” through an abstract device known as the
“head.” In the standard scenario, each square of the tape is occupied by one of two
di:erent symbols (S0 and S1), and the head, which is always positioned over a square
of the tape, performs one of a small set of extremely simple basic operations; the head
can “erase” or “write” a symbol, “move” to the left one square, or “halt.” What the
head does to the tape is determined by the instruction that it is currently carrying out.
Turing machines compute arithmetical functions by implementing lists of conditional
instructions called “programs.” The arguments and values of the function are “coded”
on the tape as strings of S0s and S1s.

The use of common English imperatives, such as “write” and “move,” to describe
the basic operations of Turing machines underscores their anthropomorphic character.
Turing machines do the sorts of things that human beings do when consciously per-
forming calculations with pencil and paper. But, as I have argued [4,5], the idea that

4 The core of the following argument 5rst appeared in [4], where I compared and contrasted the “precision”
of the instructions of numerical algorithms, “quotidian” (ordinary, everday) procedures, and Turing machine
instructions in detail.



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 215

a Turing machine can perform an action (however broadly or abstractly construed) is
fundamentally mistaken.

Action requires something to manipulate; if nothing is manipulated no action is
performed. The entities reputedly manipulated (“written” and “erased”) by Turing ma-
chines are symbols. In keeping with the formalist stance on mathematics, Turing ma-
chine symbols are purely formal entities. Their meaning plays no role in what is done
to them. They are manipulated solely on the basis of their proverbial shapes. It follows
that the shapes of Turing machine symbols are crucial to the identity of the actions
prescribed by Turing machines.

Unfortunately, however, the idea that Turing machine symbols have distinguishing
shapes is fraught with diKculties. One might try identifying the shape of a Turing
machine symbol with some geometrical feature that all of its instances have in common.
But the very same symbol may be instantiated by objects having incommensurable
shapes, e.g., numerals, pen strokes, pebbles on squares of toilet paper, and nails in tin
cans. Moreover, non-geometrical characteristics such as weights, colors, durations of a
sound, or intensities of light may also be used to instantiate Turing machine symbols.
The problem is that the di:ering symbols of a Turing machine may be instantiated
by any de5nite but distinct physical entities. The only physical constraints on the
symbols of a Turing machine hold within (vs. across) its physical realizations. Within
a particular realization, every token of the same symbol must share some (it does not
matter what) physical property and all tokens of di:erent symbols must di:er in some
(it does not matter what) physical property. Considered independently of a particular
realization, however, the most that may be said is that di:erent symbols have di:erent
but not any de5nite distinguishing physical properties. The idea of a mere di:erence
in some completely indeterminate physical property is not enough to secure the idea
that Turing machine symbols have distinguishing shapes.

As one might expect, the situation only gets worse on the formal mathematical view
of Turing machines. Turing machines are identi5ed with mathematical structures, which
consist of functions and relations (both of which are identi5ed with sets of n-tuples,
ordered in the case of the former) and constants. The “usual” (prototypical) structure
for a Turing machine includes three binary functions (the “next place” function, the
“next symbol” function, and the “next state” function), and two symbols. 5 The symbols
are typically represented as “0” and “1,” which suggests that they are numerals. But
numerals have de5nite geometrical shapes. If they are numerals, it makes no sense to
talk about instantiating the same Turing machine in a physical system whose symbols
consist of pebbles or 6ashes of light, for instance. That is to say, identifying “0”
and “1” as numerals amounts to con6ating a speci5c abstract mathematical structure
(the usual structure for a Turing machine) with one of its concrete instantiations.
On the other hand, if they are not numerals, what can they be? Integers? Integers
(qua abstract mathematical objects) have no physical features whatsoever. If they are
integers we lose even the minimalist idea that distinct Turing machine symbols must
di:er in at least some physical property. We are left with a relation of bare numerical

5 The usual structure for a Turing machine is usually articulated in terms of the universal Turing machine,
but this fact does not a:ect the point I am making.



216 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

di:erence among symbols. Bare numerical di:erence is incompatible with the idea that
uninstantiated Turing machine symbols have distinguishing “shapes,” however broadly
or inde5nitely construed. To appreciate this, one need only entertain the theoretical
possibility of authentic twins, e.g., two leaves or snow 6akes that are literally identical.
Although numerically distinct, such objects would be exactly alike in all their physical
characteristics.

This brings us to what is perhaps the most problematic aspect of the idea that Turing
machine symbols have distinguishing “shapes.” In mathematics, Turing machines are
identi5ed only up to isomorphism; they are not actually identi5ed with their usual
structures. More speci5cally, on the formal mathematical account, a Turing machine
is a class of isomorphic structures (abstract and concrete), one of which (the usual
structure) happens to be picked out as representative of the class as a whole. From
a logical point of view, a class of Turing machine instantiations is no more a Turing
machine than the class of all red objects is a red object. In other words, considered
independently of a particular instantiation, the symbols of a “Turing machine” amount
to nothing more than logical roles in a second order structure that (strictly speaking)
is not a Turing machine. Rather than being symbols of some extraordinarily abstract
and re5ned sort, Turing machine “symbols” are just placeholders for symbols. It is
not until we descend to the level of the individual structures in the equivalence class
de5ning a Turing machine, that we get authentic symbols. It follows that we can not
be said to have speci5cations of action, however imprecise, at the level of a Turing
machine considered independently of any of its instantiations.

Even supposing that Turing machine “symbols” were the real McCoy, however, we
still could not get precise speci5cations of action out of Turing machine instructions.
Although action presupposes something to manipulate, having something to manipulate
is not suKcient to pick out an action. Specifying a knife and a carrot in a recipe, for
example, does not 5x what is to be done to the carrot by the knife. The possibilities
are wide open. They include dicing it, slicing it, shaving it, stabbing it, stroking it
with the blade, and pounding it with the handle, to mention just a few. In other words,
despite the use of familiar English expressions for action, Turing machine instructions
do not specify what is to be done once their symbol-placeholders are 5lled by genuine
symbols. “Erasing” a pebble could be realized by activities as diverse as painting it,
pulverizing it, 6ipping it over, or removing it from a tin can.

One of the great virtues of Turing’s account is supposedly the “purely mechani-
cal” character of Turing machine operations. As earlier, the use of this expression is
misleading. When physical scientists speak of mechanical actions they have in mind
the proverbial pushes and pulls of Newtonian mechanics. The instructions of Turing
machines are not limited to actions of this sort, however. They may be satis5ed by
activities as diverse as action-at-a-distance (which requires no intervening causal chain)
and angels creating and annihilating pebbles. It does not matter whether action-at-a-
distance or angels really exist. All that matters for our purposes is that they violate
no laws of logic and could be used to instantiate a Turing machine. This underscores
a crucial point. In keeping with the formalist framework for mathematics, the con-
straints imposed upon Turing machine “actions” are purely structural: They must be
distinct from one another (discrete) and they must occur in a time-ordered sequence.



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 217

These are exceedingly minimal requirements. The physical scientist’s notion of me-
chanical encompasses much more. In order to qualify as mechanical, an activity must
have the right kind of intrinsic causal character. The upshot is that Turing machine
actions cannot be said to be “mechanical” in anything like the physical scientist’s
sense.

It is possible, of course, that Turing and his defenders had some other notion of
mechanical in mind. Indeed, Turing sometimes used the word “automatic” in place of
“mechanical” [18, p. 118] and his student Robin Gandy [10, p. 80] spoke of Turing
machines performing actions without “thought or volition.” Unfortunately this use of
“mechanical” does not capture the idea of a 5nite constructive process, a crucial ingre-
dient in any notion of mechanism (Newtonian or otherwise). As an illustration, one can
coherently speak of bored angels “automatically” performing baUing miracles. In short,
the terminology may be suggestive but one should not be fooled by it into thinking
that Turing machines are mechanisms in anything like the sense in which a physical
machine is said to be a “mechanism”. There is even some question as to whether
Turing had in mind physical machines when he used expressions like “mechanical”
and “mechanism.” According to Gandy [10], Turing’s target was human calculability
and he never intended his analysis to apply to physical machines. Gandy attempted
to extend Turing’s analysis to physical machines in light of very general considera-
tions from contemporary physical theory [9,10]. Oron Shagrir argues [14], however,
that Gandy’s account does not encompass all instances of 5nite machine computation,
suggesting perhaps that Turing’s analysis cannot be extended to physical computation
after all.

As is hardly surprising, the formal mathematical account does not o:er us any help
in making sense of the idea that Turing machine instructions prescribe genuine actions.
The basic Turing machine operations (“erase,” “write,” “move”) are de5ned in terms
of ordered n-tuples (mathematical functions). Ordered n-tuples do not require change
(let alone change that quali5es as action) for their realization. Thus the structures
in the equivalence class de5ning a Turing machine need not be dynamic, let alone
mechanical. 6 They may be instantiated by spatially ordered structures such as mineral
crystals. In moving from the informal to the formal account, we have lost the most
essential feature of action, namely, dynamic change.

Let us pull this all together. The instructions of Turing machines (considered as
uninstantiated, multiply realizable abstract entities) do not prescribe actions of any
sort. If they do not prescribe actions, they can hardly be said to precisely describe
them. The vaunted precision of Turing machine instructions thus turns out to be a
myth. This has serious consequences for the received view on computability. At the
heart of the received view is the notion of an e:ective procedure: Turing machines are
said to be paragons of e:ective procedure. For a procedure to be e:ective, the actions
it prescribes must be precisely speci5ed (i.e., “precisely described” or “well de5ned”).
So if Turing machine programs do not precisely specify actions, they cannot be said
to supply us with e:ective procedures. Indeed, because they do not prescribe actions

6 Gandy [9] also makes this point; he attempts to incorporate the idea of time and mechanism into Turing’s
account.



218 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

of any sort, they cannot even be said to supply us with authentic procedures. At best,
Turing machines may be said to provide procedure schemas, i.e., time-ordered, skeletal
frameworks for procedures. To get authentic procedures, these frameworks must be
5lled in with speci5cations of action.

4. Causation, e�ective procedures, and physical computability

Understanding the computational capacities of physical machines requires a theory
of authentic (vs. schematic) procedures. We need to understand the general conditions
under which an authentic procedure is e:ective, i.e., reliably produces a certain re-
sult (e.g., the decimal expansion of �) when correctly followed. The best examples
of authentic procedures do not come from mathematics, however, but from ordinary,
everyday life. A recipe for a cake and instructions for assembling a child’s tricycle
provide salient examples. In previous work [4,5], I dubbed such procedures “quo-
tidian” in order to distinguish them from the schemas provided by Turing machine
theory.

Unlike Turing machines, it is clear that quotidian procedures prescribe bona 5de
actions, e.g., whip the egg yolks until they form a yellow ribbon and bolt the handlebars
to the frame. Admittedly, they do not provide perfectly precise speci5cations of action.
But as I have argued [4,5], the perfect precision of Turing machine instructions is
a myth. Turing machines are literally de5ned as machines that do exactly what their
instructions tell them to do. It is thus not logically possible for a Turing machine to
execute an instruction to “write” an S0 and yet fail to “place” an S0 on the tape. In
contrast, failure is always a very real possibility for a follower of a quotidian procedure.
No instruction prescribing an authentic action can preclude the possibility of being
misunderstood or misapplied. The success of human beings in following imprecisely
described instructions is a product of training coupled with a shared repertoire of basic
bodily actions such as moving a 5nger or rotating a wrist. 7

From an intuitive standpoint, many quotidian procedures are e8ective in the sense
that they reliably produce speci5c outcomes when correctly followed. Unlike Turing
machine procedures, however, the reliability of a quotidian procedure does not de-
pend just upon the identity (and time-order) of the actions it prescribes (however
imprecisely). It also depends upon the causal consequences of performing the actions.
Nevertheless, these consequences are not themselves speci5ed by the procedure; the
procedure speci5es only the actions that produce them. To appreciate this, consider a

7 Basic bodily actions are speci5ed in terms of their direct e:ects on the body, namely, basic bodily
motions. The instruction to move one’s 5nger, for example, does not describe how to do it; it presupposes
that you already know how to move your 5nger. No instruction can tell one how to perform a basic bodily
actions—either you are physiologically intact and know how to do it, or you can not do it because of some
disability or restraint. Anyone who knows how to perform basic bodily actions can be trained to apply in-
structions prescribing them, and hence to follow procedures specifying complex spatio-temporal arrangements
of basic bodily actions. Children learn to follow such procedures, and as they become increasingly sophisti-
cated, they can follow procedures (e.g., a recipe for Hollandaise sauce) prescribing complex spatio-temporal
arrangements of intricate actions.



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 219

recipe for Hollandaise sauce. One is instructed to pour melted butter by droplets into
warm egg yolks while continuously beating them with a wire whisk. What produces
the Hollandaise sauce, however, is not the mere performance of these actions but the
physical processes that they generate and sustain. If performing these actions reliably
caused egg yolks to become granular and 6oat in butter (instead of causing them to
absorb butter and hold it in creamy suspension) the recipe would not be reliable for
making Hollandaise sauce. But although they are crucial to the e:ectiveness of the
recipe, the causal consequences of these actions are not themselves speci5ed by the
recipe. To see this, imagine a possible world, W1, in which the laws of chemistry
di:er from those in the actual world, Wa, in such a way that whisking droplets of
butter into warm egg yolks causes them to turn into a smooth elastic mass. 8 Now
suppose that someone in W1 correctly follows the recipe for Hollandaise sauce. The
result is nothing like a Hollandaise sauce, and this di:erence in outcome does not
correspond to a di:erence in recipe. In both worlds, people follow the same instruc-
tions, performing the same (types of) actions in the same order in time. But they get
di:erent results. Performing the same actions (in the same order in time and space)
causes very di:erent things to happen in Wa and W1. In other words, the same recipe
may be e:ective in one world and ine:ective in another world for a given outcome.
The e8ectiveness of the recipe for a given outcome depends upon the causal char-
acter of the world in which it is followed. The identity of the recipe qua procedure
does not.

This is in stark contrast to Turing machines, whose “outcomes” are completely de-
termined in advance by their instruction sets (and their initial con5gurations). The
appearance of an S0 on a Turing machine’s tape does not result in any further changes
to the tape until another instruction, containing an S0 in its antecedent, is implemented.
This is not to deny that if the S0 were interpreted as the integer 1 it would have
arithmetical consequences. But in this scenario one is no longer dealing with a Turing
machine simpliciter. One is dealing with one of its interpretations. Assigning di:erent
integers to S0 yields di:erent interpretations, with correspondingly di:erent arithmetical
consequences. Thus the same Turing machines can compute di:erent arithmetical func-
tions. Similarly, if one encodes the S0 by placing a stone in a cup of water, there will
be causal consequences such as a rise in the level of the water. But, again, one is not
dealing with a Turing machine simpliciter. One is dealing with one of its instantiations.
Considered just in itself—independently of any of its instantiations or interpretations—
the sequence of “actions” speci5ed by a Turing machine is the only process that the
machine engages in. Put another way, unlike the case with quotidian procedures, there
is no distinction between the sequence of actions performed by the machine and the
process that generates the result with respect to which it is said to be reliable (a.k.a.
e:ective). Viewed in this light, it is easy to see why everything that a Turing machine
“does” is characterized as completely determined in advance by the procedure (given
the initial con5guration of the machine), and hence why the e:ectiveness of a Turing

8 I am not committing myself to a particular view about the status of possible worlds. For my purposes,
it does not matter whether they are metaphysically real in David Lewis’ robust sense or (as seems more
plausible) merely linguistic/conceptual devices for entertaining hypothetical alternatives to the actual world.



220 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

machine procedure for a particular outcome is absolute, i.e., does not change from one
possible world to the next. It is also easy to see why every Turing machine is char-
acterized as qualifying as an e:ective procedure. But of course these characterizations
of Turing machines are misleading. They presuppose that Turing machines provide us
with bona 5de procedures. As we have seen, they do not.

Their dependence upon the causal character of the world in which they are imple-
mented is the source of the great power of quotidian procedures. The actions speci5ed
by quotidian procedures represent adroit causal interventions in the course of nature,
interventions which give rise to things that nature would rarely (if ever) produce on
her own. We owe most of the comforts of civilization to the design of quotidian pro-
cedures for forcing nature along improbable causal pathways. The limits to what can
be achieved by means of quotidian procedures are set by the causal possibilities for
intervening in physical processes. These are not the same from one possible world to
another. In order to support quotidian procedures, a world must have localized causal
openings. Localized causal openings are nature’s ready-made switches. They are local
physical factors that may be modi5ed independently of other physical factors with re-
liable causal consequences. A quotidian procedure may thus be viewed as a temporally
and spatially organized arrangement of selective causal interventions. These manipu-
lations of nature serve to redirect and reshape natural processes into the improbable
outcomes with respect to which the procedure is reliable.

But as I have argued [5], what happens as a result of these highly selective inter-
ventions is not speci5ed by the procedure. There is a causal gap between the actions
speci5ed by a quotidian procedure and the physical processes that make it reliable.
One might suspect that this gap is a disadvantage since, unlike the case with Tur-
ing machines, it means that the reliability of the procedure can not be attributed to
the procedure per se. Indeed, it explains why the reliability of some familiar quotidian
procedures (e.g., recipes) varies under di:erent physical circumstances (altitude) within
the same world. But further re6ection reveals that the gap between action and process
is actually a perk. Because of it, one can make a great Hollandaise sauce without
knowing any chemistry. One need only know how to perform the actions speci5ed by
the recipe. Nature takes care of the rest. It also means that people can invent pro-
cedures for getting things done without knowing very much about the physical and
chemical processes involved. The chef who invented Hollandaise sauce almost cer-
tainly knew little chemical theory but this did not prevent him or her from 5nding a
reliable method for creating a delectable sauce. In other words, quotidian procedures
insulate us from the messy causal details of the world while at the same time allow-
ing us to e:ectively intervene in those details so as to reliably produce advantageous
outcomes.

With an understanding of quotidian procedures 5rmly in hand, we can make bet-
ter sense of the schematic character of Turing machines. As we have seen, quotidian
procedures represent systematic ways of causally intervening in the world. In contrast,
Turing machines (with their placeholders for action) are best viewed as logical possi-
bilities for systematic causal intervention. This explains why their reputed e:ectiveness
does not vary from one possible world to another, namely, every possible world con-
tains at least the bare logical possibility of reliable procedures. In this context, it is



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 221

important to keep in mind the anthropomorphic character of Turing machines; indeed,
as discussed earlier, they provide us with a special idealization of human (procedure-
following) behavior. For this reason, they cannot be construed as exhausting all the
logical possibilities for procedure.

Whether a logical possibility for procedure is physically realizable, however, de-
pends upon the causal character of the world in which it is implemented. Worlds
lacking dependable localized causal openings will not support reliable quotidian pro-
cedures. Moreover, physical processes within the same world may vary greatly in
the frequency and accessibility of their causal openings. Exploiting a causal open-
ing may require physical circumstances that are very diKcult to bring about. Some
physical processes will thus be easier to harness by means of procedures than oth-
ers. All other things being equal, those worlds whose physical processes contain the
largest number of easily accessible, localized causal openings will support the richest
technologies.

Our discussion underscores an important point. In keeping with the formalist ac-
count of mathematics, Turing’s analysis treats e:ectiveness as a purely formal prop-
erty of procedures. But as we have seen, it is not. Turing machine programs can-
not be said to be e:ective because they are not authentic procedures; they are mere
schemas for procedure. Quotidian procedures, on the other hand, are genuine proce-
dures. But their reliability for a given outcome does not depend upon their formal
(schematic) properties. It depends upon a complex causal relation standing between
the actions they prescribe and suitable causal openings in the right kinds of physical
process.

5. Hypercomputation

What are the implications of these 5ndings for the computational capacities of phys-
ical machines? There is little reason to suppose that Turing machines tell us much
about the capacities of physical machines to achieve reliable outcomes, and this in-
cludes computing arithmetical functions as well as fabricating things like synthetic
5bers and wonder drugs. The key to computing an arithmetical function is 5nding a
physical process that can be harnessed by a procedure in such a way as to produce
something that may be interpreted as pairing the right numbers, viz., the arguments
and values of the function. Mere logical possibilities for arranging completely indeter-
minate actions in prearranged orders in time cannot shed light upon what functions are
computable any more than they can shed light upon the possibilities for synthesizing
synthetic fabrics. For in both cases, it is the e8ects of performing authentic actions that
ultimately produce the outcomes of interest, and these causal consequences lie outside
the scope of the speci5cations of a Turing machine.

Nevertheless most models of hypercomputation are closely wedded to the Turing
model. All of the models mentioned earlier (viz., inductive machines, analogue chaotic
neural nets, and accelerating machines) closely resemble traditional Turing machines.
Indeed, they di:er from them only insofar as they lift various restrictions on their
structure. In other words, most models of hypercomputation presuppose that the key to



222 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

computation beyond the so-called Turing limit is to be found in the structural features
of procedures.

Accelerating machines [7,8] provide a salient example. Traditional Turing machines
idealize human computational abilities to unlimited space and time. Accelerating ma-
chines add yet another layer of idealization, permitting traditional Turing machines to
work inde5nitely fast. By performing each Turing machine operation in a fraction (e.g.,
half) of the time that it takes to perform its predecessor, an accelerating machine can
complete an in5nite number of steps in a 5nite amount of time, thus computing func-
tions (e.g., the halting function [7]) that the universal Turing machine cannot compute.
The important point for our discussion, however, is that, except for their ability to
work faster and faster, accelerating machines are just like traditional Turing machines.
As a consequence, they can not be said to prescribe authentic actions any more than
traditional Turing machines can be said to prescribe authentic actions; they specify
only that completely inde5nite “actions” be performed at faster and faster rates. The
same point holds for inductive machines and analogue chaotic neural nets, which also
achieve hypercomputation by eliminating restrictions on the structure of traditional Tur-
ing machines. In the case of inductive machines, the requirement that a Turing machine
produce a result only when it halts is eliminated [1,11,13]. Analogue chaotic neural
nets [16], on the other hand, eliminate the requirement that the input and output of a
Turing machine be strictly 5nite. The most that may be said about inductive machines
and analogue chaotic neural nets is that, like accelerating machines, they provide us
with new varieties of procedural schema.

In order to get a physical device to realize these alternative procedural schemas,
however, they must be 5lled in with authentic actions, and this brings us to a problem.
Given our current understanding of physics, these schemas cannot be realized. Although
one can readily imagine worlds in which, for example, a physical device behaves like
an accelerating machine and performs an in5nite number of structurally distinct actions
in a 5nite amount of time, to the best of our knowledge, our world is not among them.
But it does not follow from this that our world can not support hypercomputational
physical devices. For as I have argued, procedural schemas are not the place to search
for physically powerful models of hypercomputation. What we really need to look for
are physical processes that can be causally harnessed by selective physical interventions
(authentic actions) in such a way as to produce physical e:ects that may be interpreted
as Turing uncomputable real numbers. 9 There is no reason to suppose that achieving
such outcomes requires physical machines that perform distinct actions at speeds well in
excess of that of light—indeed, at speeds approaching in5nity as a limit! Investigation
of the purely structural features of procedures cannot, however, be expected to reveal
how physical processes could be reshaped by selective causal interventions to yield an
outcome of the right sort.

9 (Turing) uncomputable real numbers are linked to uncomputable number-theoretic functions in the fol-
lowing fashion: A real number whose decimal expansion is d1; d2; : : : ; dn; : : :. cannot be computed by the
universal Turing machine IFF there is no function f(n) = dn on the positive integers that is computable by
the machine.



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 223

Jack Copeland’s coupled Turing machines [8] provide us with another example of
the untoward in6uence of Turing’s model on contemporary conceptions of hypercom-
putation. Coupled Turing machines achieve hypercomputation by relaxing yet another
structural feature of the traditional Turing model. Glossing over the details, the simplest
version of a coupled machine consists of a Turing machine linked to its environment
by means of a single input channel. Unlike a traditional Turing machine, whose in-
put must be inscribed on the tape in advance (before the machine starts), the input
channel supplies a stream of digits to the machine’s tape as it operates. To get a cou-
pled Turing machine to compute a Turing uncomputable function, however, more is
required. The input coming over the channel from the environment must have the right
character. It must consist of an in5nite sequence of binary digits d1; d2; : : : ; dn; : : : that
cannot be generated by the universal Turing machine. Put another way, the sequence
must consist of the digits of the decimal expansion of some Turing uncomputable real
number. Upon receipt of each digit, a hypercomputational coupled Turing machine per-
forms some simple arithmetical operation such as multiplying it by 2. This results in
a sequence (2xd1; 2xd2; : : : ; 2xdn; : : :) that cannot be produced by the universal Turing
machine. In other words, assuming that the machine does not halt, it “computes” a
function f(n) = 2xdn that cannot be computed by the universal Turing machine; if it
halts, the number of digits supplied by the input channel is 5nite, and the universal
machine will be able to compute the resultant function. But this is hardly surprising.
The interesting work has already been done by whatever process supplied the input to
the coupled machine in the 5rst place. It is clear that the universal Turing machine
cannot simulate this process.

Similar considerations apply to Turing’s famous O-machines [8], which achieve hy-
percomputation by means of traditional Turing machines that (unlike coupled machines)
feed the arguments of uncomputable number-theoretic functions to mysterious “ora-
cles” (proverbial black boxes), which (like the environment of a coupled machine)
produce the values of these functions; the real hypercomputational work is done by
the oracle [4,5]. The point is the hypercomputational capacities of O-machines and
coupled Turing machines do not derive from 5ddling with the structure of a tradi-
tional Turing machine. They derive from coupling a Turing machine to enigmatic
processes, of which the most that can be said is that they are utterly unlike a Tur-
ing machine! Rather than focusing upon enriching or eliminating various structural
requirements on traditional Turing machines, computer scientists would be better o:
focusing on how a non-Turing machine-like process could produce output of the kind
required to turn a coupled Turing machine or an O-machine into a hypercomputational
device.

One of the most common objections to the possibility of physical hypercomputation
concerns the diKculty of verifying that a physical device has computed a Turing un-
computable function. But as I have argued elsewhere [3,5], the veri5cation problem
is not unique to hypercomputational devices. It aUicts all physical devices for com-
puting functions. As an example, it is impossible to conclusively verify that my hand
calculator computes basic arithmetical functions like addition. For my hand calculator
will break down long before it 5nishes computing a total function like addition. If
I am lucky and no electronic glitches have occurred during its remarkably short life,



224 C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225

my calculator will compute a partial function that is consistent with its computing
addition. Yet this partial function is also consistent with my calculator’s computing
any one of an uncountably in5nite number of other total functions that are not ad-
dition. On the other hand, I am often unlucky (particularly with cheap calculators!)
since all physical devices are subject to physical perturbations that may cause them to
malfunction. This underscores a frequently overlooked point. The claim that a phys-
ical machine (or, for that matter, human) computes a given function is an empirical
hypothesis. Its plausibility ultimately depends upon physical considerations, both em-
pirical and theoretical (e.g., probabilistic causal relations, counterfactual suppositions
grounded in physical law), as well as mathematical considerations (e.g., identity re-
lations among di:erent arithmetical operations). Thus, for example, we have good
empirical and theoretical reasons (based on the commonly accepted interpretation of
quantum theory 10 ) for believing that some discrete physical processes (radioactive
decay) are truly random despite the fact that the universal Turing machine can not
simulate them; for this reason, radioactive processes are sometimes used in place of
pseudo-random algorithms, whose outputs are not genuinely random. The upshot is that
we cannot dismiss the possibility that we will someday have reasons for believing that
some physical device computes a Turing uncomputable function that are just as good
as the reasons that we currently have for believing that our hand calculators compute
addition.

In conclusion, computer scientists are more likely to succeed in designing physical
devices that actually compute Turing uncomputable functions if they focus on physics
rather than on 5ddling with the structure of traditional Turing machines. For if I am
right, the most promising possibilities for computing the Turing uncomputable depend
upon 5nding appropriate localized causal openings in the right sorts of physical pro-
cesses. Whether such physical processes exist is of course an open question. Moreover,
even supposing that they do exist, it may be technologically diKcult to procedurally
harness them in such a way as to reliably produce an outcome that can be unambigu-
ously interpreted as representing a Turing uncomputable function. But none of this
should be very surprising. Despite its historical connections with the formalist program
in mathematics, computer science is not a branch of mathematics or logic. It is a branch
of applied science.

References

[1] M.S. Burgin, Inductive turing machines, Sov. Math. Dok (1983) 1289–1293.
[2] C.E. Cleland, Is the Church–turing thesis true? Minds Mach. 3 (1993) 282–312.
[3] C.E. Cleland, E:ective procedures and computable functions, Minds Mach. 5 (1995) 9–23.
[4] C.E. Cleland, Recipes, algorithms, and programs, Minds Mach. 11 (2001) 219–237.
[5] C.E. Cleland, On e:ective procedures, Minds Mach. 12 (2002) 159–179.
[6] J. Copeland, The broad conception of computation, Amer. Behavioral Sci. 40 (1997) 690–716.

10 Under some interpretations of quantum mechanics, radioactive decay is a Turing computable process.
The hidden variable interpretation provides a salient example. It holds that there are empirically inaccessible
variables that (unbeknownst to us) render what seems to be a fundamentally probabilistic process completely
deterministic.



C.E. Cleland / Theoretical Computer Science 317 (2004) 209–225 225

[7] J. Copeland, Accelerating Turing machines, Minds Mach. 12 (2002) 281–301.
[8] J. Copeland, Hypercomputation: philosophical issues, Theoret. Comput. Sci., this Vol. (2004).
[9] R. Gandy, Church’s thesis and principles for mechanism, in: J. Barwise, H.J. Keisler, K. Kunen (Eds.),

The Kleene Symposium, North-Holland, Amsterdam, 1980, pp. 123–148.
[10] R. Gandy, The con6uence of ideas in 1936, in: R. Herkin (Ed.), The Universal Turing Machine: A

Half-Century Survey, Oxford University Press, Oxford, 1988, pp. 55–112.
[11] M.E. Gold, Limiting recursion, J. Symbolic Logic 30 (1964) 28–48.
[12] S. KMorner, The Philosophy of Mathematics, Dover, New York, 1960.
[13] H. Putnam, Trial and error predicates and the solution to a problem of Mostowski, J. Symbolic Logic

30 (1965) 49–57.
[14] O. Shagrir, E:ective computation by humans and machines, Minds Mach. 12 (2002) 221–240.
[15] W. Sieg, Hilbert’s programs: 1917–1922, Bull. Symbolic Logic 5 (1999) 1–44.
[16] H.T. Siegelmann, Computation beyond the Turing limit, Science 268 (1995) 545–548.
[17] E. Steinhart, Logically possible machines, Minds Mach. 12 (2002) 259–280.
[18] A. Turing, A, On computable numbers with an application to the Entscheidungsproblem, in: M. Davis

(Ed.), The Undecidable, Raven Press, New York, 1965, pp. 116–151.


	The concept of computability
	Introduction
	Paradise lost
	The received view on computability
	Causation, effective procedures, and physical computability
	Hypercomputation
	References


