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Summary

In 1861, Paul Broca stood up before the Anthropological

Society of Paris and announced that the left frontal lobe
was the seat of speech. Ever since, Broca’s eponymous

brain region has served as a primary battleground for one
of the central debates in the science of the mind and brain:

Is human cognition produced by highly specialized brain
regions, each conducting a specific mental process, or

instead by more general-purpose brain mechanisms, each
broadly engaged in a wide range of cognitive tasks? For

Broca’s area, the debate focuses on specialization for
language versus domain-general functions such as hierar-

chical structure building (e.g., [1, 2]), aspects of action pro-
cessing (e.g., [3]), working memory (e.g., [4]), or cognitive

control (e.g., [5–7]). Here, using single-subject fMRI, we
find that both ideas are right: Broca’s area contains two

sets of subregions lying side by side, one quite specifically
engaged in language processing, surrounded by another

that is broadly engaged across a wide variety of tasks and

content domains.

Results and Discussion

Despite abundant theorizingandextensiveempirical investiga-
tion, active debates continue between contrasting language-
specific (e.g., [8–10]) and domain-general (e.g., [1–7]) views of
Broca’s area. To test these alternatives, we conducted an
fMRI experiment in which we first scouted within traditionally
defined Broca’s area in individual subjects for candidate
language-selective voxels and candidate domain-general
voxels. We then tested each set of voxels more stringently
across six subsequent experiments designed to quantify their
engagement in a set of nonlinguistic functions that have been
previously attributed to Broca’s area.

Subjects read sentences and lists of nonwords, each fol-
lowed by a probe test of recognition memory (present/absent
judgment on a single probe word/nonword). To search for
language-responsive regions within Broca’s area, we asked
whether any voxels within left-hemisphere Brodmann areas
(BAs) 44 and 45 [11] responded significantly more strongly
to sentences than to nonword lists [12]. To search for regions
sensitive to broad cognitive demands [7], we used the oppo-
site contrast (nonwords > sentences) because the nonword
task is substantially and significantly more difficult than
the sentence task [12]. To further characterize any brain
regions fitting either profile, in separate runs participants
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performed tasks tapping mental arithmetic, spatial and verbal
working memory, and several varieties of cognitive control.
Each task had a harder and an easier condition, and all had
been previously reported to elicit activity in or near Broca’s
area.
We found two distinct subregions, each present in at least

90% of subjects individually, with strikingly different but highly
reliable functional profiles, lying side by side within Broca’s
area and each spanning the BA44/45 boundary (Figure 1).
One subregion, identified in each subject as responding
more during the processing of sentences than nonwords,
showed little response to any other task, with the BA45
portion being particularly selective (Figure 2, top row; see
also Table 1). As we have reported previously based on
partially overlapping data [13], this region is part of a broad
left-hemisphere language-selective network, with additional
major components in left temporal and parietal lobes. In
contrast, another set of subregions exhibited extreme domain
generality (Figure 2, bottom row; see also Table 1), with a
greater response to the harder than the easier condition in
each of the seven tasks, regardless of stimulus (verbal/
nonverbal) and task (arithmetic/working memory/inhibition).
Our data thus provide seven statistically independent replica-
tions of this same hard > easy contrast across diverse cogni-
tive domains.
Despite some variability across individuals (Figure 1), the

topography of these subregions is remarkably consistent:
domain-general subregions abut the language-selective sub-
region posteriorly (extending toward the inferior precentral
sulcus), dorsally (extending to the inferior frontal sulcus), and
ventrally. Within traditionally defined Broca’s area (Figure 1,
black outlines), accordingly, our results show a distinct and
unanticipated fine structure, which is clear and replicable in
each subject individually: the language-selective region
appears as an island, with both more anterior and more poste-
rior regions of domain-general activity.
Our data provide new insight into the complex functional

structure of Broca’s area. The findings are consistent with
and amplify previously reported structural heterogeneity of
this brain region (e.g., [14–18]) and help resolve the longstand-
ing debate about whether Broca’s area is language-specific or
domain-general: our data show that it is both, in different
subregions. In this light, the complexity of ‘‘Broca’s aphasia’’
is unsurprising, because lesions to this brain region will
generally affect both linguistic and more domain-general
functions.
Our findings open up myriad opportunities for future

research. Does the functional subdivision of Broca’s area
described here correspond to cytoarchitectonic/connectomic
subdivisions of the same region, and how does it relate to
nearby regions like BA9, BA46, and anterior insula [14–18]?
What precise computations are conducted in the language-
selective subregion? In the domain-general subregions? The
latter two questions should replace the old question of the
function of Broca’s area (e.g., [19]), because clearly Broca’s
area is not a homogeneous functional unit. How does this
functional subdivision account for the systematic pattern of
preservation and loss in Broca’s aphasia? Which of the
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Sample individual fROIs: Sentences>Nonwords  Nonwords>Sentences
Figure 1. Activation Patterns for Five Example

Subjects

Individual subject activations (red: sentences >

nonwords; blue: nonwords > sentences;

threshold: p < 0.001, uncorrected; the apparent

overlap at the edges of the regions of interest

[ROIs] results from the 3D projection of indepen-

dent regions that overlap along the line of sight).

These activations served as the ROIs. Black

outlines show BA45/44 borders [11].

Current Biology Vol 22 No 21
2060
many previous functional responses that have been attributed
to Broca’s area—from processing syntactic complexity to
imitation—arise in the language subregion, and which in the
domain-general subregions?

Beyond their implications for Broca’s area and for language
processing, our findings offer a satisfying answer to classic
questions about functional specificity in the frontal lobe, and
cerebral cortex more generally: The human brain contains
both regions that are highly specialized for a particular domain
and regions that are broadly engaged by a wide range of
stimuli and tasks. An important goal for future research will
be to understand how brain regions with such starkly different
functional profiles work together to produce uniquely human
cognition.
Experimental Procedures

Participants

Forty right-handed native English-speaking adults (28 females, 12 males)

from the Massachusetts Institute of Technology (MIT) community were

paid for their participation. All participants gave informed consent in accor-

dancewith the Internal ReviewBoard atMIT. (This data set partially overlaps

with the data set reported in [13].)

Design and Procedure

Each participant was scanned while performing the sentences/nonwords

reading task and one or more of the other six tasks (arithmetic addition,

spatial/verbal working memory, two versions of the multisource inter-

ference task [MSIT] and the classical Stroop task; see [13] for detailed

descriptions of the tasks). Between 13 and 16 participants performed

each of these six tasks.
Figure 2. Functional Profiles of Language-

Selective and Domain-General Functional ROIs

Magnitude of response (in percent signal

change from the fixation baseline) of language-

selective and domain-general regions within

BA45 (top box) and BA44 (bottom box) to each

of the two conditions in each of the seven

tasks. Language-selective regions are defined

by intersecting BA45/44 with sentences > non-

words activation, and domain-general regions

are defined by intersecting BA45/44 with

nonwords > sentences activation. All magni-

tudes shown are estimated from data indepen-

dent of those used to define the regions;

responses to the sentences and nonwords are

estimated using a left-out run. Error bars repre-

sent SEM by participants. *p < 0.05; **p < 0.01;

***p < 0.001. In the math task, participants

added smaller versus larger numbers; in the

spatial and verbal working memory (WM) tasks,

participants kept in memory fewer versus more

locations or digits, respectively; and in the three

cognitive control tasks (MSIT, vMSIT, Stroop),

participants had to inhibit a prepotent but

task-irrelevant response and choose instead

the task-relevant response.



Table 1. Effect Sizes and Associated Statistics for the Effects Shown in

Figure 2

Effect Size (SE)

Degrees of

Freedom t Value p Value

Language-Selective fROI within BA45

Localizer 0.35 (0.08) 38 4.53 <0.0001

Math H > E 20.02 (0.09) 12 20.22 n.s.

Spatial WM H > E 20.33 (0.11) 15 23.10 n.s.

Verbal WM H > E 20.04 (0.12) 12 20.31 n.s.

MSIT H > E 20.12 (0.07) 14 21.72 n.s.

vMSIT H > E 20.20 (0.08) 13 22.30 n.s.

Stroop H > E 0.08 (0.07) 13 1.07 n.s.

Language-Selective fROI within BA44

Localizer 0.32 (0.10) 36 3.34 <0.001

Math H > E 20.004 (0.08) 11 20.1 n.s.

Spatial WM H > E 20.15 (0.09) 14 21.61 n.s.

Verbal WM H > E 0.28 (0.10) 10 2.90 <0.01

MSIT H > E 20.04 (0.07) 14 20.60 n.s.

vMSIT H > E 20.005 (0.11) 11 0.04 n.s.

Stroop H > E 0.28 (0.07) 12 4.02 <0.001

Domain-General fROI within BA45

Localizer 0.38 (0.09) 36 4.32 <0.0001

Math H > E 0.49 (0.17) 11 2.87 <0.01

Spatial WM H > E 0.46 (0.17) 14 2.69 <0.01

Verbal WM H > E 0.11 (0.13) 10 0.87 n.s.

MSIT H > E 0.24 (0.11) 13 2.10 <0.05

vMSIT H > E 0.49 (0.10) 11 5.11 <0.001

Stroop H > E 0.40 (0.12) 12 3.51 <0.01

Domain-General fROI within BA44

Localizer 0.35 (0.08) 35 4.30 <0.0001

Math H > E 0.22 (0.10) 12 2.17 <0.05

Spatial WM H > E 0.27 (0.13) 15 2.07 <0.05

Verbal WM H > E 0.32 (0.10) 9 3.23 <0.01

MSIT H > E 0.31 (0.10) 13 3.04 <0.01

vMSIT H > E 0.40 (0.10) 11 3.94 <0.01

Stroop H > E 0.33 (0.10) 11 3.31 <0.01

Effect sizes (in percent blood oxygen level-dependent signal change) are

given with SE in parentheses, and the associated statistics for the effects

shown in Figure 2. Note that the localizer contrast for the language-selective

functional ROIs (fROIs) is sentences > nonwords, and for the domain-

general fROIs it is nonwords > sentences. Note that hard > easy (H > E) tests

were one-tailed, so that only positive differences are marked as significant.

n.s., not significant.
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fMRI Data Acquisition

Structural and functional data were collected on a whole-body Siemens

3T Trio scanner with a 32-channel head coil at the Athinoula A. Martinos

Imaging Center at the McGovern Institute for Brain Research at MIT.

T1-weighted structural images were collected in 176 sagittal slices with

1 mm isotropic voxels (time of repetition [TR] = 2,530 ms, time of echo

[TE] = 3.48ms). Functional data were acquired using an echo planar imaging

sequence with a 90% flip angle and using generalized autocalibrating

partially parallel acquisition (GRAPPA) with an acceleration factor of 2 in

31 near-axial interleaved slices (in-plane resolution 2.13 2.1, slice thickness

4 mm; distance factor 10%; field of view 200 mm) with TR = 2,000 ms and

TE = 30ms. The first 10 s of each run was excluded to allow for steady-state

magnetization. The scanning session included several functional runs, with

each run containing a mixture of hard and easy blocks, counterbalanced

for order.

Statistical Analyses

MRI data were analyzed using SPM5 (http://www.fil.ion.ucl.ac.uk/spm) and

custom MATLAB scripts (available from http://web.mit.edu/evelina9/www/

funcloc.html and http://www.nitrc.org/projects/spm_ss). Each subject’s

data were motion corrected and then normalized in a common brain space

(Montreal Neurological Institute [MNI] template) and resampled into 2 mm

isotropic voxels. Data were then smoothed using a 4 mm Gaussian filter

and high-pass filtered (at 200 s).
Defining Broca’s Area

Defining Broca’s area in vivo is a challenge because intersubject macroana-

tomical variability (including the sizes, shapes, and locations of gyri and the

depths, detailed branching patterns, and locations of sulci; [20–26]) leads to

poor alignment of anatomical features across brains in a common stereo-

taxic space. Furthermore, cytoarchitectonic zones, including BAs 44 and

45, have been shown to have poor alignment with macroanatomy in the

frontal lobes (e.g., [14, 27–29]). Consequently, even at the level of individual

subjects—using native anatomy—defining Broca’s area based on the

anatomical landmarks is problematic. As a result, we used the most

common way of defining Broca’s area in fMRI studies. Specifically, we

used estimates of BA44 and BA45 in the MNI stereotaxic space with the

help of the wfu_pickatlas tool [11]. Each of these region of interest (ROI)

masks was then intersected with each individual subject’s activation map

for (1) the sentences > nonwords contrast and (2) the nonwords > sentences

contrast, each thresholded at p < 0.001 uncorrected level, to define each

subject’s functional ROIs (fROIs) (no spatial contiguity constraints were

imposed on these fROIs; any voxel that passed the specified threshold

and fell within the boundaries of the anatomical parcel was included in the

fROI definition).

To estimate the responses of these fROIs to various conditions, we aver-

aged the responses across the voxels in each subject’s individually defined

fROI and then averaged these values across subjects for each region. To

estimate the responses to sentences and nonwords, we used all but the

first run to define the fROIs and the first run to estimate the responses, so

that all the data used to estimate response magnitudes were independent

of the data used for ROI definition. One-tailed t tests were performed to

evaluate the hypotheses: sentences > nonwords and nonwords > sentences

for the language-selective and domain-general fROIs, respectively, and

hard > easy for each of the other tasks in both kinds of fROIs.
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