Loewner chains associated with the generalized Roper–Suffridge extension operator on some domains ✩

Yu-Can Zhu a, Ming-Sheng Liu b,∗

a Department of Mathematics, Fuzhou University, Fuzhou, 350002 Fujian, PR China
b Department of Mathematics, South China Normal University, Guangzhou, 510631 Guangdong, PR China

Received 8 November 2006
Available online 29 April 2007
Submitted by Steven G. Krantz

Abstract

In this paper, we consider the generalized Roper–Suffridge extension operator defined by

\[\Phi_{n,\beta_2,\gamma_2,...,\beta_n,\gamma_n}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^{\beta_2} (f'(z_1))^{\gamma_2} z_2, \ldots, \left(\frac{f(z_1)}{z_1} \right)^{\beta_n} (f'(z_1))^{\gamma_n} z_n \right) \]

for \(z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1,p_2,...,p_n} \), where \(0 \leq \beta_j \leq 1, 0 \leq \gamma_j \leq 1 - \beta_j, p_j > 1 \), and we choose the branch of the power functions such that \((f(z_1)/z_1)^{\beta_j}|_{z_1=0} = 1 \) and \((f'(z_1))^{\gamma_j}|_{z_1=0} = 1, j = 1, 2, \ldots, n \).

We prove that the set \(\Phi_{n,\beta_2,\gamma_2,...,\beta_n,\gamma_n}(S(U)) \) can be embedded in Loewner chains and give the answer to the problem of Liu Taishun. We also obtain that the operator \(\Phi_{n,\beta_2,\gamma_2,...,\beta_n,\gamma_n}(f) \) preserves starlikeness or spirallikeness of type \(\alpha \) on \(\Omega_{p_1,p_2,...,p_n} \) for some suitable constants \(\beta_j, \gamma_j \), where \(S(U) \) is the class of all univalent analytic functions on the unit disc \(U \) in the complex plane \(C \) with \(f(0) = 0 \) and \(f'(0) = 1 \).

Keywords: Loewner chain; Roper–Suffridge extension operator; Biholomorphic starlike mapping; Spirallike of type \(\alpha \)

1. Introduction

Let \(C^n \) be the vector space of \(n \)-complex variables \(z = (z_1, z_2, \ldots, z_n) \) with the usual inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \|_2 = \sqrt{\langle \cdot, \cdot \rangle} \). A domain \(\Omega \subset C^n \) is said to be complete circular if \(z \in \Omega \) implies \(\xi z \in \Omega \) for all \(\xi \in C \) with \(|\xi| \leq 1 \).
A domain $\Omega \subset C^n$ is said to be complete Reinhardt if $(z_1, z_2, \ldots, z_n) \in \Omega$ implies $(\xi_1 z_1, \xi_2 z_2, \ldots, \xi_n z_n) \in \Omega$ for all $\xi_j \in C$ with $|\xi_j| \leq 1$, $j = 1, 2, \ldots, n$. A domain $\Omega \subset C^n$ is said to be starlike if $z \in \Omega$ implies $tz \in \Omega$ for $0 \leq t \leq 1$.

The Minkowski functional of a bounded complete circular domain Ω in C^n is defined by

$$\rho(z) = \inf \left\{ t > 0, \frac{z}{t} \in \Omega \right\}, \quad z \in C^n.$$

If Ω is a bounded convex circular domain in C^n, then $\rho(\cdot)$ is a norm of C^n and $\Omega = \{z \in C^n: \rho(z) < 1\}$ (see [28]).

Assume $p_j > 0$ ($j = 1, 2, \ldots, n$). Let

$$\Omega_{p_1, p_2, \ldots, p_n} = \left\{ (z_1, z_2, \ldots, z_n) \in C^n: \sum_{j=1}^n |z_j|^{p_j} < 1 \right\},$$

then $\Omega_{p_1, p_2, \ldots, p_n}$ is a bounded complete Reinhardt domain in C^n, and the Minkowski functional $\rho(z)$ of $\Omega_{p_1, p_2, \ldots, p_n}$ satisfies

$$\sum_{j=1}^n \left| \frac{z_j}{\rho(z)} \right|^{p_j} = 1.$$ (1.2)

If $p_j > 1$ ($j = 1, 2, \ldots, n$), then $\Omega_{p_1, p_2, \ldots, p_n}$ is a bounded convex Reinhardt domain in C^n, and the Minkowski functional $\rho(z)$ of $\Omega_{p_1, p_2, \ldots, p_n}$ is a C^1 function on $\Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$.

Suppose $\Omega \subset C^n$ is a bounded complete circular domain, $H(\Omega)$ denotes the class of all holomorphic mappings $f: \Omega \to C^n$. The first Fréchet derivative and the second Fréchet derivative of a mapping $f \in H(\Omega)$ at point z are denoted by $Df(z)(\cdot)$, $D^2 f(z)(b, \cdot)$, respectively. Their matrix representations are

$$Df(z) = \left(\frac{\partial f_j(z)}{\partial z_k} \right)_{1 \leq j, k \leq n}, \quad D^2 f(z)(b, \cdot) = \left(\sum_{l=1}^n \frac{\partial^2 f_j(z)}{\partial z_k \partial z_l} b_l \right)_{1 \leq j, k \leq n},$$

where $f(z) = (f_1(z), \ldots, f_n(z))$, $b = (b_1, \ldots, b_n) \in C^n$. A mapping $f \in H(\Omega)$ is said to be locally biholomorphic on Ω if f has a local inverse at each point $z \in \Omega$ or, equivalently, if $\det Df(z) \neq 0$ at each point on Ω.

Let $N(\Omega)$ denote the class of all locally biholomorphic mappings $f: \Omega \to C^n$ such that $f(0) = 0$, $Df(0) = I$, where I is the unit matrix of $n \times n$. If $f \in N(\Omega)$ is a biholomorphic mapping on Ω and $f(\cdot)$ is a starlike domain in C^n, then we say that f is a biholomorphic starlike mapping on Ω. The class of all biholomorphic starlike mappings on Ω with $f(0) = 0$, $Df(0) = I$ is denoted by $S^*(\Omega)$. Suppose that $a \in (-\frac{x}{2}, \frac{x}{2})$. If $f \in N(\Omega)$ is a biholomorphic mapping on Ω and $e^{-\alpha t} f(\cdot) \subset f(\cdot)$ for all $t \geq 0$, then we say that f is a biholomorphic spiralike mapping of type α on Ω. The class of all biholomorphic spiralike mappings of type α on Ω with $f(0) = 0$, $Df(0) = I$ is denoted by $S_{\alpha}(\Omega)$. Let $S(\Omega)$ be the set of all biholomorphic mappings on Ω with $f(0) = 0$, $Df(0) = I$. It is obvious that $S_{\alpha}(\Omega) \subset S(\Omega)$ and $S_{0}(\Omega) = S^*(\Omega)$.

Let $\| \cdot \|$ be an arbitrary norm of C^n. Suppose that $B = \{z \in C^n: \|z\| < 1\}$ is the unit ball in $(C^n, \| \cdot \|)$ and U is the unit disc in the complex plane C. Let $L(C^n, C^m)$ be the space of all continuous linear operators from C^n into C^m with the standard operator norm. For each $z \in C^n \setminus \{0\}$, we set

$$T(z) = \left\{ l_z \in L(C^n, C): \|l_z(z)\| = \|z\|, \|l_z\| = 1 \right\}.$$

Then this set is nonempty by the Hahn–Banach theorem (see [28]). Let

$$\mathcal{P} = \left\{ p \in H(U): p(0) = 1, \ Re p(z) > 0, z \in U \right\}, \quad \mathcal{M} = \left\{ p \in H(B): p(0) = 0, \ Dp(0) = I, \ Re \{p(z)\} > 0, z \in B \setminus \{0\}, l_z \in T(z) \right\}.$$

If $f, g \in H(B)$, we say that f is subordinate to g, and write $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz mapping v (i.e., $v \in H(B)$, $v(0) = 0$, and $\|v(z)\| < 1$, $z \in B$) such that $f(z) = g(v(z))$ for $z \in B$. If g is a biholomorphic mapping on B, then $f \prec g$ is equivalent to $f(0) = g(0)$ and $f(B) \subset g(B)$.

We recall that a mapping $F: B \times [0, \infty) \to C^n$ is called a Loewner chain if $F(\cdot,t)$ is biholomorphic on B, $F(0,t) = 0$, $DF(0,t) = e^{tI}$ for $t \geq 0$ and

$$F(z,s) < F(z,t), \quad z \in B, \ 0 \leq s \leq t < \infty.$$
Let \(S^1(B) \) denote the subset of \(S(B) \) which can be embedded in Loewner chains, i.e., \(F \in S^1(B) \) if and only if there exists a Loewner chain \(F(z, t) \) such that \(F(z) = F(z, 0) \) for \(z \in B \). It is well known that in the case of one complex variable, \(S^1(U) \equiv S(U) \) (see [25]); but, in \(C^n \) \((n \geq 2)\), \(S^1(B) \neq S(B) \), in fact, the set \(S(B) \) is larger than \(S^1(B) \) (see [5,11]). Hence, generating mappings in \(S^1(B) \) arouse great interest. Pfaltzgraff and Suffridge [24] showed that \(f \in S^2(B) \) if and only if \(f(z, t) = e^t f(z) \), \(z \in B \), \(t \geq 0 \), is a Loewner chain. Hence \(S^2(B) \subset S^1(B) \). Some other subsets of \(S^1(B) \) are given in [5].

In geometric theory of one complex variable, Loewner chains [22] are a very powerful tool to study univalent functions (see [9,25]). In order to investigate biholomorphic mappings of several complex variables, Pfaltzgraff [23] generalized Loewner chains to higher dimensions. Later contributions permitting generalizations to the unit ball of a complex Banach space were made by Poreda [26]. Finally, Graham, Hamada, Kohr et al. perfected this subject and gave various applications, including univalence criteria and characterizations of subclasses of biholomorphic mappings (see [5–14,24], etc.).

In 1995, Roper and Suffridge [27] introduced an extension operator. This operator is defined for normalized locally biholomorphic function \(f \) on the unit disc \(U \) in \(C \) by

\[
F(z) = \Phi_n(f)(z) = \left(f(z_1), \sqrt{f'(z_1)z_0} \right),
\]

where \(z = (z_1, z_0) \) belongs to the unit ball \(B^n \) in \(C^n \), \(z_1 \in U \), \(z_0 = (z_2, \ldots, z_n) \in C^{n-1} \), and we choose the branch of the square root such that \(\sqrt{f'(0)} = 1 \).

Roper and Suffridge [27] proved that: If \(f \in K(U) \), then \(F = \Phi_2(f) \in K(B^2) \), where \(K(\Omega) \) is the class of all biholomorphic convex mappings on \(\Omega \). However, its proof is very complex, Graham and Kohr [7] gave a simplified proof of the theorem of Roper and Suffridge. After that, the other properties of Roper–Suffridge operator were studied by Graham, Hamada, Kohr, Gong and Liu, and others (see [3–6,8–12,14,19–21]). We generalized Roper–Suffridge operator to Banach spaces in [15–17,30,31].

In this paper, we shall discuss some properties of the generalized Roper–Suffridge extension operator defined by

\[
\Phi_{\beta_1, \beta_2, \gamma_1, \ldots, \beta_n, \gamma_n}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^{\beta_2} (f'(z_1))^{\gamma_2} z_2, \ldots, \left(\frac{f(z_1)}{z_1} \right)^{\beta_n} (f'(z_1))^{\gamma_n} z_n \right)
\]

for \(z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \), where \(0 \leq \beta_j \leq 1, 0 \leq \gamma_j \leq 1 - \beta_j, p_j > 1 \), and we choose the branch of the power functions such that \(\left(\frac{f(z_1)}{z_1} \right)^{\beta_j} \big| z_1 = 0 = 1 \) and \((f'(z_1))^{\gamma_j} \big| z_1 = 0 = 1 \), \(j = 1, 2, \ldots, n \), \(\Omega_{p_1, p_2, \ldots, p_n} = \{ (z_1, z_2, \ldots, z_n) \in C^n : \sum_{j=1}^{n} |z_j|^{p_j} < 1 \} \).

Recently, Liu and Xu [14] proved the following result.

Theorem A. Suppose that \(n \geq 2 \), \(p_1 = 2 \), \(p_j > 1 \), \(\beta_j \in [0,1] \), \(\gamma_j \in [0, \frac{1}{p_j}] \) with \(\beta_j + \gamma_j \leq 1 \), \(j = 2, 3, \ldots, n \). Then \(\Phi_{\beta_1, \beta_2, \gamma_1, \ldots, \beta_n, \gamma_n}(S(U)) \) can be embedded in Loewner chains, where \(\Omega_{2, p_2, \ldots, p_n} \) is defined by (1.1), and \(\Phi_{\beta_1, \beta_2, \gamma_1, \ldots, \beta_n, \gamma_n}(f)(z) \) is defined by (1.4) for \(f \in S(U) \) and \(\Phi_{2, p_2, \ldots, p_n} \).

But, they did not know whether the operator \(\Phi_{\beta_1, \beta_2, \gamma_1, \ldots, \beta_n, \gamma_n}(f)(z) \) can be embedded in a Loewner chain on the more general domain \(\Omega_{p_1, p_2, \ldots, p_n} \). The purpose of this paper is to give the answer to the above problem [14]. Thus we are able to replace the exponent 2 for the main variable \(z_1 \) by a general exponent \(p_1 > 1 \).

2. Main results

In order to obtain our main results, we need the following lemmas.

Lemma 2.1. (See [25].) A family of functions \(\{ f(z,t) \}_{t \geq 0} \) with \(f(0, t) = 0 \), \(f'(0, t) = e^t \), is a Loewner chain if and only if the following conditions hold:

(i) There exist \(r \in (0,1) \) and a constant \(M \geq 0 \) such that \(f(\cdot, t) \) is holomorphic on \(D_r \) for each \(t \geq 0 \), where \(D_r = \{ z \in C : |z| < r \} \), locally absolutely continuous in \(t \geq 0 \) locally uniformly with respect to \(z \in D_r \), and \(|f(z, t)| \leq Me^t, |z| \leq r, t \geq 0 \).
(ii) There exists a function $p(z, t)$ such that $p(\cdot, t) \in \mathcal{P}$ for each $t \geq 0$, $p(z, \cdot)$ is measurable on $[0, +\infty)$ for each $z \in U$, and for all $z \in D_r$, $\frac{\partial f}{\partial t}(z, t) = zf'(z)p(z, t)$, a.e. $t \geq 0$.

(iii) For each $t \geq 0$, $f(\cdot, t)$ is the analytic continuation of $f(\cdot, t)|_{D_r}$ to U, and furthermore this analytic continuation exists under the assumptions (i) and (ii).

Lemma 2.2. (See [26].) Let $f(z, t) = e^t z + \cdots$ be a mapping from $B \times [0, +\infty)$ into C^n such that

(a) $f(\cdot, t) \in H(B)$ for each $t \geq 0$;
(b) $f(z, t)$ is a locally absolutely continuous function of $t \in [0, +\infty)$ locally uniformly with respect to $z \in B$.

Let $h : B \times [0, +\infty) \to C^n$ satisfy the following conditions:

(i) $h(\cdot, t) \in \mathcal{M}$, $t \geq 0$;
(ii) for each $z \in B$, $h(z, t)$ is a measurable function of $t \in [0, +\infty)$.

Suppose that
\[
\frac{\partial f}{\partial t}(z, t) = Df(z, t)h(z, t), \quad \text{a.e. } t \geq 0,
\]
and for all $z \in B$, and suppose there exists a nonnegative sequence $\{t_m\}$, increasing to $+\infty$, such that
\[
\lim_{m \to +\infty} e^{-t_m} f(z, t_m) = G(z)
\]
locally uniformly on B. Then $f(z, t)$ is a Loewner chain on B and the following inequalities hold:
\[
\frac{\|z\|}{(1 + \|z\|)^2} \leq \|e^{-t} f(z, t)\| \leq \frac{\|z\|}{(1 - \|z\|)^2}, \quad z \in B, \quad 0 \leq t < +\infty.
\]

In particular, if $f(z) = f(z, 0)$, then
\[
\frac{\|z\|}{(1 + \|z\|)^2} \leq \|f(z)\| \leq \frac{\|z\|}{(1 - \|z\|)^2}, \quad z \in B.
\]

Lemma 2.3. Suppose that $\Omega \subset C^n$ is a bounded complete Reinhardt domain, its Minkowski functional $\rho(z)$ is a C^1 function except for a lower dimensional manifold Ω_0 in $\overline{\Omega}$. Then we have the following properties of Minkowski functional $\rho(z)$:

1. $\frac{\partial \rho(z)}{\partial z_j} z_j \geq 0$ for $z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0$ and $j = 1, 2, \ldots, n$.
2. $\rho(z) = 2 \sum_{j=1}^n \frac{\partial \rho(z)}{\partial z_j} z_j$ for $z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0$.

Proof. (1) First we use the same method as in [2] to prove that $\frac{\partial \rho(z)}{\partial z_j} z_j$ is a real number for $z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0$, where $j = 1, 2, \ldots, n$.

In fact, fix j ($1 \leq j \leq n$) and $z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0$, since Ω is a bounded complete Reinhardt domain, then we have
\[
(z_1, \ldots, z_{j-1}, z_j, z_{j+1}, \ldots, z_n) \in \Omega \iff (z_1, \ldots, z_{j-1}, z_j e^{i\theta}, z_{j+1}, \ldots, z_n) \in \Omega, \quad -\pi < \theta < \pi.
\]

By the definition of $\rho(z)$, we obtain
\[
\rho(z_1, \ldots, z_{j-1}, z_j, z_{j+1}, \ldots, z_n) = \rho(z_1, \ldots, z_{j-1}, z_j e^{i\theta}, z_{j+1}, \ldots, z_n), \quad -\pi < \theta < \pi.
\]

It follows that
\[
0 = \frac{d}{d\theta} \rho(z_1, \ldots, z_{j-1}, z_j e^{i\theta}, z_{j+1}, \ldots, z_n) \bigg|_{\theta=0} = \frac{\partial \rho(z)}{\partial z_j} z_j i - \frac{\partial \rho(z)}{\partial z_j} z_j i.
\]

Hence we have $\frac{\partial \rho(z)}{\partial z_j} z_j = \frac{\partial \rho(z)}{\partial z_j} z_j = (\frac{\partial \rho(z)}{\partial z_j} z_j)$, i.e., $\frac{\partial \rho(z)}{\partial z_j} z_j$ is a real number.
Next, we prove that \(\frac{\partial \rho(z)}{\partial z_j} z_j \geq 0 \) for \(z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0 \), where \(j = 1, 2, \ldots, n \).

Suppose that \(z = (z_1, z_2, \ldots, z_n) \in \Omega \setminus \Omega_0 \). Since \(\Omega \) is a bounded complete Reinhardt domain, then we have \((z_1, \ldots, z_{j-1}, \lambda z_j, z_{j+1}, \ldots, z_n) \in \Omega \) for \(0 < \lambda \leq 1 \). By the definition of \(\rho(z) \), we obtain
\[
\rho(z_1, \ldots, z_{j-1}, z_j, z_{j+1}, \ldots, z_n) \geq \rho(z_1, \ldots, z_{j-1}, \lambda z_j, z_{j+1}, \ldots, z_n), \quad 0 < \lambda \leq 1.
\]

It follows that
\[
\frac{d}{d\lambda} \rho(z_1, \ldots, \lambda z_j, \ldots, z_n) \bigg|_{\lambda=1} = \lim_{\lambda \to 1^-} \frac{\rho(z_1, \ldots, \lambda z_j, \ldots, z_n) - \rho(z_1, \ldots, z_j, \ldots, z_n)}{\lambda - 1} \geq 0.
\]

Hence we get
\[
0 \leq \frac{d}{d\lambda} \rho(z_1, \ldots, \lambda z_j, \ldots, z_n) \bigg|_{\lambda=1} = \frac{\partial \rho(z)}{\partial z_j} z_j + \frac{\partial \rho(z)}{\partial \overline{z}_j} \overline{z}_j = 2 \frac{\partial \rho(z)}{\partial z_j} z_j,
\]
where \(j = 1, 2, \ldots, n \).

(2) Since \(\Omega \) is a bounded complete Reinhardt domain, by the definition of \(\rho(z) \), we have \(\rho(tz) = t \rho(z) \) for \(t \in [0, 1] \) (some properties see [18]). Hence for every \(z \in \Omega \setminus \Omega_0 \), we obtain
\[
\rho(z) = \frac{d}{dt} \rho(tz) \bigg|_{t=1} = \sum_{j=1}^{n} \left(\frac{\partial \rho(z)}{\partial z_j} z_j + \frac{\partial \rho(z)}{\partial \overline{z}_j} \overline{z}_j \right) = 2 \sum_{j=1}^{n} \frac{\partial \rho(z)}{\partial z_j} z_j.
\]

This completes the proof. \(\square \)

Lemma 2.4.

(1) Suppose that \(g \in H(U) \) satisfies \(g(U) \subset U \). Then
\[
|g'(\xi)| \leq \frac{1 - |g(\xi)|^2}{1 - |\xi|^2} \quad (2.1)
\]
for all \(\xi \in U \).

(2) Suppose that \(p \in H(U) \) satisfies \(\text{Re} \, p(\xi) > 0 \) for \(\xi \in U \) with \(p(0) = 1 \). Then
\[
\text{Re} \left[p(\xi) + \xi p'(\xi) \right] \geq \frac{1 - \frac{1}{2} |\xi|^2}{1 - |\xi|^2} \text{Re} \, p(\xi) \quad (2.2)
\]
for all \(\xi \in U \).

Proof. We only prove the part (2) of Lemma 2.4 because the part (1) of Lemma 2.4 is just Schwarz–Pick’s Lemma (see [1, p. 132]).

Since \(p \in H(U) \) satisfies \(\text{Re} \, p(\xi) > 0 \) for \(\xi \in U \) with \(p(0) = 1 \), then we have \(p(\xi) < \frac{1 + \xi}{1 - \xi} \). Hence there exists a function \(w \in H(U) \) with \(|w(\xi)| \leq |\xi| \) for \(\xi \in U \) such that \(p(\xi) = \frac{1 + w(\xi)}{1 - w(\xi)} \) for \(\xi \in U \). Using the part (1) of Lemma 2.4, we obtain
\[
|\xi p'(\xi)| = \left| \frac{2 \xi w'(\xi)}{(1 - w(\xi))^2} \right| \leq \frac{2 |\xi| (1 - |w(\xi)|^2)}{(1 - |\xi|^2)(1 - |w(\xi)|^2)} = \frac{2 |\xi|}{1 - |\xi|^2} \text{Re} \, p(\xi).
\]

It follows that inequality (2.2) holds. This completes the proof. \(\square \)

Lemma 2.5. Let \(p > 0 \) and
\[
a = a(p) = \begin{cases} 1, & \text{if } 0 < p \leq 2, \\ \frac{1}{(\sqrt{2} + 1)^{p-1}} \frac{1}{(\sqrt{2}+1)^p}, & \text{if } p > 2. \end{cases} \quad (2.3)
\]

Then we have
\[
2 - apt^{p-2} + (ap - 2)t^p \leq 0 \quad (2.4)
\]
for \(t \in [\sqrt{2} - 1, 1] \).
Proof. Case 1. When $0 < p \leq 2$, let $\phi(t) = 2 - pt^{p-2} + (p - 2)t^p$. Then

$$
\phi'(t) = p(p - 2)t^{p-3}(t^2 - 1) \geq 0
$$

for $t \in [\sqrt{2} - 1, 1]$. Notice that $a = 1$, we get

$$
2 - apr^{p-2} + (ap - 2)t^p = \phi(t) \leq \phi(1) = 0
$$

for $t \in [\sqrt{2} - 1, 1]$.

Case 2. When $p > 2$. From (2.3), some simple computations yield that $a = a(p) > a(2) = 1$ for $p > 2$, and

$$
ap - 2 = \frac{(\sqrt{2} + 1)^p - 1}{\sqrt{2} + 1} - 2 > \frac{(\sqrt{2} + 1)^2 - 1}{\sqrt{2} + 1} - 2 = 0. \tag{2.5}
$$

Let $\psi(t) = 2 - apr^{p-2} + (ap - 2)t^p$ for $t \in [\sqrt{2} - 1, 1]$. Then we have

$$
\psi'(t) = -ap(p - 2)t^{p-3} + p(ap - 2)t^{p-1}
$$

$$
= p(ap - 2)t^{p-3}\left(t^2 - \frac{ap - 2a}{ap - 2}\right)
$$

$$
= p(ap - 2)t^{p-3}\left(t - \frac{ap - 2a}{ap - 2}\right)\left(t + \sqrt{\frac{ap - 2a}{ap - 2}}\right).
$$

Notice that $ap - 2 > 0$, $0 < \sqrt{\frac{ap - 2a}{ap - 2}} < 1$ for $p > 2$ and $\psi(1) = \psi(\sqrt{2} - 1) = 0$, we obtain

$$
2 - apr^{p-2} + (ap - 2)t^p \leq \max_{\sqrt{2} - 1 \leq t \leq 1} \psi(t) = \max\{\psi(\sqrt{2} - 1), \psi(1)\} = 0
$$

for $t \in [\sqrt{2} - 1, 1]$. This completes the proof. \hfill \Box

Lemma 2.6. Let $p_1 > 1$, $p_j > 1$, $\gamma_j \in [0, \frac{1}{ap_j}]$ $(j = 2, 3, \ldots, n)$, where $a = a(p_1)$ is defined by (2.3). Suppose that $\rho(z)$ is the Minkowski functional of $\Omega_{p_1, p_2, \ldots, p_n}$ defined by (1.1). Then we have

$$
\frac{\partial \rho(z)}{\partial z_1}z_1 + \frac{1 - 2|z_1| - |z_1|^2}{1 - |z_1|^2} \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j \geq 0 \tag{2.6}
$$

for $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$.

Proof. From Lemma 1.1 in [29], we have

$$
\frac{\partial \rho(z)}{\partial z_j} = \frac{p_j z_j |z_j|^{p_j - 1}}{2p(z) \sum_{k=1}^{n} p_k |z_k|^{p_k} - \frac{z_j}{p(z)} |z_j|^{p_j}}, \quad j = 1, 2, \ldots, n. \tag{2.7}
$$

for $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$. This implies that

$$
\frac{\partial \rho(z)}{\partial z_j} z_j \geq 0, \quad j = 1, 2, \ldots, n. \tag{2.8}
$$

for $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$.

Now we split into two cases to prove that the inequality (2.6) holds.

Case 1. If $0 \leq |z_1| \leq \sqrt{2} - 1$, then we have $\frac{2|z_1|}{1 - |z_1|^2} \leq 1$. Noting that $\gamma_j \geq 0$ $(j = 2, \ldots, n)$, from (2.8), we obtain

$$
\frac{\partial \rho(z)}{\partial z_1}z_1 + \frac{1 - 2|z_1| - |z_1|^2}{1 - |z_1|^2} \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j = \frac{\partial \rho(z)}{\partial z_1}z_1 + \left(1 - \frac{2|z_1|}{1 - |z_1|^2}\right) \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j \geq 0
$$

for $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$.

Case 2. If $\sqrt{2} - 1 \leq |z_1| < 1$, we let $w_j = \frac{z_j}{\rho(z)}$, $j = 1, 2, \ldots, n$, $A = \sum_{k=1}^{n} p_k |w_k|^p_k$. By the definition of $\rho(z)$, we have $\rho(z) \leq 1$ for $z \in \Omega_{p_1, p_2, \ldots, p_n}$. Hence we have $\sqrt{2} - 1 \leq |z_1| \leq |w_1| < 1$ and $1 - 2|w_1| - |w_1|^2 \leq 0$. From (2.7), (2.8), Lemma 2.5, noting that $\sum_{j=1}^{n} |w_j|^p_j = 1$ and $\gamma_j \geq 0$ ($j = 2, \ldots, n$), we obtain

$$\frac{\partial \rho(z)}{\partial z_1} z_1 + \frac{1 - 2|z_1| - |z_1|^2}{1 - |z_1|^2} \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j$$

$$\geq \frac{\partial \rho(z)}{\partial z_1} z_1 + \left(1 - \frac{2|z_1|}{1 - |z_1|^2}\right) \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j$$

$$= \frac{\rho(z)}{2A} \left(p_1 |w_1|^p_1 + \frac{1 - 2|w_1| - |w_1|^2}{1 - |w_1|^2} \sum_{j=2}^{n} \gamma_j p_j |w_j|^p_j \right)$$

$$\geq \frac{\rho(z)}{2A} \left(p_1 |w_1|^p_1 + \frac{1 - 2|w_1| - |w_1|^2}{1 - |w_1|^2} \sum_{j=2}^{n} \gamma_j p_j |w_j|^p_j \right)$$

$$= \frac{\rho(z)}{2 \sqrt{a} (1 - |w_1|^2)} \left(ap_1 |w_1|^p_1 (1 - |w_1|^2) + (1 - 2|w_1| - |w_1|^2) \right)$$

$$= \frac{\rho(z)}{2 \sqrt{a} (1 - |w_1|^2)} \left(|w_1|^2 \left[2 - ap_1 |w_1|^p_1 - (ap_1 - 2) |w_1|^p_1 \right] + (1 - |w_1|)^2 (1 - |w_1|^p_1) \right) \geq 0$$

for $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$. This completes the proof. \qed

Lemma 2.7. (See [13].) Suppose $f \in S(B)$, $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $a = \tan \alpha$, then f is a spirallike mapping of type α if and only if

$$f(z, t) = e^{1-i\alpha t} f(e^{i\alpha t} z), \quad z \in B, \ t \geq 0,$$

is a Loewner chain. In particular, f is a starlike mapping if and only if $f(z, t) = e^t f(z)$ is a Loewner chain.

Lemma 2.8. Let $p_j \geq 1$ ($j = 1, 2, \ldots, n$). Suppose that $\rho(z)$ is the Minkowski functional of $\Omega_{p_1, p_2, \ldots, p_n}$. Then there exist two positive numbers A and B such that

$$A \|z\|_2 \leq \rho(z) \leq B \|z\|_2, \quad z \in C^n,$$

where $\|z\|_2 = (\sum_{j=1}^{n} |z_j|^2)^{1/2}$ for $z = (z_1, z_2, \ldots, z_n) \in C^n$.

Proof. Let $e_1 = (1, 0, 0, \ldots, 0)$, $e_2 = (0, 1, 0, \ldots, 0)$, \ldots, $e_n = (0, 0, \ldots, 0, 1)$. For every $z = (z_1, z_2, \ldots, z_n) \in C^n$, we have $z = \sum_{j=1}^{n} z_j e_j$. Since $p_j \geq 1$ ($j = 1, 2, \ldots, n$), then $\rho(\cdot)$ is a norm of C^n. Hence we obtain

$$\rho(z) \leq \sum_{j=1}^{n} \rho(z_j e_j) = \sum_{j=1}^{n} |z_j| \rho(e_j)$$

$$\leq \left(\sum_{j=1}^{n} |z_j|^2 \right)^{1/2} \left(\sum_{j=1}^{n} [\rho(e_j)]^2 \right)^{1/2} = B \|z\|_2$$

for $z \in C^n$, where $B = (\sum_{j=1}^{n} [\rho(e_j)]^2)^{1/2}$.

On the other hand, since $\Omega_{p_1, p_2, \ldots, p_n}$ is a bounded complete Reinhardt domain, then we have $(0, \ldots, 0, z_j, 0, \ldots, 0) \in \Omega_{p_1, p_2, \ldots, p_n}$ when $(z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n}$. By the definition of $\rho(z)$, we have $\rho(z_1, z_2, \ldots, z_n) \geq \rho(0, \ldots, 0, z_j, 0, \ldots, 0) = |z_j| \rho(e_j)$ for $j = 1, 2, \ldots, n$. Hence we obtain
Lemma 2.9. Let $p_j \geq 1$ $(j = 1, 2, \ldots, n)$. Suppose that $\rho(z)$ is the Minkowski functional of $\Omega_{p_1, p_2, \ldots, p_n}$, the norm of C^n is $\| \cdot \| = \rho(\cdot)$. If $\rho(z)$ is differentiable at $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$, then we have
\[
T(z) = \{2\langle z, \frac{\partial \rho(z)}{\partial z} \rangle \}, \text{where } \frac{\partial \rho(z)}{\partial z} = (\frac{\partial \rho(z)}{\partial z_1}, \frac{\partial \rho(z)}{\partial z_2}, \ldots, \frac{\partial \rho(z)}{\partial z_n}).
\]

Proof. Suppose that $\rho(z)$ is differentiable at $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$, the norm of C^n is $\| \cdot \| = \rho(\cdot)$. Then we have
\[
\Omega_{p_1, p_2, \ldots, p_n} = \{ z \in C^n : \| z \| = \rho(z) < 1 \}.
\]
We let $l_z(\cdot) = 2\langle \cdot, \frac{\partial \rho(z)}{\partial z} \rangle$ and $\Omega_z = \{ w \in C^n : \rho(w) < \rho(z) \}$, then Ω_z is a convex domain in C^n, and $\frac{\partial \rho(z)}{\partial z}$ is the outer normal vector of $\partial \Omega_z$ at z. From Lemma 2.3, we have
\[
l_z(z) = 2\langle z, \frac{\partial \rho(z)}{\partial z} \rangle = \rho(z) = \| z \|.
\]
Hence $\| l_z \| \geq 1$.

For every $w \in C^n \setminus \{0\}$, we have $\frac{w}{\rho(w)} \rho(z) \in \partial \Omega_z$. Hence we obtain
\[
\text{Re}\left(z - \frac{w}{\rho(w)} \rho(z), \frac{\partial \rho(z)}{\partial z} \right) \geq 0.
\]
Noting that $2\langle z, \frac{\partial \rho(z)}{\partial z} \rangle = \rho(z)$, we get
\[
2\text{Re}\left(w, \frac{\partial \rho(z)}{\partial z} \right) \leq \rho(w). \tag{2.10}
\]

Set $\theta = \text{arg}\langle w, \frac{\partial \rho(z)}{\partial z} \rangle$ for $\langle w, \frac{\partial \rho(z)}{\partial z} \rangle \neq 0$ and $\theta = 0$ for $\langle w, \frac{\partial \rho(z)}{\partial z} \rangle = 0$. Using (2.10) and the fact that $\rho(e^{-i\theta} w) = \rho(w)$, we have
\[
2\text{Re}\left(e^{-i\theta} w, \frac{\partial \rho(z)}{\partial z} \right) = 2\left| \langle w, \frac{\partial \rho(z)}{\partial z} \rangle \right| \leq \rho(w).
\]
It follows that $|l_z(w)| = 2|\langle w, \frac{\partial \rho(z)}{\partial z} \rangle| \leq \rho(w) = \| w \|$. This implies $\| l_z \| \leq 1$. Hence we have $\| l_z \| = 1$ and $l_z \in T(z)$.

Conversely, suppose that $\rho(z)$ is differentiable at $z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}$. If $l_z(\cdot) \in T(z)$, then $l_z(\cdot)$ is a bounded linear functional for the norm $\rho(\cdot)$ of C^n. From Lemma 2.8, $l_z(\cdot)$ also is a bounded linear functional for the norm $\| \cdot \|$ of C^n. By Riesz representation theorem (see [28, p. 142]), there exists a vector $y(z) \in C^n$ such that $l_z(\cdot) = \langle \cdot, y(z) \rangle$. Hence the vector $y(z)$ is the normal of the plane
\[
Q_z = \{ w \in C^n : \text{Re}\langle w - z, y(z) \rangle = 0 \} = \{ w \in C^n : \text{Re}l_z(w) = \rho(z) \}.
\]
For every $w = (w_1, w_2, \ldots, w_n) \in Q_z$, we have $\text{Re}l_z(w - z) = \text{Re}l_z(w) - \text{Re}l_z(z) = \rho(z) - \rho(z) = 0$. It follows that
\[
\rho(z) = \text{Re}l_z(z) + t \text{Re}l_z(w - z) = \text{Re}l_z(z + t(w - z)) \leq \| l_z \| \| z + t(w - z) \| = \rho(z + t(w - z)), \quad t \in R.
\]
This implies that $\rho(z) = \min_{t \in R} \rho(z + t(w - z))$. It follows that
\[
0 = \left. \frac{d}{dt} \rho(z + t(w - z)) \right|_{t=0} = \sum_{j=1}^{n} \frac{\partial \rho(z)}{\partial z_j} (w_j - z_j) + \sum_{j=1}^{n} \frac{\partial \rho(z)}{\partial z_j} (w_j - z_j)
\[
\begin{align*}
&= 2 \text{Re} \left\{ \sum_{j=1}^{n} \frac{\partial \rho(z)}{\partial z_j} (w_j - z_j) \right\} \\
&= 2 \text{Re} \left\{ w - z, \frac{\partial \rho(z)}{\partial z} \right\}, \quad w \in Q_z.
\end{align*}
\]
Hence \(\frac{\partial \rho(z)}{\partial z} \) also is a normal vector of the plane \(Q_z \). This implies that \(\gamma(z) = \lambda \frac{\partial \rho(z)}{\partial z} \) for some \(\lambda \in R \setminus \{0\} \). Using the fact that \(l_z(z) = \langle z, \gamma(z) \rangle = \|z\| = \rho(z) \) and \(2(z, \frac{\partial \rho(z)}{\partial z}) = \rho(z) \), we get \(\lambda = 2 \), which is \(l_z(\cdot) = \langle \cdot, 2 \frac{\partial \rho(z)}{\partial z} \rangle = 2\langle \cdot, \frac{\partial \rho(z)}{\partial z} \rangle \). This completes the proof. \(\square \)

Theorem 2.1. Suppose that \(\rho(z) \) is the Minkowski functional of \(\Omega_{p_1,p_2,\ldots,n} \) and \(n \geq 2 \), \(p_1 > 1 \), \(p_j > 1 \), \(\beta_j + \gamma_j \leq 1 \), \(\beta_j \in [0,1], \gamma_j \in [0, \frac{1}{ap_j}], j = 2, 3, \ldots, n \), where \(a = a(p_1) \) defined by (2.3), and \(\Omega_{p_1,p_2,\ldots,n} \) is defined by (1.1). Let \(f \) be univalent in the unit disk \(U \). Then the mapping
\[
\Phi_{n,\beta_2,\gamma_2,\ldots,\beta_n,\gamma_n}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^{\beta_2} (f'(z_1))^{\gamma_2}, \ldots, \left(\frac{f(z_1)}{z_1} \right)^{\beta_n} (f'(z_1))^{\gamma_n} z_n \right)
\]
can be embedded in a Loewner chain on the unit ball \(B \) of \(C^n \) for the norm \(\| \cdot \| = \rho(\cdot) \), where \(z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1,p_2,\ldots,n}, \) the branch of the power functions are chosen such that \((\frac{f(z_1)}{z_1})^{\beta_j} |_{z_1=0} = 1 \) and \((f'(z_1))^{\gamma_j} |_{z_1=0} = 1 \), \(j = 2, \ldots, n \).

Proof. For every \(f \in S(U) \), let \(F_\Phi = \Phi_{n,\beta_2,\gamma_2,\ldots,\beta_n,\gamma_n}(f) \). Since \(f \in S(U) \equiv S^1(U) \), then there exists a Loewner chain \(f(z_1,t) \) on \(U \) such that \(f(z_1) = f(z_1,0) \) for \(z_1 \in U \). From Lemma 2.1, we obtain that the following conditions hold:

(a) \(f(\cdot, t) \) is holomorphic on \(U \) for each \(t \geq 0 \), locally absolutely continuous in \(t \geq 0 \) locally uniformly with respect to \(z_1 \in U \), and for each \(r \in (0, 1) \), there exists a positive constant \(M = M(r) \) such that
\[
|f(z_1,t)| \leq Me^t, \quad |z_1| \leq r, \quad t \geq 0.
\]
(b) There exists a function \(p(z_1,t) \) such that \(p(\cdot, t) \in P \) for each \(t \geq 0 \), \(p(z_1, \cdot) \) is measurable on \([0, +\infty) \) for each \(z_1 \in U \), and
\[
\frac{\partial f}{\partial t} (z_1,t) = z_1 f'(z_1,t) p(z_1,t), \quad \text{a.e. } t \geq 0,
\]
for all \(z_1 \in U \).

Since \(p_j \geq 1 \) for \(j = 1, 2, \ldots, n \), then \(\rho(\cdot) \) is a norm of \(C^n \) and
\[
\Omega_{p_1,p_2,\ldots,n} = \{ z \in C^n : \|z\| < 1 \} = B.
\]
We define the mapping \(F_\Phi(z,t) \) as
\[
F_\Phi(z,t) = \left(f(z_1,t), e^{(1-\beta_2-\gamma_2)t} \left(\frac{f(z_1,t)}{z_1} \right)^{\beta_2} (f'(z_1,t))^{\gamma_2}, \ldots, e^{(1-\beta_n-\gamma_n)t} \left(\frac{f(z_1,t)}{z_1} \right)^{\beta_n} (f'(z_1,t))^{\gamma_n} z_n \right)
\]
for \(z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1,p_2,\ldots,n} \) and \(t \geq 0 \).

Now we show that \(F_\Phi(z,t) \) is a Loewner chain on \(B \).

In fact, by a simple computation, we obtain that \(F_\Phi(\cdot, t) \in H(B) \), \(F_\Phi(0, t) = 0 \) and \(DF_\Phi(0, t) = e^t I \) for \(t \geq 0 \), and \(F_\Phi(z,t) \) satisfies the conditions (b) of Lemma 2.2. Computing the derivatives \(\frac{\partial F_\Phi}{\partial t}(z,t) \), we have
\[
\frac{\partial F_\Phi(z,t)}{\partial t} = \left(\frac{\partial f(z_1,t)}{\partial t}, e^{(1-\beta_2-\gamma_2)t} s_2(z_1,t) z_2, \ldots, e^{(1-\beta_n-\gamma_n)t} s_n(z_1,t) z_n \right),
\]
where
From (2.13) and (2.14), we obtain
\[\{\langle \partial_t (z) \rangle \} = (z_1 f'(z_1, t) p(z_1, t), b_2, \ldots, b_n)\]
for a.e. \(t \geq 0\) and \(z \in B\), where
\[b_j = z_j e^{(1-\beta_j-\gamma_j) t} \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_j} \left(f'(z_1, t) \right)^{\gamma_j} \left[1 - \beta_j - \gamma_j + \beta_j z_1 f'(z_1, t) p(z_1, t) + \gamma_j \frac{z_1 f''(z_1, t)}{f'(z_1, t)} p(z_1, t) \right], \quad j = 2, \ldots, n.\]

Straightforward calculation yields
\[DF\Phi(z, t) = \begin{pmatrix}
 f'(z_1, t) & 0 & \cdots & 0 \\
 v_2 & \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_2} e^{\gamma_2 t} \left(f'(z_1, t) \right)^{\gamma_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 v_n & 0 & \cdots & \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_n} e^{\gamma_n t} \left(f'(z_1, t) \right)^{\gamma_n}
\end{pmatrix},\]
and
\[\left(DF\Phi(z, t) \right)^{-1} = \begin{pmatrix}
 \frac{1}{f'(z_1, t)} & 0 & \cdots & 0 \\
 w_2 & \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_2} e^{\gamma_2 t} \left(f'(z_1, t) \right)^{\gamma_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 w_n & 0 & \cdots & \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_n} e^{\gamma_n t} \left(f'(z_1, t) \right)^{\gamma_n}
\end{pmatrix},\]
where
\[v_j = z_j e^{(1-\beta_j-\gamma_j) t} \left(\frac{f(z_1, t)}{z_1} \right)^{\beta_j} \left(f'(z_1, t) \right)^{\gamma_j} \left[\beta_j \left(f'(z_1, t) \right)^{\gamma_j} - \frac{1}{z_1} + \gamma_j \frac{f''(z_1, t)}{f'(z_1, t)} \right], \quad j = 2, \ldots, n.\]

From (2.13) and (2.14), we obtain
\[\frac{\partial F\Phi}{\partial t}(z, t) = DF\Phi(z, t) h(z, t)\]
for a.e. \(t \geq 0\) and \(z \in B\), where
\[h(z, t) = (z_1 p(z_1, t), z_2 [1 - \beta_2 + \gamma_2 p(z_1, t) + \gamma_2 z_1 p'(z_1, t)], \ldots, z_n [1 - \beta_n - \gamma_n + (\beta_n + \gamma_n) p(z_1, t) + \gamma_n z_1 p'(z_1, t)]].\]

Clearly, \(h(\cdot, t) \in H(B)\), \(h(0, t) = 0\), \(Dh(0, t) = I\).

Next, we prove that \(h(z, t) \in M\) for \(t \geq 0\).

Since \(p_j > 1\) for \(j = 1, 2, \ldots, n\), then \(\rho(z)\) is differentiable on \(\Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}\). From Lemma 2.9, we have \(T(\cdot) = \{2(\cdot, \frac{\partial \rho}{\partial z})\}\) for \(z \in \Omega_{p_1, p_2, \ldots, p_n} \setminus \{0\}\). In order to prove \(h(z, t) \in M\) for \(t \geq 0\), we only prove that \(\text{Re}\{\langle h(z, t), \frac{\partial \rho}{\partial z}(z) \rangle\} \geq 0\) for a.e. \(t \geq 0\) and \(z \in B \setminus \{0\}\).
From (2.2), (2.15), Lemmas 2.3, 2.4 and 2.6, we get

$$\text{Re} \left\{ h(z,t), \frac{\partial \rho}{\partial z} (z) \right\} = \frac{\partial \rho(z)}{\partial z_1} z_1 \text{Re} p(z_1,t) + \sum_{j=2}^{n} (1 - \beta_j - \gamma_j) \frac{\partial \rho(z)}{\partial z_j} z_j$$

$$+ \text{Re} p(z_1,t) \sum_{j=2}^{n} \beta_j \frac{\partial \rho(z)}{\partial z_j} z_j + \text{Re} \left[p(z_1,t) + z_1 p'(z_1,t) \right] \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j$$

$$\geq \frac{\partial \rho(z)}{\partial z_1} z_1 \text{Re} p(z_1,t) + \frac{1 - 2|z_1| - |z_1|^2}{1 - |z_1|^2} \text{Re} p(z_1,t) \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j$$

$$= \text{Re} p(z_1,t) \left[\frac{\partial \rho(z)}{\partial z_1} z_1 + \frac{1 - 2|z_1| - |z_1|^2}{1 - |z_1|^2} \sum_{j=2}^{n} \gamma_j \frac{\partial \rho(z)}{\partial z_j} z_j \right] \geq 0$$

for a.e. $t \geq 0$ and $z \in B \setminus \{0\}$. Since $e^{-t} f(\cdot, t)$ is locally uniformly bounded on U for $t \geq 0$, then $\{e^{-t} f(\cdot, t)\}_{t \geq 0}$ is a normal family. Hence there exists a nonnegative sequence $\{t_m\}$, increasing to $+\infty$, such that

$$\lim_{m \to +\infty} e^{-t_m} f(z_1, t_m) = g(z_1)$$

locally uniformly on U. It follows that $\lim_{m \to +\infty} e^{-t_m} f'(z_1, t_m) = g'(z_1)$ locally uniformly on U. Hence we get

$$\lim_{m \to +\infty} e^{-t_m} F_{\Phi}(z, t_m) = \Phi_{n, \beta_2, \gamma_2, \ldots, \beta_n, \gamma_n}(g)(z)$$

locally uniformly on B. By Lemma 2.2, we obtain that $F_{\Phi}(z, t)$ is a Loewner chain on B and $F_{\Phi}(z) = F_{\Phi}(z, 0)$. This is $F_{\Phi} \in S^I(B)$. This completes the proof. □

Remark 2.1. Setting $p_1 = 2$ in Theorem 2.1, we obtain Theorem 1 in [14]. From Theorem 2.1, we give the answer to the problem in [14]. Setting $p_1 = p_2 = \cdots = p_n = 2$ in Theorem 2.1, we may obtain Theorem 2.7 in [5], Theorem 2.1 in [6] and Theorem 2.1 in [10].

From Lemmas 2.2, 2.7 and Theorem 2.1, we may obtain the following corollaries.

Corollary 2.1. Suppose that $n \geq 2$, $p_1 > 1$, $p_j > 1$, $\beta_j + \gamma_j \leq 1$, $\beta_j \in [0, 1]$, $\gamma_j \in [0, 1/q_j]$ in (2.3), and $\Omega_{p_1, p_2, \ldots, p_n}$ is defined by (1.1). Then we have $\Phi_{a, \beta_2, \gamma_2, \ldots, \beta_n, \gamma_n}(S^* (U)) \subset S^* (\Omega_{p_1, p_2, \ldots, p_n})$.

Corollary 2.2. Suppose that $n \geq 2$, $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $p_1 > 1$, $p_j > 1$, $\beta_j + \gamma_j \leq 1$, $\beta_j \in [0, 1]$, $\gamma_j \in [0, 1/q_j]$ in (2.3), and $\Omega_{p_1, p_2, \ldots, p_n}$ is defined by (1.1). Then we have $\Phi_{a, \beta_2, \gamma_2, \ldots, \beta_n, \gamma_n}(S^* (U)) \subset S^* (\Omega_{p_1, p_2, \ldots, p_n})$.

Corollary 2.3. Suppose that $f \in S(U)$, $n \geq 2$, $p_1 > 1$, $p_j > 1$, $\beta_j + \gamma_j \leq 1$, $\beta_j \in [0, 1]$, $\gamma_j \in [0, 1/q_j]$ in (2.3), and $\Omega_{p_1, p_2, \ldots, p_n}$ is defined by (1.1). Let $\rho(z)$ be the Minkowski functional of $\Omega_{p_1, p_2, \ldots, p_n}$. Then we have

$$\frac{\rho(z)}{1 + \rho(z)^2} \leq \rho(\Phi_{a, \beta_2, \gamma_2, \ldots, \beta_n, \gamma_n}(f)(z)) \leq \frac{\rho(z)}{(1 - \rho(z)^2)^2}, \quad z \in \Omega_{p_1, p_2, \ldots, p_n}.$$

Remark 2.2. Setting $p_1 = 2$ in Corollary 2.2, we get Theorem 3.1 in [20] and Theorem 2.1 in [21]. However, their methods of proof were different from Corollary 2.2. Let $\gamma_j = 0$ ($j = 1, 2, \ldots, n$) in Theorem 2.1, from the proof of Theorem 2.1, we have the following results.

Theorem 2.2. Suppose that $n \geq 2$, $\beta_j \in [0, 1]$, $j = 2, 3, \ldots, n$, Ω is a bounded convex Reinhardt domain and its Minkowski functional $\rho(z)$ of Ω is a C^1 function on $\Omega \setminus \{0\}$. Let f be univalent in the unit disk U. Then the mapping
\[\Psi_{n, \beta_1, \ldots, \beta_n}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^{\beta_2} z_2, \ldots, \left(\frac{f(z_1)}{z_1} \right)^{\beta_n} z_n \right) \tag{2.16} \]

can be embedded in a Loewner chain on the unit ball \(B \) of \(\mathbb{C}^n \) for the norm \(\| \cdot \| = \rho(\cdot), \) where \(z = (z_1, z_2, \ldots, z_n) \in \Omega, \) and the branch of the power functions are chosen such that \(f(z_1) \) is defined by

Corollary 2.4. Suppose that \(\rho(z) \) is the Minkowski functional of \(\Omega_{p_1, p_2, \ldots, p_n} \) and \(n \geq 2, \) \(p_j > 1, \) \(\beta_j \in [0, 1], \) \(j = 2, 3, \ldots, n, \) where \(\Omega_{p_1, p_2, \ldots, p_n} \) is defined by (1.1). Let \(f \) be univalent in the unit disk \(U. \) Then the mapping \(\Psi_{n, \beta_1, \ldots, \beta_n}(f) \) can be embedded in a Loewner chain on the unit ball \(B \) of \(\mathbb{C}^n \) for the norm \(\| \cdot \| = \rho(\cdot), \) where \(\Psi_{n, \beta_1, \ldots, \beta_n}(f) \) is defined in (2.16).

Remark 2.3. From Corollary 2.4, we may get Theorem 2 in [14]. Setting \(p_1 = p_2 = \cdots = p_n = 2 \) and \(\beta_1 = \beta_2 = \cdots = \beta_n \) in Corollary 2.4, we obtain Theorem 3.2 in [8]. Lemmas 2.5 and 2.6 are very useful, we may use them to obtain the following theorem, its proof will appear in the sequential paper.

Theorem 2.3. Suppose that \(n \geq 2, \) \(-\frac{\pi}{2} < \alpha < \frac{\pi}{2}, \) \(0 \leq \lambda \leq 1, \) \(p_j > 1, \) \(j = 2, 3, \ldots, n, \) where \(a = a(p_1) \) is defined by (2.3), and \(\Omega_{p_1, p_2, \ldots, p_n} \) is defined by (1.1). The operator \(\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(f) \) is defined by

\[\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^{\beta_2} z_2, \ldots, \left(\frac{f(z_1)}{z_1} \right)^{\beta_n} z_n \right) \tag{2.17} \]

for \(z = (z_1, z_2, \ldots, z_n) \in \Omega_{p_1, p_2, \ldots, p_n}. \) Then

1. \(\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(S_\lambda(U)) \subset S_\lambda' (\Omega_{p_1, p_2, \ldots, p_n}), \)
2. \(\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(S_\lambda(U)) \subset S_\lambda' (\Omega_{p_1, p_2, \ldots, p_n}), \) and
3. if \(p_j > 1 \) for \(j = 1, 2, \ldots, n, \) then \(\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(f) \in S_\lambda' (\Omega_{p_1, p_2, \ldots, p_n}) \) if and only if \(f \in S_\lambda(U), \) and \(\Phi_{n, \beta_1, \gamma_1, \ldots, \beta_n, \gamma_n}(f) \in \tilde{S}_\lambda (\Omega_{p_1, p_2, \ldots, p_n}) \) if and only if \(f \in \tilde{S}_\lambda(U), \) where \(S_\lambda' (\Omega_{p_1, p_2, \ldots, p_n}) \) is the class of all normalized starlike mappings of order \(\lambda \) on \(\Omega_{p_1, p_2, \ldots, p_n} \).

References