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1. INTRODUCTION 

In a previous paper [l], an attempt was made to find effective criteria to 
distinguish between recurrent and transient behavior for stochastic processes 
of a certain type. Here we shall give some similar criteria for certain other 
aspects of the behavior of these processes, most notably for the existence or 
nonexistence of passage-time moments. 

Let us recall the general situation of [l]. Suppose {X,) is a Markov process 
with stationary transitions on the nonnegative reals; assume that 

Define 
lim sup X, = + 00 a.s. 

P7c(4 = -w&+1 - -TY I x7% = 31, k = 1,2, (1.1) 

and assume that &x) is of the order of a constant for large x, Under an addi- 
tional condition (existence and boundedness of the conditional 2 -t 6 moment 
for some 6 > 0), it was shown that 

pl(x) g y + o(h-q, E > 0, (1.2) 

as x -+ 00 implies that {X,J is recurrent in the sense that there is a finite 
interval which is (a.s.) visited infinitely often for any choice of X0. If, on the 
other hand, 

kc4 2 (1 + 7) py7 7 > 0, (14 

for all large x, then X,, + 00 a.s. ((X,} is transient). A useful example of this 
theorem is provided by random walks on the nonnegative integers with 
transition probabilities of the form 

P n.n+1 = 1 - P&,-l = $ [ 1 + ; + O(n-“)] , n > 0, (1.4) 

* This work was supported by the U.S. National Science Foundation via grants to 
Dartmouth College and Stanford University. 
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128 LAMPERTI 

and p,,, = 1 - p,, ‘> 0. It was shown (inter &‘a) by T. E. Harris [2] that 
such a walk is recurrent if and only if 6 2 k; here (for n >, 0) &n) = I and 
p.,(n) = /3n-’ + O(n-2). 

Walks satisfying (1.4) can also suggest some criteria for the existence or 
nonexistence of passage-time moments. Thus for n > 0, &(T,,J (mean 
first-passage time from n to 0) is finite if p < ~-- 1, infinite if /3 2 - + [2]. 
We shall show below that 

2x Pi(X) + f&) I - E < 0 (1.5) 

for large x implies the existence of a moment analogous to E(T,,), while 
(under some additional assumptions), if the left side of (1.5) is nonnegative 
for large x the moment is infinite. These results are proved in Sections II 
and III respectively, along with similar criteria for higher moments. 

In Section IV we obtain some corollaries of these results,under the additio- 
nal hypothesis that the transition function 

% Y) = Pr (X,+l I Y I X, = 4 (1.6) 

is continuous in x in the weak* topology for measures on [0, m), Attention 
is devoted to the existence of finite stationary measures, the Cesaro conver- 
gence of the n-step transition probabilities, and especially to whether these 
converge to 0. The reason for our extra concern with the latter is that a 
condition of this kind is essential for the theory developed in [3], but a 
sufficiently general criterion was not given there. We shall say (as in [3]) that 
{X,) is null if 

lim J-ngPr(XiEIjX,=x)=O 
n+m n 24 

U-7) 

for every x and every compact interval I; {X,} is uniformly null if (1.7) holds 
uniformly in x. Here, using a result from Section III, we prove quite easily 
a sufficient condition for (X,} to be uniformly null which is much more 
general than that found in [3], and consequently the applicability of the 
results of [3] is considerably extended. 

Finally in the concluding Section V we extend the basic criteria of Sections 
II and III to certain processes with states in Euclidean spaces of several 
dimensions. The idea is to apply the one-dimentional results to the radial 
component, as was done with recurrence criteria in [ 11. The radial component, 
of course, is usually not a Markov process. but it may have an “approximately 
Markov” character which is sufficient for the proofs of the theorems. Applica- 
tion is made to certain multidimensional random walks with transition pro- 
babilities somewhat analogous to (1.4). This section is quite similar to Section 
IV of [I] and so some of the details are omitted. 
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The chief tool used in our proofs is the concept of a semimartingale 
[4, Chap. 71, although only elementary parts of the corresponding theory are 
needed. The main tricks are to find modifications of the process to be studied 
which have suitable martingale properties, and to perform some calculations 
with the moments pg(x) resembling those in [3]. The first of these devices 
has frequently been used before, most notably by J. L. Doob, but the results 
that can be obtained with it have evidently not been exhausted. 

II. CRITERIAFORFINITE MOMENTS 

Let {X,} be a discrete-time stochastic process on a Bore1 subset S of the 
nonnegative reals; for the time being we assume it is Markov with stationary 
transitions, though later we shall comment on how this can be relaxed. Let 
us write for x E S 

CL&) = wL+1 - X,)k 1 x, = x] = Jrn (y - 2)” F(x, dy) (2-l) 
0 

when the corresponding absolute moments are finite. 

THEOREM 2.1. Suppose there exists E > 0 and A < CO such that, for 
x 2 A, ,+(x) exists and 

2%(4 + P2(X) I - cl (2.2) 

Let T 2 0 be the time at which the processjkt enters the interval [0, A]. Then 

E(T) 2 E- , 
E (2.3) 

PROOF. Let us define a process {Z,} by 

I 

x; + en for n < T, 
z, = (2.4) 

X;+ET for n 2 T. 

Let ,Fn be the Bore1 field of sets determined by X0, X,, ..., X,. Clearly Z, 
is 9% measurable Then for n < T and hence for X,, > A, 

EG+1 - zn I Fn) = -w-G + (X,+1 - X,)1 2 - x + 6 I X,) 
= ~%4&) + P2mJ + 6 s 0. (2.5) 

1 Of course (2.2) is to hold for x E S. If there are no points of S greater than A, 
both hypothesis and conclusion are vacuously true. This remark applies as well to 
the theorems which follow this one. 

9 



130 LAMPERTI 

For n 2 T, obviously E(Z,+, - 2, i RJ = 0. Therefore (2,) is a super- 
martingale relative to {Fn} and hence E(Z,) decreases. By Fatou’s lemma, 
consequently, 

E($liaZn) I li&E(Z,) 5 E(Z,) = E(X,e). 

But from (2.2), pl(x) < 0 f or x 2 A. It follows from our previous work 
[l, p. 3171 that {X,} a.s. enters [0, A], so that lim Z, = X$ + ET. As a 
result we have 

4%) + cE(T) 2 E(X,2), 

which obviously implies (2.3). 
In much the same way a result on the pth moment of T can be obtained: 

THEOREM 2.2. Suppose that for all w@iently large x 

2x PI(X) + VP - 1) PPW 2 - E 

for some E > 0. Suppose also that 

P2(4 = O(l), &(X) = 0(x”-“) for 2 < k I 2~.~ 

Then for any su$iciently large A we have 

E(T*) = O(E(X,2p)), 

where T again is the smallest time n at which X, 5 A. 

PROOF. Define (Z,} by letting 

I 

(Xi + cn)’ for n < T, 
z, = 

(X$+ CT)” for n 2 T, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where c is a constant such that 0 <c < E. We again wish to show that (2,) is a 
supermartingale relative to {Fm}; again clearly E(Z,+, - 2, j gn) = 0 
when n 2 T. Suppose n < T so that X, > A (where A is still to be chosen 
large enough). Then from (2.9), 

w-n+, - 2, IS?z> = -q[X?t+, + c(n + l>l” - K + cq I xd 

= A (T) E[X::, 1 Xn] P(n + 1),-r - (Xn” + cn)“. 
(2.10) 

B Actually p&x) = o(&‘-“) and &x) = O(1) imply &x) = o(x~~-~) for 2 < k < 2p 
by the Schwartz inequality, so this assumption is slightly redundant. 
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However, using (2.7) we find that 

-WC% I&) = -q(X, + ~&)“z 1 X,] = g CZ) x:z-3 &(X,,) 

= X” + [2z -%a PlKz) + ($ p&G)] xz--2 i- I. 

Substituting this in (2.10), expanding (Xz + CR)” in binomial series, and 
rearranging slightly we can write 

w-n+1 - z, 1 9-J = -$ (f) c~-zX~[(n + yz - ?P] 
1=0 

+ s1 (f) c”-“b + v--I xn2z-2 WG P,(&%) + (21 - 1) p2(-G) + o(l)] 

Combining like powers of X, this expression becomes 

9-l 
2 p! x;f"z!(p - 1 - I)! c 

9-Z-l ~p+4~p-z~ 

+ (n + l)~-z-1[2xaP1(x) + p+ 1>P2(xz) + o(llll * (2.11) 

We shall see that for large X,, (2.11) is negative for all n. Indeed, since the 
coefficients are positive it is only necessary to examine the terms in the braces. 
The term d(nP-l) is overestimated as (p - Z) (n + l)P-z-l; using this, the 
choice of c < E and (2.6) we have 

p-1 

-w,+1 - 
P! 

zfi 1 g?J s s* X,“” /!(p - z - I)! [(n + 1) c]p-z-l (c -- E + o(l)}, 

which is negative for all large enough values of X,. Thus if A is chosen 
suitably we will have {Z,} a supermartingale. 

Finally, just as in the proof of the previous theorem, Fatou’s lemma yields 

E[(X$ + CT)‘] = E[i$m Z,] < E(Z,) = E(Xp). 

When the left side is expanded by the binomial theorem all terms are positive; 
therefore we have 

m(P) 5 E(X,P), 

which proves (2.8). 
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Remark on the proof. As suggested in the introduction, we shall sometimes 
wish to apply Theorems 2.1 and 2.2 when {X,} is not a Markov process. 
Suppose that (Y,} is a Markov process, not necessarily on the real line, and 
that X, = f( Y,) f or some real-valued function f which need not be 1 ~-- I. 
We replace (2.1) by 

PXY) = wGL+l - X,)” 1 Y, = y]. 

Suppose, to take first Theorem 2.1, that 

(2.1’) 

V(r) P;(Y) + CL;;(Y) g - 6 (2.2’) 

for all y such that f(y) 2 A. If the fields Fn are now defined in terms of Y,,, 
e+., Y,, the proof of the theorem is valid without further change, and (2.3) 
still holds. In the same way, provided the analogues of (2.6) and (2.7) are 
known to hold when x =f(y), the proof and conclusion of Theorem 2.2 
remain valid. This remark will be applied in Section V. 

III. CRITERIA FOR INFINITE MOMENTS 

In this section we consider the slightly more difficult converse questions. 
Our approach depends on two facts which hold under the assumptions 
below. These are that the time of first passage from a large x to a fixed interval 
[0, A] is at least of the order of x2 with high probability, and that an appro- 
priate function of {X,} is a submartingale, making it possible to estimate 
from below the probability of reaching large states before entering [0, A]. 
We begin with the first moment: 

THEOREM 3.1. Suppose that the conditional moments de$ned in (2.1) 

satisfy 
2x Pi(X) + p2(4 2 6 > 0 (3.1) 

for all x 2 A, and in addition that 

PI(X) = 0(x-l), P2W = O(l), CL&) = 0(x2)* (3.2) 

Then the time T%, of first passage from x,, > A to [0, A] has infinite expectation. 
For the proof of both the theorems of this section we need the following 

LEMMA 3.1. I f  (3.2) holds there is a constant E > 0 such that 

Pr (Tz > cx2) 2 Q 

for all x 2 A + 6. 

(3.3) 



CRITERIA FOR STOCHASTIC PROCESSES II 133 

PROOF. Let us consider a process {Xfi> with 2s = x > A, and which 
has the same transition law as {X,} except that it is stopped upon first entering 
the interval [0, A], maintaining the same value from that time on. We see 
by writing X,,, = X, + AX, that 

EC%+1 - 2: I XL1 = 2x2 km + P2GQ (3.4) 

forX,>A;forX,<A,Xfl+,= Xn so the result is 0. Thus for all values 
of 2, we have 

- C, I E[if;+, - x:1 = EC’% /-4JtJ + /-&%J> I C, 

because of (3.2). It follows that 

x2 - nC, < E(x;) I x2 + nC,. (3.5) 

In the same way we can estimate E(J?i);, thus for 2% > A 

E&f:+, - xi. I xnl = 4X: d%> + 6% P&J + 4% P&J + ~Lq@n)- 

The left side is then seen to be 0(X:) because of (3.2) when Xm > A; 

it is 0 for X, 5 A. (We actually need here only am = O(S).) Using(3.5) 
we have 

@?+I - x;tl = W@:+I - 2: I XJ} I C,(x2 + q, 

which implies that 

E(x;) < C2x2n + Can2 + x4. (3.6) 

From (3.5) and (3.6) we obtain 

E[@; - x2)“] 2 C4x2n + C,n”. (3.7) 

To complete the proof we apply Chebychef’s inequality to (3.7) and obtain 

But 1 2: - x2 j < x2 - A2 implies X* > A so that the process {X,} has 
not yet been stopped; therefore T, > n. Putting n = <x2 (more precisely, 
the integer part of ,x2) we have 

Pr (T, > l x2) 2 Pr (1 Xz - x2 1 < x2 - A2) 2 I - Llcf (~2~$~]2 . 

As long as x 2 A + 6, 6 > 0, the denominator on the right-hand side is 
bounded from 0; choosing a small enough E we have (3.3). 
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PROOF OF THEOREM 3.1. Let us choose B > x0, and form the process 
{inn} with initial state x,, > A, transition probabilities F(x, y) for A < .X < B, 
and stopped when first either zn 2 A or Y?, 2 B. The process {zi} is a 
submartingale; the inequality follows from (3.4) and (3.1) for A < 2, < B, 
and is trivial for other J!?, since the process has stopped in that case. 

Let us suppose for the moment that from no state x in the interval (A, B) 
is it possible to make in one step a transition to a state beyond 2B; i.e., that 

F(x, 2B) = 1 for A <x<B. (3.9) 

Then {xi} is bounded, and a martingale system theorem [4, p. 3021 applies 
and yields E(xz) 2 E(xt) = & where T is the stopping time. But, again 
using (3.9), 

E(J?f) I A2 + (2B)‘Pr (XT > B), 

so that if we denote the probability on the right by 4(x0, B), 

Combining (3.10) with (3.3) (i.e., Lemma 3-l), we obtain 

dxo, B) Pr (T$, > cB2) 2 2 

(3.10) 

(3.11) 

The constants in (3.11) are independent of B; thus for large U, 

for a fixed c > 0, which proves that E(T,J = to. 
The difficulty with this is the unpleasant assumption (3.9) which we shall 

now remove by a truncation argument. Suppose the original transition 
probability F satisfies (3.1) and (3.2) but not (3.9); choose B and form, for 
A<x<B, 

f F(x, Y) 
F*(x’y) = 1 1 

for y < 2B 
for y 22B. 

Thus the transitions to points beyond 2B are moved back to 2B. The process 
{xz}), formed from F* just as {xn} was formed from F above, has exactly 
the same &e, B) as does {;p,}. Thus if {(J!$)2} is a submartingale, (3.10) 
will hold and the conclusion of the theorem follows as before. It is therefore 
necessary to examine the functions p:(x) and &(x) defined by using F* in 
place of F in (2.1). 
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This last step is easily accomplished. It is clear from (3.12) and (2.1) that, 
for A < x < B, 

But the right-hand side is less than 

f 
* (Y - 4” 
2B 

___ F(x, dy) < & j-r (y - x)4 F(x, dy) = ‘$. 
B2 

Since x < B and p4(x) = 0(x2), we have 

cLz*(x) = cL2@) + O(l)? 

where o( 1) is uniform in x < B as B + 00. Similarly it is shown that 

P:(X) = P#) + @3 

(3.13) 

(3.14) 

with the error term interpreted as above. Thus if B is large enough, from 
(3.1), (3.13), and (3.14) we have 

for A < x < B and so {(X,*)2} is a submartingale, by the same argument 
used above for {X2}. This fact, with the observation of the previous para- 
graph, completes the proof. 

Remark (a). The reader may have noticed that except for the need to 
remove condition (3.9), the weaker hypothesis 

2x k(X) + P264 22 0 (3.1’) 

for x 2 A would have been sufficient since it makes {Xi} a submartingale. 
Thus if (3.9) is actually satisfied by F(x, y) (for instance, if [ X,,, - X,, / 
is uniformly bounded a.s.) (3.1’) may replace (3.1). However, a sharper 
theorem can be obtained by a modification of the argument: we define 
Y, = Xi log Xn and try to show {Y,} to be a submartingale. If it is (more 
precisely, if {Y,*} is a submartingale, where the transition function F* has 
replaced F) we have 

dxos B) 2 
xi log x,, - A2 log A 

4Ba log 2B ’ 

analogous to (3.10). From this as before we obtain 

Pr (TzO > U) 2 -A-. 
ulogu 
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for large u, and again E(T,rO) = 00. X fairly straightforward argument, 
involving estimates slightly more tedious than those carried out hitherto, 
shows that if 

2% Pi(X) + P2(X) 2 0(x-% E > 0, (3.1*) 

holds together with 

k(X) = 0(x-l), 7 I CL&) I l+f, /Q(X) = 0(x2-“) (3.2*) 

for some 1 and S > 0, then (Y,*> is indeed a submartingale when A is large 
enough. Thus if (3.1”) replaces (3.1) and (3.2*) replaces (3.2), Theorem 3.1 
is still valid. Doubtless other improvements are possible; however, the “divi- 
ding line” between cases of finite and infinite mean passage time is drawn 
now fairly sharply by Theorems 2.1 and 3.1. 

Remark (6). The result we have just proved can be compared with 
one by Doob [4, p. 3081 which also asserts E(T) = 00. In our notation, 
Doob’s proof works when pr(x) 2 0 for large x and the corresponding 
absolute moment is bounded, While our theorem allows pr(x) to be “slightly” 
negative, and so is in a sense sharper, Doob’s does not need higher moments. 
It does not seem likely that our result can be obtained by his method. 

Now we turn to higher moments of T, and use much the same approach 
to prove 

THEOREM 3.2. Suppose for some integer p > 1 that 

2% &) + (2P - 1) LL2(x) 2 E > 0 (3.15) 

for all large x; suppose also that p&x) exists and 

k(X) = 0(x-l), P2(4 = O(l)* p&x) = 0(x2”-“). (3.16) 

Then for all suficiently large A we have E(TtJ = 03 for every x0 > A. 

PROOF. Define {x,1 as in the proof of Theorem 3.1 with A < x0 < B, 
where A must be chosen large enough so that {x2} is a submartingale. TO 
see that this is possible, write for n < T 

mz~l - x2 1 Fn] = E[(;pn + OXn)“~ - x: 1 Xn] 

zzz a 1 29 2* 2yZpz(Xn)* 
Z=l 1 

(3.17) 

Because of (3.16), pi(x) = o(x~-~) for 2 < 1 < 2p; using this and (3.15) we 
see that the quantity in (3.17) is positive for all large enough values of &. 
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We now choose A so that it is positive for & > A and have established our 
assertion. 

Just as in Theorem 3.1, we temporarily assume (3.9). Proceeding as before 
we then obtain 

using (3.3) there results 

for large U, and it follows that E(T,pU) = 00. The assumption (3.9) is removed 
by again introducing F* and showing that {(~~)2~} is still a submartingale. 
We shall omit the details since the procedure is entirely analogous to our 
earlier one. 

Theorem 3.2 can doubtless be somewhat improved in the manner indicated 
for the first moment in Remark (a) above, but we shall not attempt this. 
Finally, we comment that a generalization of the kind indicated at the end of 
Section II is also valid for the results of this section, and will be applied in 
dealing with multidimensional processes in Section V. The proof requires no 
additional arguments; under assumptions bearing the same relation to those 
of the theorems of this section which (2.2’) bore to (2.2), the proofs we have 
given apply with only notational changes. 

IV. APPLICATIONS 

Throughout this section we shall suppose that the state-space S is a 
closed subset of [0, a), and that the transition probability F(x, y) defined in 
(1.6) is weak*-continuous as a function of x. Specifically, by this we mean that 
the transformation 

maps the class C, of continuous functions on S vanishing at 00 into itself. 
We will refer to this as “continuity,” or condition (c). Note that if S is the 
positive integers, or any set without finite limit points, condition (c) reduces 
to the requirement that a function vanishing at 03 is carried into another such. 
This must be true if&x) is bounded, or even 0(x2), by Chebychef’s inequality. 

LEMMA 4.1. Under (c), a process {X,} which is not uniformly null has at 
least one jinite stationary measure. 
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PROOF. Let us write 

Then (X,) uniformly null means (as in the introduction) that G,(x, y) --+ 0 
as n + ~0 uniformly in x for each y. If this is not the case, there is a sequence 
x, such that G,(x,, y) does not go to 0 for some, and hence all large enough, 
values of y. It is then possible to select a subsequence {n’} of the integers 
such that 

lim G,,(x,,, .) = G(.) 
n’+so (44 

in the weak* sense;3 G is nondecreasing and 0 = G(O-) < G(m) 2 1. 
We shall show that G provides an invariant measure for {X,}; that is, 

for all y which are continuity points of G, 

G(y) = p F(x, Y> W+ (4.4) 
0 

On the one hand, we have 

s m F(x, y) G,&,z,~ 4 
0 

=$zPr(X,+l<yIXo=xn,) 
a=0 

= G,~(x,,~, y) + -$ {Pr (X,, I y ) X0 = x,,) - Pr (X0 I Y 1 X0 = +s)> 
(4.5) 

which obviously tends to G(y) at continuity points, hence in the weak* sense. 
On the other hand, if f E C,, 

by (4.3) and (c). Thus the top expression in (4.5) converges in the weak* 

sense to jr F(x, y) dG(x); combining this and the above yields (4.4) and 

proves the lemma. 

3 This is equivalent to ordinary convergence at all continuity points of G. 
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In order that {X,} be null, the following condition is clearly necessary: 

Pr(limsupX,=~]XO=x)=l for all x E S. (4.6) 

This is usually not hard to verify; it is, for instance, true if 

F(x, x + l ) < I - f, E > 0, x E s, (4.7) 

and this can be considerably generalized. We now prove 

THEOREM 4.1. If a Markov process satisfies (c), (4.6)) and the hypotheses 
of Theorem 3.1, then it is uniformly null. 

PROOF. If it is not, by the lemma there is a finite invariant measure which 
can be normalized and used to define a strictly stationary process {X,} with 
the transition probability F(x, y). The stationary distribution function, say G, 
is less than 1 for all finite x since the contrary would contradict (4.6). Choose 
an interval [0, A] with A large enough that G(A) > 0, and satisfying the 
conditions of Theorem 3.1 so that the mean passage time from x into [0, A] 
is infinite for every x E S r\ (A, 00). Let 

because of (4.6) it is easy to see that R has positive G-measure. But for all 
x E R, the mean time to return to [0, A] is infinite. This contradicts a theorem 
of Kac [5], which asserts (in particular) that the mean passage time from 
x E [0, A] into [0, A] is finite a.e. (G) in [0, A] for such a stationary process. 

Remarks. It would be natural to investigate whether the Cesaro conver- 
gence in Theorem 4.1 (implicit in the definition of “null process”) can be 
replaced by an ordinary limit. It appears likely that this can usually be done, 
but since it is somewhat far from the theme of this paper and not relevant to 
the needs of [3] we shall not pursue the question here. Theorem 4.1 as it 
stands much generalizes the results in the appendix of [3], where the restric- 
tion that S be discrete was needed. 

We shall now take a brief look at the “positive” (i.e., not null) case. The 
results are summarized as 

THEOREM 4.2. Assume that condition (c) and condition (2.2) hold; assume 
also that 

E [ (&+I - X,)2 (log $$! )+IXs=x] =o(logx). (4.8) 

Then for any jixed x every subsequence {n’} of integers contains a sub-subse- 
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quence {n”} such that G&x, .) (defined in (4.2j) converges weak* to an 
invariant probability distribution. If the invariant distribution is unique, say G, 
then for all x 

w* ,him, G,(x, .) = G(.). (4.9) 

Remark. Under a certain type of recurrence condition an invariant 
distribution must be unique, as T. E. Harris has shown in [6]. Our conditions 
imply (by results in [l]) a type of recurrence, but it is much weaker than 
Harris’ and in fact it is easy to see by examples that (c) and (2.2) do not 
imply the uniqueness of a stationary distribution. 

PROOF. Under condition (c), as we saw in the proof of Lemma 4.1, when 
a subsequence of G,(x, .) is w* convergent the limit function is an invariant 
“distribution” which may have total mass less than 1. If this possibility can 
be ruled out, the conclusions of the theorem will follow. 

In [3], Theorem 2.3, it was essentially shown4 that (2.2) implies that (X,} 
is not null. The proof consists simply of calculating E(X$, and observing 
that (2.2) plus the assumption that G,(x, y) + 0 for fixed x and (large 
enough) y implies E(X+$ eventually negative. We will use a similar idea here, 
but to get our stronger conclusion it is necessary to calculate 

42 = -q(& + 1y log (X, + l)]. 

The point of departure is the expression 

4 = E[E{(Xn + AX, + 1)2 log (X, + AX, + 1) 

- (Xn + 1Y 1% wn + 1) I -%A. 

Now by Taylor’s theorem for any x > 0, x + h > 0 

(x + h)2 log (x + h) - x2 1 og x = h(2x log x + x) + ; (2 log 6 + 3) 

where 5 is between x and x + h. Combining the preceding and using (4.8), 
we obtain 

4 = ~@(x + 1) P&G + 1) + p2(Xn + l)] log (X, + 1) + 0 (log X,)}, 

so that, using (2.2), for large A 

AB, I - ; I’D log (x + 1) dPr (X, I x) + 0 [Pr (X, 2 A)]. 
A 

4 The result was stated slightly less generally. 
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Summing this we find that 

-+ (%-I + 1)” 1% 6% + 1) 
n + O[G,(x,, A)] - ; 1; log (x + 1) G&o, W. 

(4.10) 

Now suppose that a subsequence {n’} exists such that G,(x,, *) $ G(e) 
where G(a) < 1. Since G,(xO, 00) = 1 for all n, we have 

lim (1 - G,,(.v~, y)) 2 I - G(a) > 0 
nice 

(4.11) 

for ally. Because the integrand in the last term in (4.10) tends to + 03, (4.11) 
means the integral must do the same as n + 00, and so B,, < 0 for large n’. 
This is a contradiction, and so the only adverse possibility is ruled out and the 
theorem follows. 

V. SEVERAL DIMENSIONS 

In this section we will impose hypotheses which are stronger than necessary 
in order to simplify the discussion. Let {X,] be s-dimensional random 
vectors5 forming a Markov process with stationary transition probability 
function 

F(Y~, -.-y ys; x) = Pr (Xl:, - xt) gyi, i = 1, a’*, s 1 x, = x). (5-l) 

We assume that the increments are bounded; i.e., that 

II xz+1 - X, 11 I B as. for n = 0, 1, ..*. (5.2 

The vector and matrix valued functions 

m(x) = E[X,+, - X, 1 X, = x], 

v(x) = h(x)1 = WL,, - XJ (%,, - xJT I x, = xl (5.3) 

are then defined and can be calculated from the function F of (5.1). The basic 
idea is to consider the radial component Rn = 11 X, //, but {R,} is not, in 
general, a Markov process. However, as pointed out in the remarks at 
the end of Section II and III, it is sufficient that the key inequalities such as 

6 Boldface letters denote s-dimensional vectors or s by s matrices in this section. 
Vectors are columns unless written with superscript 2’ for transpose; “/I . 1)” is the 
Euclidean norm. 
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(2.2’) hold for each of the states of the underlying process {X,). By proceeding 

in this way we will prove the following 

THEOREM 5.1, Suppose that 

lim v(x) = v  
II++^J: 

(5.4) 

exists, that v  is (strictly) positive dejnite, and that 

lim xTv-l m(x) = y  
P/lP~ 

(5.5) 

exists also. Then if 2y < 2 - 2p - s, there exists a sphere 11 x 11 2 A such that 
the$rst-passage time T, from x to the sphere satisfies 

EK) = O(ll x II”“). (5.6) 

Conversely, if 2y > 2 - 2p - s and A is large, E(Ti) = 03 for all x with 

II x II > A. 

PROOF. The calculations are essentially the same as those in the proof of 

Theorem 4.1 of [l] ; we outline them for completeness. We begin with the 
case v  = I, the identity matrix, and calculate 

P;(x) = E[Rn+1 - R, 1 X, = x] 

= jyB **. jyB I(& (xc + ~i)')~" - (& x:)1121 W,, a-, ys; x) 

approximately for large /I x 11. The result is 

T P;(x) = x ,;‘;’ + +& + 4 x II-‘). (5.7) 

In the same way, it is seen that 

P;(X) = EKRn+1- R,)2 1 X, = x] = 1 + o(1) (5.8) 

as jl x II +m. The higher moments are bounded because of (5.2). 
Now if (5.5) holds, the theorems of Sections II and III can be applied 

to the process {R,} to yield the conclusion of Theorem 5.1. For instance, 
if 2y < - s, we have 

2 II x II pi(x) + /A(x) = 2y + (s - 1) + 1 + o(1) < - C 
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for large 11 x //, so that by Theorem 2.1 

WA = WI x II”>- 

The other cases are just the same, except that a different one of our theorems 
applies. We are, of course, appealing to the extended version of these theorems 
explained at the end of Section II. 

To remove the restriction v = I, let Q be a nonsingular matrix such that 
QvQT = I, and define Y,, = Q&. Then {Y,} is again a Markov process of 
the type we are considering and 

wL+1 - YJ (Yn+, - Yn)T 1 Y, = Qx] = Qv(x) QT. 

Since v(x) --f v as // x 11 (and so )I y 11) tends to 03, {Y,} has the limiting cova- 
riance matrix I. Similarly 

P*(Qx) = Wn+l - Yn 1 Yn = Qxl = QP(x>, 

so that yT~*(y) = x’~Q~Q~(x) = xTv-$(x). Thus the special case of the 
theorem which we have already proved applies to {Y,}, and the general 
version as stated is the result. 

As in [l] we shall apply the result to certain s-dimensional random walks, 
by which we mean Markov chains on the lattice points of E, with transition 
probability matrices of the form 

P x.x+uj = Pi(X), JL-ll, = 4iM P,., = 0 otherwise, 

where ui is a unit vector in the direction of the positive ith coordinate axis. 
It is obvious that (5.2) holds and that 

v(x) = diag b&4 + s(x)]. 

We assume that (5.4) holds with v definite, which means that 

lim h(x) + pi(x)] = di > 0 
IIXII-*~ 

exists. It is then easily verified that 
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We consider two classes of walks. The first class is defined by supposing 
p*(x) and q<(x) to be of the form 

P&4 = Pi [I i- 3 -+ o(l, x 1!-1,] , 

ai =pi [l - 6 L o(il x i’-l)] , (5.10) 

where p, > 0. (It is also assumed in both classes of walks that all states 
communicate and that ZZi=, (pz(x) + qi(x)) = 1 for each x.) Theorem 5.1 
then has the following: 

COROLLARY 5.1. Let {X,} be an s-dimensional random walk satisfying 
(5.10); let T,,, be the recurrence time from state 0 to itself. Then if 

201 < 2 - 2~ - s, E(T&) ’ ji ‘t zs nz e, while if 201 > 2 - 2p - s, E(T&) = *. 
The second class of random walks to which we shall apply our theorem is 

defined by letting 

P&4 = Pi [ 1 + $% + o( 11 x 11-l)] , Pi > 0 

4k4 = Pi [ 1 - KY% + o( /I x 11-l)] . 

It is necessary for our proof to have the constants ti not integral, though no 
doubt if fi = 0 and&(x) is redefined when xi = 0, the results are the same. 
We do not apply (5.9) as it stands, but translate the origin from 0 to f in 
order that the limit (5.5) should exist; this does not change v. Applying the 
theorem we obtain 

COROLLARY 5.2. Let {X,} be an s-dimensional walk satisfying (5.11). 
Then if 2(a, + **a + a,J < 2 - 2p - s, E(T&) exists, while ;f  

2(X, + *.’ + a,) > 2 - 2p - s, E(T;,) = 03. 

REFERENCES 

1. LAMPERTI, J. Criteria for the recurrence or transience of stochastic processes, I. 
J. Math. Anal. and Ap~l. 1, 314-330 (1960). 

2. HARRIS, T. E. First passage and recurrence distributions. Trans. Am. Math. Sot. 
73, 471-486 (1952). 

3. LAMPERTI, J, A new class of probability limit theorems. J. Math. and Me&. 11, 
749-772 (1962). (An announcement of the main results appeared in Bull. Am. 
Math. Sot. 67, 267-269 (1961).) 



CRITERIA FOR STOCHASTIC PROCESSES II 145 

4. DOOB, J. L. “Stochastic Processes.” Wiley, New York, 1953. 

5. KAC, M. On the notion of recurrence in discrete stochastic processes. Bull. Am. 
Math. sot. 53, 1002-1010 (1947). 

6. HARRIS, T. E. The existence of stationary measures for certain Markov processes. 
Proc. Third Berkeley Symp., Berkeley, 1956, Vol. II, pp. 113-124. 


