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n second order process {X,} has a representation of 
8f [K ( i, j)] b= 1 is non-singular for every n, 

the mean squared errors v, = +1 -&+,)* are deter- 

e n,n-k = vk -I (K(n+ 1, kcl)- c Ok,$-jen,n_ivj), k=O,. . . , tl, (1.4) 
Osj<k 

where en0 = 1, n=O, 1, 2,.. ., and vo= ~(1,l). (The equations (1.5) can easily be 
solved recursively for 0, 1, v1 ; 022, e2,, v2 ; &, t&*, &, , v3 ; . . .) 

For the process (l.l), the coefficients t?,,j a earing in the representation 

(1.3) are independent of U* and can be found from position 1.1 with K(i, j) = 

. It will be shown in Section 2 that for the process (l.l), emj + #j as m + 00 for 
each fixed j. This suggests the use of an estimator of 8, to estimate +j* Given the 

X,, an obvious estimator of the vector := (0 ml9***3 @mm)’ for 
imm)‘, whose components are foun y applying Proposition 

1 .l to the sample covariances, 

n-Ii-j1 

t?(i,j)=q(i-j):=n-’ C XJr+li-ji, i,j=l,...,m+l. 
r=l 

Provided m is chosen to depend on the sample size n in such a way that m(n) + 
00, m(n)=o(n”3) and n”*&>,(n) 1nj1+0 as n+m, we show in Section 2 that 

n”2(4!m,-$,, . . . , $mm -rClm9090,***) * 

, C), denotes a zero-mean Gaussian sequence with covariance matrix, 

min(i,j)-I 

c 
= 

c #k@k+li-jl cc l 

I 
(1.5) 

k=O i,j=l 

plies in particular that (SmI, . . . , Jmm, 0, 0, . . .) is consistent for 

(#I, + 2 9 . . .). Notice that the calculation of the estimators 6mj from (1.4), with the 
aced by KA( i, j), requires no matrix inversions. 

otic covariances Of n”*( 6mi - @ii) 
mark 2 particularly valuable for 

catio moving average els and preliminary estimation of the 
ecause the asymptotic 95 per cent confide 

i 



satisfies 

Pm =[j+j)]lf-.+ 9m = (9(l), . l l , 9(m))’ and q(j) is the sample autocovariance 
at lag j. The equations (1.6) can be solved recursively, for m = l,2, . . . , using the 
Durbin-Levinson algorithm. Under the assumption that m depen s on the sample 
size n in such a way that m(n) + 00, m(n) = o(di3) and n”* CjBrn(,, TjI+QaS?Z+or?, 

Bhansali (1978), using results of erk (1974), has shown that 

‘I”*(&*+** ,..., &#,+&o,o ,...) * 

, A), denotes a zero-mean Gaussian sequence with covariance matrix, 

1 
W 

rkfl&+li-jJ ij=,’ 

This result implies in particular that -(&,,, , . . . , &,,,, 0, 0, . 

h,?rz,-)* Th e similarity between (1.5) and (1.7) is quit 
duality between the determination of from (1.4) as descri 
the determination d;C be means of the 
( 1.6). Neither techni requires any mat 
will clearly depend on whether primary interest is in the 

sentation of X,. 
The estimators Of (iii, j = 1 , . . . , p + q, can also be used to find preliminary 

estimators of the toe Gents 4,). . . , &, 9,). . . , eq, in the 

where {Z,} is white 

. . 

irnj 
= 4 +m’ny’ &(j,j_i, j = 

i=l 

-i9 
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estimators &, - . . , &, &, l l l 
iq, can easily be found from that of &I) . . . , 6m,p+q 

using the relation (1.9) (see avis (1987b)). This technique is simply 

omary procedure (see Fuller (1976)) of estimating Tj using 
emark 4, then finding estimates for &. . . , c#+~ 8:) s.. f Oq 

by solving the analogue of (1.9), namely, 

Gmj = (jj - 
min(j.9) A A 

C Oi&mj-i, j=l,...,p++ 
i=l 

(1.11) 

If (1.8) is the true model then both (1.9) and (1.11) will give causal invertible 
coefficient estimates asymptotically as n + 00 but not necessarily for finite n. If p is 
small equations (1.9) are trivial to solve, while if 4 is small equations (1.11) are 
trivial to solve. 

. For the ARMA(p, q) process defined by (P.8) the innovation representation 
(1.4) can be reexpressed as 

I r-1 

C et-l,j(xt-j - JZt-j)9 t=l,..., max (P, 4), 

xt= x0 I C 4ixt-i + $ el-l,jtxt_i -R-j>, 

(1.12) t > max(p, q), 
i=l j=O 

where Onj,OdjGn, n =O, 1,2,. . . , now denote the coefficients obtained when 
Proposition 1 .l is applied to the covariance function of the process, 

wt = 

i 

Xt, t=l,... 3 max (P, 4) 

xl- $ 4jxt-j:, t>max (P, 4) 
j=l 

The advantage of the representation (1.12) is that the last of the sums involves only 
(q + 1) terms instead of t terms as in the sum on the right of (1.3). The one-step 

are obtained from (1.12) by suppressing the summands with j = 0. 
Gaussian like!ihood of (X, , . . . , X,,) is easily computed as 

) = (2n)-“‘*( Uo* . l v,._,)~“* exp I -i i 
j=l 

cient than the 
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asymptotic covariance atrix of the moment estimators. owever simulations in 
cate that the preliminary estimation procedure of Remark 4 is in fact substantially 
more efficient than moment estimation as in the case 9 = 1. 

7, Proposition 1. II has a multivariate generalization (see 
(1987a), p. 412). owever, when it is applied to the multivariate analogue of (l.l), 
the coefficient matrices @nj of the innovati will depend on the covariance matrix 
of the multivariate white noise sequence 

Our data will consist of observations X1, . . . , ;“r, of the process defined by (1 A). 
From now on e,i,j = 0, 1, . . . , M, and v,, PPZ = 0, 1,2,. . . , will denote the coefficients 
and one-step mean square prediction errors obtained by applying the recursions 
(1.4) to the true covariances K( i, j) of the process (1.1). Similarly $mj and & will 
denote the corresponding quantities obtained by applying the recursions to the 
sample covariances defined in Remark 2. Defining the coefficients nj, j = 0, 1, . . . , 

as in (1.2) we have 

cr2 = Var(&+,) = E(XM+l + i TjX,+-*-j)2s & 

j=1 

oreover from (1.1) and (1.3) we have 

8 mk 

A 

+1-k - +1-k II 

and 

rkk 
= a-2 +I z 1 m+l-k - 

Using these relations with (2.1) we 

= y(o)[c+--‘- v,!k] 
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The last result suggests the possibility of using an estimator of Opnk in order to 
A e therefore consider the vectors defined in Remark 2 of Section 

hansali’s result in Remark 4 of Section 

core Let {X,} be thelinearprocessde$ned by (1.1) and let {m(n), n = 1,2,. . .} 

be a sequenie of integers such that as n + 00, 

(i) m<n,m+a and m=o(n’j3) 

( ) ii t-P2 1 17rjl+0. 
j>m 

Then, in UP, 

n1’2(6m,-$~,e .., imm-$m~O,O,. .‘) 

where , C) denotes a zero-mean Gaussian 
deJined in (1.5). It follows in particular that 

n1'2(6mj - $j) * N(0, ji* *‘,), 
k=O 

where ccl0 = 1. 

sequence with covariance matrix C, 

17 

eorem 2.1 we need some preliminary results. 

. Under the conditions of heorem 2.1, we have in R”, 

“2~~ml~~m1~~m2~~m2~*~~~~mm~~mm~~~~~~~~~ 

iS ned in (1.7). 
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where enotes projection onto the span of l,*=*, i 

( WI,**-, from (1.2), (2.4) and the orthogonality of Zm+l an 

*11*= f (vj+#*j)* 
j=l 

=P Var(Zm+, -(JIC~+~ - 
j>m 

<L-*2 
cc 

C I7TjI *+y(o)+(um-d) , 

j>m ) 

G4L-‘Y(0) C InjI ( j>m 

where the last inequality follows from (2.1). The required result (2.3) now follows 
from assumption (ii) of Theorem 2.1. cl 

Next recall that k m+l has the two representations, 

zm+1 = f emj(Xm+l-j -gm+*-jl 
j=l 

and 

rZ,+l= f 4mjxm+*-j = f +mj YfJ em-j,k(Xm+l--j-k -*m+*-j-k), 
j=l j=l k=O 

where 8io = 1. Identifying the coefficients of ( +1-j -Jim+*-j) we find that 

where 

. . . 

. 
mk = 

oreover, 
A 

.a mJ 
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i and j. Now if {m(n)} 
ce &,,, % -T,, we have t!,,,, = 

that i,,,z = &n-JL + &z 
5 -$,7yVT~=+*. rgument gives imj P, $j, for j = 1,2, . . . , k, 

and hence 

mk p, k as r?wm, (2.8) 

where 

k = 

k-l (elk-2 l l ’ 

. For a fixed positive integer k, define )’ and 
where we have suppressed the depen 

Define also the ‘corresponding 
on m. 

. . . , imk)’ and 4 := A 
(4 m,, . . . , &,& Using (2.5) and (2.6) we can write 

= kmk - Rmk+9 
-- *2. 

i.e. 

-#)+(imk-Rmk) (2.9 

The second term of (2.9) can be decomposed further as 

+(R%k-Rmk) (2.10) 

where 

$ 
. . 

mk = 8 m2 0 ml 
. . 

l . . . . 
. . ; il . . 

m,k-I em,k-2 l * ’ orn! 1 

ij with iy for each i 
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and, since I!,,,, - e”,-i,l= ml - Jm-i.1 and emI - 8,-i,, = 4ml- 4m_i,l, this establishes 
(2.11) withj=lJhecasesj=2,3,... , k follow iteratively using (2.5), (2.7) (2. 
and the arguments use to derive (2.8). 

Now from (2.9), (2.10) and (2.11) it follows that 

= &I,( (2.13) 

fInspection of the middle term on the right side of (2.13) shows that it can be rewritten 
in the form, 

so that 

where 

A,= 

0 0 

4 ml 0 

4 m2 d ml 
. . 

4 ik .- 1 8m:k-2 

. . . 0 0 

. . . 0 0 
. . . . 

l . . iI il 
. . . d, 0 ml 

1 0 . . . 0 0 

-4ml 1 . . . 0 c) 
. . 

-4m2 -#ml l _ : : . . . 
. 1 0 

-4’ m,k-I -$i.,-z ’ l ’ -+ml 1 

r2 721 -. : : 
. . . 
. . k 0 . . 

nk-1 mk-2 ‘*’ nl 1 

Hence, using (2.8) together with Bhansali’s result in Remark 4 of Section 1, we find 
that 

where 

v = A-‘k?,A,,kR;(A’)-‘. 

and &xk denotes the top left k x k truncation of the matrix A 

rom (1.7) it is clear that 

(2.14) 

and, since G(Z)+(Z) = 1 for izl s 1, we also have 

where lk is the k x k identiy matrix. conse 

I -1 = ) 

= 

= c kxk, 
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where Ckxk is the top left truncation of the matrix 1 defined in ( P S). 

established that 

in R”, since the finite-dimensional distributions converge. To complete the proof 
of Theorem 2.1, we need only show that 

n”*(0fi,,-$i)+Q, i=l,2, l l l 9 

as n + 00. But this follows from (2.2) and the assumptions on the sequence {m( aa)}. 
El 

Let {X,} be the MA(q) process, 

xt = 2, -!- e,z,_, + l l l + e,z,-,, 

where {Z,} is an i.i.d. sequence of random variables such that EZ, = 0, EZ: = U* 
and EZ:<OO, and assume that e(z):= 1+&z+= l l +8,z9$O for Iz/~1. The vector 
$=(8,,... , t&J can then be estimated = (&,,, . . . , &,,)‘. which by Theorem 
2.1 is asymptotically normal with mean and the covariance matrix whose (i,j) 
element is equal to n-’ Cr!$id)-’ tik0k+li_jl (where 8,:= 1 and 6)j := 0 for j > q). 
Moreover for any fixed j (possibly greater than q) the asymptotic distribution of 
emj is asymptotically normal with mean ej and variance 6’ xi-$ e”,,, regardless of 
the value of q. Inspection of the asymptotic 95 percent confidence bounds, 

(3.0 

for8j,j=l,2,... , therefore provides a means for deciding which of the coefficients 

81, @29*.* de different from zero, and thus for estimating the order q of the 
* recess. ‘Fhe vector can be computed extremely rapidly and it has 

iency relative to t elihood estimator. It is also substan,- 

ient than some other co only-used preliminary estimators, such 
as those derived b theoretical and sample autocovariances at lags 0,. . . , q 
(see Brockwell an emonstrate the use of the technique in the 
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a new series, stationary in a earance, and with rapidly decaying sample autocorrela- 
tion function. If we write 

X,=(1-B)(1-B’2)L,+13, t=1,...,131, 

then the sample autocorrelation function of suggests a moving average model 
with zero coefficients for lags greater than 23. ( x and Jenkins fitted a multiplicative 
moving average model of order 13.) 

The graphs of imj, 1 ~j s 30, and the bounds *1.96( n-’ C$-$ Jkk)1/2 are shown 
in Fig. 1 for m = 30 and m = 50. In view of (3.1) a value of Jmj outside the bounds 
suggests that the corresponding coefficient 6’j is non-zero. The graphs thus suggest 
the model, 

x, = z, -I- ti,z,_, + e&-J+ e&-,2+ t&3&-23, (3.2) 

where (2,) is white noise. At the same time they provide us with the preliminary 
estimates 4 = &,j, j = 1,3,12,23, where 

e; = -0.357, I!& = -0.158, e^,, = -0.479 and i23 = 0.254. (3.3) 

(There is very little difference between the values of &j for 30~ m s SO.) 
Using the maximum tikelihood technique described in Remark 6 of Section 1, 

estimates of the parameters ol, &, fl12 and ti23 were then obtained, using as initial 
values in the optimization the preliminary estimates found in the preceding para- 
graph. The maximum likelihood model was found to be 

X, = 2, -0.3722,_, -0.214Z,_3-0.537Z,_12+0.232Z,_ , (3.4) 

where {.Z’,) is white noise with variance 0.00123. The Akaike information criterion 
for this model has the value, AIC = -861.757. 

The model for {X,} fitted by Box and Jenkins was 

X, = (I- 0.396B)( 1 - C.614B”)Z,, {Zt} - wN(0,0.00134). (3.5) 

Although this model has two fewer parameters than (3.4), it gives a higher AIC 
value, viz. AIC = -856.247. The sample autocorrelation function of the residuals 
from the model (3.5) is compatible with at of white noise insofar as it pas 

portmanteau test. There is however a ra r large value, 0.219, at lag 23, w 
well outside the 0.95 bounds, f 1.96/&3 I= *O. 17 1. axhum likelikmd fitting was 

also carried out for the more general model, 
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