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Theorem-proving with Resolution and Superposition 
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We present a refutationally complete set of inferenee rules for first-order logic with equality. 
Except for x = x, no equality axioms are needed. Equalities are oriented by a well-founded 
ordering and can be used safely for demodulation without losing completeness. When restricted 
to equational logic, this strategy reduces to a Knuth-Bendix procedure. 

1. Introduction 

The starting point of this work is the following remark in (Peterson 1983): "...,no one has developed a 

refi~tation complete set of inference rules for all of first-order logic with equality which reduces to the 

Knuth-Bendix procedure when restricted to equality units.". We present here one such a set of inference 

rules when a complete simplification ordering is used to compare terms. Intuitively, when paramodulat- 

ing between two positive equational literals in two different clauses, our inference roles enable us to 

only paramodulate between the larger sides of the equalities. One aim of this paper is to prove the refu- 

tational completeness of a strategy based on this notion. 

A fundamental method to speed up theorem provers is to maintain information under a reduced format 

and to discard redundancy. This goal is achieved by using deletion inference rules such as demodulation 

(Wos et al. 1967), substmaption and tautology deletion. In most slrategies they are just considered as 

ve12r efficient heuristics but little is tmown about timir effect on completeness. In our case, we are able 

to incorporate the deletion roles in the same framework as the other inference rules and to show easily 

that completeness is preserved. 

* A preliminary version of the results in this paper has been presented at the International Conference on 
Fifth Generation Computer Systems (Tokyo 1988). 
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When all the clauses are orientable equations, the previous strategy reduces to a Knuth-Bendix algo- 

rithm (1970). Our result may also be viewed as an extension of the unfailing completion procedures of 

(Hsiang Rusinowitch 1987) or (Bachrnair Dershowitz Plaisted 1987) to the general first order predicate 

calculus with equality. 

We emphasize the fact that this procedure does not use the functional reflexive axioms, and never per- 

forms paramodulation into a variable subterm. These restrictions are crucial in order to have an efficient 

paramodulation-based theorem-prover. Laakford has proved the completeness of this strategy in the spe- 

cial case where the equality predicate does not occur positively in non-unit clauses and the initial set of 

equations is a complete set of reductions (Lankford 1975). Paul (Paul 1985) has studied the case of 

I-Iota clauses. However, his algorithm fails, just like the Knuth -Bendix algorithm, when there is an 

equation which canuot be oriented. His strategy also has a bigger search space since it does not pre- 

etude the replacement of subterms within right-hand sides of equations in non-unit clauses. The same 

remark is tta~e for the unit slxategy for Horn clauses proposed by (Bachmair Dershowitz Plaisted 1987). 

A very similar procedure described in (Fribourg 1985) allows any orientation of equations (not only 

reduction orderings). However, the functional reflexive axioms and paramodulation into variables are 

required to ensure the completeness of the method. Furthermore Fribourg did not show that complete- 

ness is maintained when simplification and subsumption rules are added to the system. 

Our completeness proof uses the notion of transfinite semantic trees (as in Hsiang Rusinowitch 1986) 

and an extension of the notion of failure node which we call quasi-failure node. A quasi-failure node 

can be viewed as a partial interpretation J which falsifies a clause reduced by valid roles of J. Quasi- 

failure nodes are essential for proving that paramodnlation in the smallest term of an equation is not 

needed. For proving completeness of ordered paramodulation (Hsiang Rusinowitch 1986), we show that 

the rightrnost branch of the semantic tree associated with an unsatisfiable set of clauses is empty. If this 

branch contains a quasi-failure node, the proof does not generalize to our actual set of rules. Therefore, 

the main point of our proof below is to build a branch which avoids quasi-failure nodes. 

2. Inferenee Rules 

2.1. NOTATIONS. 

In this section we review some standard concepts and notation. Let F be a set of function symbols 

graded by an arity function. Let X be a set of variables. The algebra of terms on F and X is denoted by 

T(F,X). We call T(F) the set of ground terms on F, which is the set of terms with no variables. Let P be 

a set of predicate (or relation) symbols. The equality symbol "=" is a particular element of P whose 

arity is 2. The set of atomic formulas (or atoms) is denoted by A(P,F,X), and the set of ground atoms 

(or atoms with no variables) by A(P,F). An equality is an atom whose predicate symbol is "=". The set 

of literals is A(P,F) u ~ A(P,F) , where "~ is the symbol of negation. A clause is a disjunction of 
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literals. A clause can be identified with the set of its literals. The expression C~D, where C and D are 

clauses means that the set of literals of C is included in the set of literals of D. 

A substitution is a mapping a from X to T(F,X) with o(x)---x almost everywhere. Substitutions are 

extended in the usual way to terms, atoms, literals and clauses; the result of applying a substitution o to 

an object t is denoted by to. A substitution 0 is a unifier of two objects s and t if and only if s0=t0. A 

unifier 0 of s and t is the most general unifier(mgu) iff for every unifier o of s and t there exists a sub- 

stitution ~ such that a=0d~ (the mgu is unique up to consistent renaming variables). If C 1 and C 2 are 

clauses in S such that C 1 has no more literals than C 2 and C10 ~ C 2 for some substitution 0, then we 

say that C I subsumes C 2. 

An important feature of our inference system is that any inference step always involves the maximal 

literal of one of the parent clauses, where the maximality notion is defined relatively to a complete 

simplification ordering < on the Herbrand Universe (Peterson 1983, Hsiang Rusinowitch 1987). Our 

definition of such an ordering is a little more restrictive than the previous ones, since it requires the 

extra property 06.  This is not a real drawback because, in practice, most simplification orderings satisfy 

it. 

2.2. COMPLETE SIMPLIFICATION ORDERINGS. 

A complete simplification ordering < is an ordering on A(P,F,X) u T(F,X) such that: 

O1. < is well founded 

O2. < is total on A(P,F) u T(F) 

03.  f o r  every w,v ~ A ( P , F y )  • T(F,X) a~ut every substitution 0 : w < v implies wO < vO 

04.  f o r  every t,s~T(F,X) t<s implies w[o~---t] < w[o~--s] 

05.  f o r  every t,s,a,b~T(F,X) , with t<_ s and w$  A(P,F,X) 

1. i f  s is a subterm o f  w and w is not an equality then (s=t) < w. 

2. i f  s is a strict subterm o f  a or b then (s=t)< (a=b) 

O6. i f (u--w) < A < (u=v) , w<u and v<u, where u,v and w are ground terms, and A is a ground atom 

then there is a ground term t such that A is equal to the atom (u=t). 

2.2.1. EXAMPLE 

We assume that we have a total well-founded ordering <p on the predicate symbols such that ~'='~ is 

the smallest element. We fnrther suppose that <f is a simplification ordering (Dershowitz 1985) on the 

set of terms which is also total on ground terms. We define the predicate-first ordering < on A(P,F) as 

follows: 

P(sl,...,sn) < Q(t 1 ..... tin) i f  

P  Qor 
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P = Q, P is not the equality predicate and (s I ..... Sn) <f (t 1 ..... tm) compared lexicographically, or 

1 ~ = Q, P is the equalitypredicate, and (s l ,s  2 > < <f ( t i , t2},  where < <f is  tire multiset extension o f < f  

It is easy to see that < verifies O1 ..... 06 and, in general, A(P,F) is not order-isomorphic to N. For 

instance, suppose there are only two predicate symbols = and P, one constant a and one unary function 

f. Assume that the recursive path ordering (Dershowitz 1982), with a<f is used to order terms. Then, the 

I-Ierbrand universe is ordered as (atoms s=t and t=s are considered identical): 

o=a < fa=a < fa=fa < f fa=a < . . .  < Pa < Pfa < Pffa < . . .  

2.3. THE SET OF INFERENCE RULES. 

Now we give our set of inference rules, which is denoted by DRA. We suppose that < is an ordering 

that can be extended as a complete simplification ordering. 

O-FACTORING 

I f  L1,L2,...,L k are literals o f  a clause C which are unifiable with mgu O, and for  every atom A e 

C-(LI,...,L2} , LIO ~,tO, then F= CO- {L20 ..... LkO) is an O-factor o f  C. 

O-RESOLUTION 

1r q = L 1 v q '  and q = L 2 V C 2' are clauses such that 

1. L l and ~ L 2 are unifiable with mgu 0 and 

2. for  every A ~ CI',  LIO ~AO and 

3. for  every A ~ C2', 1,20 ~.AO and 

4. i lL  1 is an equality literal then C 2 is x=x 

#,en F= C/ '0  V C2'O is an O-resolvent o f  C 1 and C 2. 

ORIENTED PARAMODULATION 

Let C 1 be a clause (s=t)V C1'. Let C 2 be another clause which has a non-variable subterm s' at 

occurrence n in a literal L2, such that s' is unifiable with s with mgu O. We also assume that: 

I, sO :~tO and 

2. for  every A E C2-{L2}, L20 :kAO and 

3. L 2 is not a positive equation. 

Then C = ( C2[ne-t] V CI')O is an oriented paramodulant o f  C 1 into node n o f  C 2. 



Theorem-proving with Resolution and Superposition 25 

EXTENDED SUPERPOSITION 

Let C 1 be a clause (s.--t) V C1'. Let C 2 be a clause ann a--b be a literal of C 2. Let s' be a non. 

variable subterm of  a at occurrence n o f  C 2, such lhat s' is unifiable with s with mgu O. We also 

assume that: 

1. sO .ktO and 

2. aO .'gbO and 

3. for every A E C2.{a=b), a0=b0 _q~A0 

then C = (C2[n~t] V C1')0 is an extended superposant of  C 1 into node n o f t  2. 

We remark that when C 1 and C 2 are two rewrite rules, an extended superposition of C 1 into C 2 is a 

superposition as in the Kuuth-Bendix algorithm. Let us introduce now some deletion rules which are 

fundamental as far as efficiency is concerned. 

We say that the clause C 1 properly subsumes C 2 if C 1 subsumes C 2 and C 2 does not subsume C 1. We 

shall use the following version of the subsumption rule: 

PROPER SUBSUMPTION 

Delete from a given set of  clauses S any clause which is properly subsumed by another clause in 

S. 

The simplification rule is slightly more restrictive than the one which is used in completion procedures: 

If the unit equation s=t is in S and C2[s0] is a clause in S which contains an instance sO of s, and sO > 

tO, and there is an atom A in C2[s0] such that A> (s0=t0), then the clause C2[t0] is a simplification of 

C2[s0] by s=t. 

SIMPLIFICATION 

One may replace in S a clause which has been simplified, by its simplification. 

In the case where every clause is an equality or an inequality, the only applicable rules are 

EXTENDED SUPERPOS1TION, RESOLUTION with x=x, PROPER SUBSUMPTION and SIMPLIFI- 

CATION. The strategy that we then get coincides with the S-slrategy of (Hsiang Rusinowitch 1987), 

Furthermore, when there is no inequality in the system and every equality is orientable by means of our 

simplification ordering, the procedure applies the same inferences as in the Knuth and Bendix comple- 

tion algorithm. 
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2.4, MAIN RESULT 

We state now our main result, whose proof will be postponed to sections 5 and 6. For convenience, we 

shall call INF the subset of DRA made up of the non deletion-rules: O-RESOLUTION, ORIENTED 

PARAMODULATION, O-FACTORING, EXTENDED SUPERPOS1TION. A fairness condition is 

needed to control an application of these rules, so that no crucial inference is delayed forever:. 

Given an initial set of clauses S, the derivation S0~SI~.. .-~Si-->.. .  where S i is obtained by application 

of a rule of DRA to Si. 1 is fair if : 

for all j, R e  nl>j INF(Si) implies that 

R is subsumed by some clause C a wi>_O S i. 

Here is an example of a fair strategy: first, all possible simplifications are performed, then clauses 

which are subsumed by other ones are deleted, then all resolutions, factorings, paramodulations and 

superpositions are created. We can now express the completeness of our rules: 

2.4.1. THEOREM. Every fair derivation, whose initial set is E-unsatisfiable and contains the 

axiom x=x, yields the empty clause. 

The proof is performed in two steps. First we consider only the inference rules of INF and use the 

semantic tree method as it is detailed in (Hsiang Rusinowitch 1988). Then we adapt this technique to 

take the deletion rules into account. Before we give the proofs, we illustrate the inference roles with 

examples. 

3. Examples 

The following easy example shows the transitivity of less-or-eqnal, assuming the associativity of max: 

for every u,v,w max(max(u,v),w) = max(u, max(v,w)) 

for every x,y,z (LE(x,y) and LE(y,z)) ~ LE(x,z). 

The skolemized negation of the theorem is the conjunction of clauses 5,6,7. We use the predicate first 

ordering, as described in Example 2.2.1, with the following precedence on function symbols: 

max>a>b>c, and on predicate symbols: LE > "=". 
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1. LE(x,y) V LE(y,x). 

2. ~LE(x,y) V max(x,y) --) y. 

3. "~LE(y,x)V max(x,y) -~ x. 

4. max(max(x,y),z) ---) max(x, max(y,z)). 

5. LE(a,b). 

6. LE(b,c). 

7. "LE(a,c). 

REFUTATION 

8. max(a,b)-~b by res of 5,2. 

9. max(b,c)---)c by res of 6,2. 

10. LE(x,y) V max(x,y) ---) x. by res of 1,3. 

11. max(a,c) .--r a b y r e s  of 7,10. 

12. max(a~max(b,z))--)max(b,z) by super of 8 into 4. 

13. max(a,c) ~ max(b,c) by super of 9 into 12. 

14. a ~ c  by simplif of 13 by 11 and 9. 

15. ~LE(c,c) by simplif of 7 by 14. 

16. LE(x,x) by fact of 1. 

17. V1 by res of 16 and 15. 

Let us give now an example, borrowed from Brown's thesis (1974). It shows that the quotient of two 

squares of two numbers without common divisors is not a prime. (Of course, a more general statement 

is known, but its proof requires the use of induction). 

<(for all z, (z divides a and z divides b) ~ z=l  or z=-l)  and b.b.c=a.a} 

c is prime 

We use the following precedence on function symbols: I > .  > - > + > b > c > a (the status of binary 

operators is left-figh0 and the empty precedence on predicate symbols. 
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AXIOMS FOR ADDITION AND MULTIPLICATION: 

1. (x+y)+z~-x+ (y+z). 

2. x+y=y+x. 

3. o+x----x 

4. x+(-x)=o. 

5. (x.y).z=x.(y.z). 

6. x.y=y.x. 

7. w.(x+y)---w.x+w.y. 

8, (-x).y=-(x.y). 

9. x.yr V x=o V y-o.  

PROPERTIES OF THE "DIVIDE" AND '?ILIME" PREDICATES: 

D1. "aD(x,y) "d (y I x).x=y. 

D2. D(x,y) V (y I x).x ~y, 

D3. ~P(o) 

D4. ~P(1). 

DS. "~P(-I). 

D6. ""P(z) V "--'D(x,z) X./x=I V x=-I \t x=z V x=-z. 

D7. ~P(z) V ~D(z,x.y) V D(z,x) V D(z,y). 

D8. (x.y) I y=x V y=o. 

NEGATION OF THE THEOREM: 

m ,  p(c). 

1-I2. (b.b).c=a.a. 

H3. ~D(z,a) V ~D(z,b) V z=l V z=-l. 
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REFUTATION 

P0. y.(-x) = -(y.x) by two successive par of 6 into 8 

P1. (a.a) I c=b.b V c=o by super H2 into D8 

P2. ~D(c,x.y) V D(c,x) V D(c,y) by res of D7,H1 

P3. ((x.y) I c).c ~ x.y) V D(c,x) V D(c,y) by res of P2,D2 

P4. ((x.x) I c).c *: x.x) V D(c,x) by fact of P3 

P5. ((x.x) Ic).c #x.xV (x Ic).c=x by res of D1,P4 

P6. (b.b).c ~ a.a V (a I c).c--=a V c=o by par of P1 into P5 

P7. (a I c).c = a V c=o by super of H2 into P6 (and res with x=x) 

P8. c.(a I c) = a V c=o by par of 6 into P7 (status of .  is l-r) 

P9. c.((a I c).z)=a.z V c=o. by super of P8 into 5 

P10. z.x+z.y * o V z=o V x+y=o by par of 7 into 9 

P l l .  c.x+a.z #o V c=o V x+(a I c).z--o by par of P9 into P10 

P12. x.c+a.z *o V c=o V x+(a I c).z---o by par of 6 into P11 

P13. a.a+a.z #oV c=oV b.b+(a I c).z--o by par of H2 into P12 

P14. a.a+(a.(-w)),o V c=o V b.b+(-((a I c).w))=o by par of 0 into P13 

The first literal is then simplified by 0 and we get: 

a.a+(-(a.w))#o V c=o V b.b+(-((a I c).w))=o 

P15. a.a+(-(a.w)),o V c=o V b.b+((-((a I c).w))+z)---z by super of 1 and P14 

and simplification by 3 

P16. a.a+(-(a.w))~o V c=o V b.b=(a I c).w by super of 2,4 and P15 

and simplification by 3 

P17. e---o \ / ( a  I c).a=b.b by par of 2,4 into P16 

P18. D(z,x.z) V x.z#x.z V z=o by par of D8 into D2 

P19. D(c,x.a)V c=o by par of P9 into P18 

P20. D(c,b,b) V c=o by par of P17 into P19 

P21. ~P(c)V D(c,b) V c=o by res of D7 and P20 

P22. D(c,b) V c=o by res of H1 and P21 

P23. "-'D(c,a) V c=o V c~l  V c=-1 by res of P22 and H3 

P24. (a I c).c #a V c---o V c=l V c=-1 by res of P23 and D2 

P25. c=o V c=l V c=-I by par of P7 into P24 and res with x=x 

1'26. P(o) V P(1) V P(-1) by successive par of P26 into H1 

P27. [] by successive res of 1'26 and D3 D4 D5. 
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4. Semantic Trees 

In order to prove our main result we shall first recall how to build semantic trees for representing the 

canonical models for equality theory. For more details, the reader can refer either to (Peterson 1983), 

(Hsiang Rusinowitch 1988) or (Rusinowitch 1987). Since we want to orient equations with orderings 

whose ordinality is bigger than o~, we have to build semantic trees which are transfinite. This is done by 

noetherian induction on A(P,F). 

4.1. E-INTERPRETATIONS 

Let < be a complete simplification ordering. Let W(B) be the set (B'aA(P,F); B '<  B ). A left segment 

is either a set W(B) or the set A(P,F) itself. Let B+I be the successor of B within A(P,F). 

4.2. DEFINITION: E-INTERPRETATION.  

An E-interpretation on a subset D ~ A(P,F) is a mapping I : D - ~  (T,F) which satisfies : 

El .  I(s=s)=T ff (s=s)~D 

E2, ff (s=t), B[s],B[t] belong to D and I( s=t )=T then I(B[s])--I(B[t]). 

An E-interpretation is an E-interpretation on A(P,F). One can easily see that an E-interpretation is just a 

model for the reflexive, symmetric, transitive and substitutive axioms of equality theory. Let I be an 

E-interpretation whose domain is W(B). Let A be an element of W(B). We define, I( ~ A) -- ~ I(A). 

Let C = L 1 V L 2 V ... V L k be a ground clause whose atoms belong to W(B). We define: I(C) = I(L1) 

V I(L 2) V ... V I(Lk). The set of equality axioms is denoted by EQ and contains: 

x---x 

x=y ~ y=x 

(x=y n y=z) ~ x=z 

Given any P, (x=y n P(...,x,...)) ~ P(...,y,...) 

Given any f,, x=y ~ f(...,x,...)=f(...,y,..) 

In order to prove that a set of clauses S containing the equality axioms has no model, it is enough to 

prove that no E-interpretation can be a model of S. In other words, we have the following : 

4.3. THEOREM (see Chang Lee 1973) A set of clauses S is E-unsatisfiable (that is to say, is not 

valid in any E.interpretation) iff S ~ EQ is unsatisfiable. 
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4.4. REDUCTION RELATION DEFINED BY AN E-INTERPRETATION.  

If I is an E-interpretation on a left segment W(B), it can be used to define a reduction relation -o  I 

whose rules are the valid equalities of the model I. 

4.5. DEFINITION 

Let w and v be elements of A(P,F) u T(F). We write w -'>I v if there is a subterm s of w (we write 

w-w[s]) and a term t such that t<s ,  (s=0 < w , (s=t)~W(B), I(s~-t )=T and v--wit] . We then say that 

w is I-reduced to v using s=t. The reflexive transitive closure of ~ I  will be denoted by ~I*"  The next 

proposition states that for testing the I-reducibility of an element, we only need to use I-irreducible 

equalities: 

4.6. PROPOSITION (Hsiang Rusinowitch 1988). w is I-reducible i f f  it is I-reducible using an I- 

irreducible equality. 

The next result shows how it is possible to build inductively the E-interpretations. Its proof can follow 

(Peterson 1983), since it does not require A(P,F) to have an ordinality smaller than r 

4.7. THEOREM (Hsiang Rusinowitch 1988). Let I : W(B+I) - 4  (T,F} be such that I is an  E- 

interpretation on W(B). Let J be the restriction of I to W(B). Then I is an E-interpretat ion on 

W(B+I) iff : 

1. B is J- reducible to some C and I(B)--J(C) or 

2. B is J - i r reducible ,  of the form t=t and I(B)=T or 

3. B is J-irreducible and not of the form t=t. 

4.8.  TRANSFINITE E-SEMANTIC T R E E S .  

The transfinite E-semantic tree is simply the set TEST made up from all the E-interpretations on left 

segments of A(P,F), ordered by <], the natural extension relation of mappings. To put it more formally, 

let I and I '  be two elements of TEST, with respective domains W(B) and W(B') ; then : 

I <]1' if  W(B) c W(B') andl  is the restriction o f f  to W(B). 

The ordering <d has the following properties: 

T1. ,d is well founded. 

T2. If I belongs to TEST and is defined on W(B) ~ A(P,F) then I has one or two successors (we call 

a successor or a son a nfinimal majorant). 

T3. If I belongs to TEST and is defined on W(B), where B is a ground atom which has a predecessor 

for the ordering < ,  then the restriction of I to W(B-1) is the predecessor of I for the ordering <1. 
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EXPLANATIONS 

T1 is trivial, since we know that the set (W(B) ; BeA(P,F)) u (A(P~F)} of the left segments of the 

well ordered set A(P,F) is also well ordered for the relation of inclusion of sets. 

T2 is an easy consequence of the inductive construction of E-interpretations : every E-interpretation on 

W(B) can be extended (in at most two ways) to W(B+I). 

4.9. DEFINITION 

When I is an E-interpretation on W(B) which has two successors, the left (resp. the right ) successor of 

I will be the one that assigns the value T (resp. F) to the atom B. 

I 

TRU~.~~LSE 
L R 

Figure 1 

4.10. DEFINITION: MAXIMALLY CONSISTANT SEMANTIC TREES. 

If an E-interpretation I on W(B), falsifies a ground instance of a clause C belonging to a set S (i.e. 

I(C0)=FALSE for some ground substitution 0), we call I a failure node for S. The maximally consistant 

E-semfintic tree of a set of clauses S, denoted by MCT(S), is the maximal subtree of TEST such that no 

node I in MC'T(S) is a failure node for S. The crucial property of the maximally consistant semantic 

trees is that they are topologically closed: 

4.11. CLOSURE LEMMA (Hsiang Rusinowitch 1988). The limit of an increasing sequence of 

nodes of MCT(S) belongs to MCT(S). 

Let us introduce the notion of quasi-failure node which is any E-interpretation R falsifying a clause 

obtained by reducing a ground instance of a clause of S by ~R" 

4.12. DEFINITION: QUASI-FAILURE NODE. 

Let R be a node of MCT(S) whose domain is W(B+I). This node R is a quasi-failure node (for S) if: 

I. R(B)--F 
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2. B is an equality s=t (with s>t) 

3. there is a ground instance D of a clause C in S such that every atom in D is strictly smaller than 

sffis, there is a ground clause D' such that R(D')ffiF and D --OR* D'. We then say that such a 

clause C quasi-labels the node R. We also say that D is quasi-false for R. 

Let us remark that when 3. is satisfied for some ground clause D', then for any other ground clause D" 

such that D ~R*  D" and D" is in the domain of R, we also have R(D")=F. This is because R can be 

extended to aft E-interpretation. 

5. Lifting Lemmas  

5.1. IRREDUCIBLE SUBSTITUTIONS AND THE LIFTING PROBLEM. 

In order to enable a paramodulation, which is performed into a ground instance of a clause, to be lifted 

to the clause itself, it is necessary to prevent the replacement of a subterm within the instantiated part 

of the ground clause. 

5.2. EXAMPLE 

Let P(x,x,c) be a clause, and c---a another clause. When we paramodulate c=a into P(c,c,c) in the first 

argument of P, we get P(a,c,a) which is not an instance of a (special) paramodulaat of c=a into P(x,x,c). 

However, if we paramoduIate c--a into the third argument we get P(c,c,a) which is an instance of the 

paramodulant P(x,x,a) of c=a into P(x,x,c). A problem arose in the first case, because the paramodula- 

tion step at the ground level did not replace every instance of c, brought by the instantiation of x. 

This is the motivation of the next definition : 

5.3. DEFINITION 

Let I be an E-interpretation and 0, 0' be ground substitutions. We say that 0 is I-reducible to 0' and we 

write 0 --r 0' if 0 is identical to 0' except for one variable, say x, and I(0(x)= 0'(x))=T and 0(x)>0'(x). 

If 0 cannot be I-reduced to any substitution we say that 0 is I-irreducible. 

5.4. THEOREM (Peterson 1983). Suppose I is an E-interpretation, 0 a ground substitution, C a 

clause such that each atom of CO belongs to the domain of L If 0 --~I 0' then I(C0) = I(C0'). 

5.5. COROLLARY (Peterson 1983). Under the same hypothesis there exists a ground l- 

irreducible substitution V, such that I(C0) = I(Cv). 

To lift our inferences from file ground case to non-ground case, first we can notice that for every 

instance CO of a clause C in S* which labels or quasi-labels a node I, 0 can be assumed to be I- 
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irreducible. Then we can simply use the classical lifting lemmas for resolution and paramodulation as 

they are given in (Peterson 83). For lifting the extended superpositiou rule, let us notice that we can use 

an argument similar to the one given for paramodulation (or for the critical pair lenmaa in Knuth and 

Bendix algorithm): 

5.6. Extended superposition lifting lemma. Let C 1 be the clause (s=t) V C and C 2 be the clause 

(a=b) he D and n be a non-variable position in s. Let SG be the following extended snperposition: 

s0[n<---b0]=t0 V CO V DO of the ground instances (s=t)e v c o  and (a=b)0 V DO of C 1 and C 2. Then 

there is an extended superposant S of C 1 and C 2 such that SG is an instance of S. 

6. Refutational  Completeness  o f  INF 

We present here our technique for establishing completeness of the set of inference rnles INF. This 

method is particularly useful for proving the completeness of strategies dealing with equalities as 

rewrite roles. We have already used it to prove the completeness of the following strategies, where the 

only equality axiom ever used is x=x - in particular, we never use the functional reflexive axioms- and 

paramodulation is never performed into variables: 

* ORDERED PARAMODULATION (Hsiang Rusinowitch 1986) 

* POSITIVE PARAMODULATION (Hsiang Rusinowitch 1988) 

* UNFAILING KNUTH-BENDIX-HUET ALGORITHM (Hsiang Rusinowitch 1987) 

Let S be a set of clauses. INF(S) denotes the set of clauses obtained by applying some ride in INF to S. 

Let INF0(S)--S, INFn+I(s) --- INF(INFn(S)) and S* be Un>_01NFU(S). The precise statement to be 

proved is: 

6.1. THEOREM. Let S be an E.unsatisfiable set of clauses containing x=x. Then S* contains the 

empty clause. 

Proof: The proof is very similar to the proof of completeness of the unfailing Knuth-Bendix-Huet algo- 

rithm (Hsiang Rusinowitch 87). However, since we consider from now on multi-literal clauses, many 

new difficulties appear. Most of our effort will be spent on dealing with clauses of  the type: 

s~a V s--b V ... 

Our method can be sketched as follows: given an arbitrary E-unsatisfiable set of clauses S, we want to 

prove that D ~ S* which is equivalent to proving that MCT(S*) is empty, Suppose the maximal con- 

sistent tree is non-empty. Then we define by induction a particular sequence of nodes in MCT(S*). 

Since S* has no model, the successors of the last node in the sequence are failure nodes (or quasi- 
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failure nodes), falsifying some clauses C and D in S*. We apply a proper rule of INF to C and D to get 

another clause r falsified by a node of  the sequence. But none of the node in the sequence is a failure 

node. Hence we get a conmadietion. 

L We first show how to define a suitable sequence of nodes in MCT(S*). 

We build a sequence Z of  E-interpretations by transfinite induction on the well ordered set A(P~ ~') 

which is used for indexing our sequence. First, we define : I o = ~2 (empty interpretation). Suppose now 

that IB,, has been defined for all the B" in the interval [o,B'[ with D(IB,,) = W(B"). Several situations 

have to be considered in order to define the element of index B' in the sequence: 

B'  is not a limit ordinal.  Hence, B' has a predecessor in A(P,F), say B. Suppose K'  is the last ele- 

ment of the sequence which we have defined so far. Then W(B) is the domain of the interpretation K'.  

Several cases may occur: 

(I) ff K' has no succcssor in MCT(S*) then thc sequence is completed. 

(2) if K' has cxacfly one successor J in TEST and J is also in MCT(S*) then it is the next element of 

the sequence. 

(3) if K' has two successors L and R in TEST with L(B)='I" and R(B)=F then 

(3.1) if R is a quasi-failure nodc or a failure node and L is in MCT(S*) then the next clcment 

will be L. 

(3.2) ff R is neither a failure node nor a quasi-failure node, it is the next element. 

K' K' K' K' 

(1) (2) (3-i) (3-2) 

Figure 2 

B' is a limit ordinal. We simply define l B, to be the limit of IB, when B" tends to B'. 

The sequence Z is not empty since MCT(S*) is not cmpty. Now, our construction cannot "go on for- 

ever". Otherwise a model for S would be obtained. 



36 M.R.usinowiteh 

Let B be the smallest atom for which I B is undefined. We have seen in the second case above that, 

when B '  is a limit ordinal and IB,, is defined on [o,B'[, i t  is always possible to define IB,. Hence B 

cannot be a limit ordinal and, as a consequence, our sequence can only finish in one of the following 

ways, where K is the last element of the sequence, whose domain is W(B): 

case 1: K has exactly one successor I which is a failure node and B is K-irreducible. 

case 2: K has two successors L and R which are failure nodes. 

case 3: K has exactly one successor I which is a failure node and B is K-reducible. 

ease 4: K has two successors, L and R (L(B)=T and R(B)=F ), with L a failure node and R a quasi- 

failure node. 

K K 

O L R 

case 1 case 2 

K 

T 
I 0 

case 3 

K 

case 4 

Figure 3 

IL Our goal will be achieved by provil~g that in every case we can find a clause in S* that is false in 

the interpretation K, and meet a contradiction since K was supposed to belong to MCT(S*). 

Before considering every case, we shall prove some technical lernrnas which provide some information 

on the structure of clauses which (quasi-)label the (quasi-)failure nodes. 

Lemma  A. Let  K '  be  a node in the sequence X, which has two successors L and R, such that the 

domain of  K '  is W(s--t). and such that R (the r ight  one) is a failure node o r  a quasi-failure node. 

Then, for any clause C which (quasi-)labels R, and for any ground instance D of C which is 

(quasi-)false for R, there  is no u such that s#u is a li teral of D. 
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Proof: let D' be such that R(D')ffiF and D--4K,*D'. Assume that (s=u) is an atom of D, and ( s ' fu ' )  is 

the atom of D' which verifies: (s=u)~K,*(s '=u') .  Let us notice first that we cannot have s '  different 

from s, otherwise s=t would be reducible by some equality in K':  this case has to be excluded since K '  

has two successors. Thus s=s', and, since (s=u') _< (sffit), we also have u'<t. Let us show now that 

R(s=u')=F. If u'  is t, R(s=u')=F because R is the right successor of K' .  If u'<t, then it is because sffit is 

K'-irreducible and therefore s fu '  cannot be used to K'-reduce s=t. Since R(D')=F, R(s '=u')  being F 

forces s '=u'  to appear as a positive literal of D'.  Therefore, the corresponding literal in D has also to be 

positive: that is, s=u is a positive literal in D. This concludes the proof of lemma A. 

Hence D can be written as : 

(*) s=u 1 V s=u 2 V...V S=Ura V S=Um+ 1 V...V s=u k V D" 

where s=u i ~ K ' *  s=t for l_<'<mm, s=u i ~ K ' *  s=vi for m<i~;k and s is not a subtenn of D". 

Before going on, we remark that every literal of D" is strictly smaller than any equality with s on one 

side. Otherwise if L~ D 'T verifies L>s=u, then from the hypothesis that L<s=s (recall that K" is a 

(quasi-)failure node), we derive a contradiction to the hypothesis O6. 

Lemma AA. Under the hypotheses of lemma A, there exists an i such that s fu  i -OK,* s=t .  

Proof: If m=0 let Sly be the maximum of the K'-normal-forrns of  the atoms s=u i. We note that v<t and 

K'(s=V)=F. Let K" be the restriction of K'  to the domain W(sfv) and R" the fight successor of K" in 

TEST. Since every equality used when K'-reducing D is strictly smaller than s=v, we also have D 

~*(K")  X where X is a clause satisfying R(X)fF. and X is K'-irreducible. Since each of the K'-  

normal-forms of the atoms of D is smaller than or equal to s ly  (recall the remark before lemma AA), 

we also have R"(X)=F. We thus have proved that K" satisfy the condition 3.1. However this is impossi- 

ble because R" belongs to the sequence (as it is a restriction of K').  

The lemma means that m cannot be equal to 0 in the expression of D. With these lemmas, we now dis- 

cuss the different cases. 

CASE 1 AND 2 

These cases have been considered in (Hsiang Rusinowitch 1986). One step resolution on clauses of S* 

which are falsified by the successors of K produces a clause of S* which is falsified by K, Therefore 

we get a contradiction with the fact that K is in MCT(S*). 
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CASE 3 

We know that I, the successor of the last node K of I3, is a failure node, which falsifies some ground 

instance C of a clause of S*. We can suppose that C is minimal wig respect to >>, the multiset exten- 

sion of >. 

3.1 : B is  n o t  an e q u a l i t y  a t o m .  

L e t  s - t  be an I-irreducible equality atom such that s>t, s is subterm of B, and K(s=t)=T. Such an ele- 

ment exists since B is K-reducible. Let K' be the reslriction of K to the domain W(s-t), and let J be the 

right successor of K'  in TEST. Since J is not in the sequence we have built, K' satisfies the condition 

3-1. Therefore, there is a ground instance D of a clause of S* such that D-.-)K,*D' , J(D') = F and 

every atom of D is strictly smaller than s=s. We can suppose that D is rrfinimal (w,r.t. the ordering <, 

which is by definition, the mnltiset extension of <). 

H I 

I 
I 
I 
I 
! 
I 

I I 
! 

Figure 4 

If we apply Lernma A with K', J and D we can derive the expression (*) for the clause D. Let us 

notice that C can be written as L[s] V C", where L[s] is either the literal B or the lileral -lB. 

We can obtain after several steps of oriented paramodulafion and factoring the following clause P 

(which is, by definition, in S*): 

L[ul] \/L[u2] V...V L[u m] Y S=Um+ 1 V...V s=u k V C" V V" 

The deduction free of the previous clause is the following, where every inference is a paramodulation 

from the right parent into the left oue, which is always L[s] V C": 
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L[s] V C" s=u I V s=u 2 V...V S=Ura V S=Um+ 1 V..M s=u k V D" 

L[u 1] V C' V s=u 2 V...V S=Ura V S=Um+ 1 V..M s=u k V D" 

~L[u2] V Llu21 V C' V...V s=u m V S=Um+ 1 V...V s=u k V D" 

L[Ul] \IL[u2]V...VL[u m] \! C"V S=Um+ lV...\ls=u k X/D" 

The reason why we build such a pararnodulant is that we want each of its literals to be false along the 

interpretation K, so that we can conclude. We have indeed: 

Lemma B: K(P)=F 

Proof: K(C")=F since we have K(C)=F. Each of the atoms of D" is strictly smaller than s--t, therefore 

D" is in the domain of K '  and K'(D")--F. But K is an extension of K'; consequently, K(D")=F. For i>m 

we have s=u i ~ K ' *  s=vi and K'(s=vi)=F. Every equality atom used to perform a K'-reduction can also 

be used to perform a K-reduction. So, we can replace the K '  above with K. But now s=u i is in the 

domain of K since it is strictly smaller than L[s]. Therefore we can derive the equality K(s=ui)=F. For 

l<i<_m we have s~u i "-~K* s=t" Therefore K(s=ui)=T and I(L[ui]) = I(L[s]) = F. But L[u i] < L[s], so 

every literal of P is in the domain of K. Since I is an extension of K, by coherence, we have 

K(L[ui])=F. The lemma is proved. 

3.2: B is an equality atom "a=b" with a>b and I(B)=T. 

Let s=t be the minimal equality such that I( s=t )ffit and s is a subterm of ]3'. If s is a strict subterm of a 

or s is a subtenn of b then we can proceed as before. Now, we show than s cannot be equal to a. If this 

were the case then I(a=t)---T and I(a=b)---T imply I(b=t)=T. Since b>t, we can use b=t to I-reduce B; but 

this is impossible, because no equality smaller than s=t may I-reduce B. 

3.3: B is an equality atom "a=b" with a>b and I(B)=F. 

If there is a strict subterrn a' of a such that I(a'=b')=T for some b'_< a ' ,  then we can follow the proof of 

subcase 3.1. Therefore from now on we assume that no such a' exists. 

3.3.1: for each d_<b we have I(a=d)=F. 

The hypothesis of 3.3.1 implies that every atom in C of type a=d ,  appears only as positive literals. 

Hence, C can be written a=b 1 V a---b 2 V...V a=b m V C" and a does not appear in the subclause C". We 
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shatl use the hypothesis (06)  on the ordering < : 

I f  (u=v) > A > (u=w) then there is a ground term x such that A is u=x. 

With this hypothesis we can rephrase the previous statement more precisely to he: every atom a=d in C 

is strictly bigger than any atom of C". 

Let a=c be the maximal (w.r.t <) I-nomaal-form of the atom a=b i where "<t~-n, that is: c=sup(k i : l_<'<t.C.rrt) 

where ki=inf{k :I(k=bi)=T}. 

a'hi I~  
Figure 5 

Let J be the restriction of  I to W(a=c). Every equality used to I-reduce one of the b i is necessarily 

strictly smaller than a-c. Indeed, there is no equality a=z such that I(a=z)=T (hypothesis 3.3.1) and 

there is no equality s '=t '  such that s' is a strict subterm of a and I(s '=t ')=T (hypothesis 3.3), therefore 

we can I-reduce an atom a=b i only with an equality whose larger side is a subterm of b i, and such an 

equality is always smaller than a---c. From these remarks we can assume that there is a ground clause 

Ct such that C -->j* C! and each literal of Ct is <_ (a=c). Consequently, J satisfies the condition 3.1. So 

the right successor of J cannot belong to the sequence of nodes we have defined in MCT(S*). But 

since K(a=c)---F, K cannot follow J in our sequence. Therefore subcase 3.3.1 never occurs. So under 

hypothesis 3.3 we always have : 

3.3.2: there is a term c such that c<b and l(a=c)=T. 

Let us suppose now that c is the smallest term satisfying 3.3.2. Let K '  be the restriction of I to the 

domain W(a=c), and let J be the right successor of K' in TEST. Since J is not in the sequence we have 

built, K '  satisfies the condition 3-1. Therefore, there is a ground instance D of a clause of S* such that 

D-->K,*D' , J(D')=F and every atom of D is strictly smaller than a=a . We can suppose that D is 

minimal (w.r.t <). 
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With Lemma A, and Lemma AA, we have shown that every equality a=u within the clause D never 

appears within a negative literal. 
I<' 

a=C 

a=0 

Figure 6 

Hence D can be written: 

a=u I V a=u 2 V..A/a=u m V a=Um+ 1 V...\I a=u k \1 D" 

with a=u i ~ K ' *  a=c for l<i<_m, a=u i -~K'* a=vi for m<i<_k, a=v i is K'-irreducible and v i < c and a 

is not a snbtema of D". 

We "know that I is a failure node, which falsifies some instance C of a clause of S * .  The hypothesis 

implies that C (or a factor of C) can be ~a-itten a=b V C" where each of the atoms in C" are strictly 

smaller than a=b. 

Let us first suppose that  C>D. 

A few steps of extended superposition (and factoring) with C and D as input clauses generate the fol- 

lowing clause P : 

[ui=b] V [u2=b ] V...V [Um=b] V a=Um+.l V...V a=uk V C"V D" 

The deduction tree is identical to the one in subcase 3.1. For m+l_<k~:, a=u i --->I* a=vi because I is an 

extension of K'.  But I(a=vi)=F. Also a=u i is in the domain of I, since a=ui<a=b from the hypothesis 

"C>D". Therefore we also have I(a=ui)=F. 

For i<m+l , (a=ui)~i* (a=c) since I is an extension of K'. Therefore I(ui~)---T. But I(a--c)=T. Conse- 

quently we also have I(ui=a)=T. Then I(a=b)=F implies I(ui=b)=F. As in Lemma B, it is easy to see 

that I(C" V D")~'F and conclude with I(P)=F. Since each of the atoms of  C is strictly smaller than a=b, 

we also have K(P)=F. That means that K is a failure node: this is contrary to the fact that K belongs to 

the sequence. 
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Let us  suppose  now that  C<__D: 

In order to point out the atoms containing the subterm a, we can write C as the following expression : 

Ll[a] V L2[a] V..M Lr[a] V CC where Lh[a] is either a=b h or a#b h and a never occurs within CC, We 

can also suppose that Ll[a] > L2[a] > ..... > Lr[a]. From each equality a=u i (i<_rn) of D we paramodulate 

or superpose successively into each occurrence of a within C to get the following clause LP: 

rlt,,11 v LJu21 v...v z Jura1 v L2;u / v r2tu21 v...\/ LetUml v ........... .v 

Lr[Ul] V Lr[U21 V...V Lr[u m] V a=Um+ 1 V...V a=u k V CC V D" 

which can be obtained by the following deduction: 

z,fla] v...v L fla] v o ,  ~ --u 1 V a=u 2 V...\I a=u m V a=um+ I V...V a=uk \/ D" 

1[Ul] V...V Lr[Ui] V C" V a=u 2 V...V a=Um,a=Um+ 1 V...V a=u k V D" 

lIufl v...v z,/u fl v 

l[u2J. \/...V Lr[u 2] '4 C" V ...V a=Urn,a=Um+ I V...V a=u k V D" 

Llfu 11 V...V LrlUlI V 

Ll[U2] V.,,V Lr[U 2] V 
j , . . . ~ . , , . . , . ~ . . , , , . . ~  . . . . .  , . ~  

LIIu m] V...V Lr[U m] V C" V a=Um+ 2 V...V a=u k V D" 

We prove that there is a clause LP' such that LP-->K,*LP' and J(LP')~F. 

Proof: For i<m+l , I(ui=c)=T. But I(a=c)=T. Consequently we also have I(ui=a)=T. Then I(Lj[a])--F, 

for j<_r , implies I(Lj[ui])=F and also K'(Lj[ui])=F. Since CC and D" are smaller than (a=c), the sub- 

clause (a-urn+ 1 V ...V a=u k V CC V D") can be (K')-reduced to some clause X such that J(X)=F. Con- 

sequently LP itself is (K')-reducible to some clause falsified by J. 

Since rn is not 0, LP is strictly smaller than D. This is a contradiction with the fact that D is a 

minimal clause satisfying the condition 3.1 at node K'. 



Theorem-proving with Resolution and Superposition 43 

CASE 4 

The last node K of the sequence has two successors L and R: L is a failure node and R is a quasi- 

failure node. Hence, there is an equality s~-t such that the domain of K is W(s=t). LemJna A and 

Lemma AA applied to K and R imply the existence of a clause D which has the expression : 

s=u I V s=u 2 V...V S=Um \/ S=Um+ 1 V,.M s=u k V D" 

with s=u i -~K* s=t for 1_< <i~n, s=u i --~K* s---vi for m<i<_k, s---v i K-irreducible and v i < t and s is not a 

subterm of D". 

Since L is a failure node but not K, there is a clause C which can be written set V C" and which is a 

ground instance of a clause of S* such that L(s~t V C")=F. In order to eliminate some occurrences of s 

we perform successive paramodulations from D and C, and get the clause LP: 

tr I V t~u 2 \l...Vt~u m V S=Um+lV...Vs=u k V C" V D" 

For i<_m we have K(ui---0=T (recall that s=ui--->K* s--t). Up to some factoring , we can suppose that C" 

and D" are in the domain of K and therefore satisfy K(C")=K(D")=F. For i>m (s=ui)-->K* (s=vi) with 

vi<t. Therefore L P ~ K *  LP' and K(LP')=F. Since every literal in LP' is smaller than s=t, we also have 

R(LP')=F. However, no literal of LP can be K-reduced to s=t. Here we get a contradiction with Lemma 

AA, because K belongs to the sequence of nodes and satisfies condition 3.1.  

Since every case has been considered, the proof is complete. 

7. Horn Clauses 

A Horn clause is a clause which contains at most one positive literal. When we restrict our inference 

rules to Horn clauses, they can be further refined. In particular, we just need to infer on the maximal 

literals of the clauses and factoring is not needed. This can be proved simply by examining the proof 

above when S only contains Horn clauses: 

In case 1, let A V ~(a=a) be the minimal clause that is falsified by I. Since ~(a=a) is a maximal literal 

o f  the clause, we can resolve with x=x and obtain the clause A which is smaller and is still falsified by 

I. This rises a contradiction. 

In  case 2, let A V "~B and B V C be two minimal clauses which are falsified by L and R respectively. 

Since B V C is Horn, it contains a unique occurrence of B. Then, one step resolution on B generates A 

V C which is smaller than A V ~ B  and is still falsified by L. Note that it was not needed to ensure that 

A V ~B contains only one occurrence of ~B. Therefore factoring was not required. 

In  case 3.1 and 3.2, when dealing with Horn clauses, we just need one paramodulation step into the 

maximal literal of C to get the clause P. Moreover, no factoring is needed, In case 3.3.2, the clause C 

can be written a=b V C" with C" < (a~b) without factoring since it admits only one positive literal. A 

single step of extended superposition is enough to get a clause which is smaller than C and which is 
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falsified by L 

In case 4, a single pararnodulation step of D into C generates a clause LP which is smaller than C and 

falsified by L. 

We can conclude: 

7.1. THEOREM. The rules of O-RESOLUTION, ORIENTED PARAMODULATION 

EXTENDED SUPERPOSITION are refutationally complete for Horn clauses even when we res- 

trict ORIENTED PARAMODULATION and EXTENDED SUPERPOSITION to be applied to the 

maximal  literals of clauses. 

This theorem is the basis for the conditional completion procedure which has been proposed in 

(Kounalis and Rusinowitch 1988). Note also that more refinements could be obtained. For instance, it is 

not needed to paramodulate from a Horn clause s=a V C when s occurs in C. We can also suppose that 

paramodulation into a negative equational literal ~(a=b), is always performed into a member of a=b 

which is maximal in (a,b). 

8. Completeness  in the Presence  o f  Simplif icat ion and Subsumption 

The purpose for using deletion rules is to get rid of redundancies and tautologies and to keep the sys- 

terrt as small as possible, In many equality theorem-provers such as ITP (Lusk Overbeek 1984) or SEC 

(Fribourg 1985), ~emodulation (Wos et al. 1967), or simplification, is used as a very efficient heuristic. 

Theoretical foundation for this inference role was developed through the Knuth and Bendix completion 

algorithm (Huet 1981). In the general setting of first order calculus, there have been very little investi- 

gation about how completeness is preserved in presence of a "deletion" rule such as simplification. 

Everybody agrees that in general simplification leads to shorter refutations; however this is not always 

the case. For example, the unsatisfiable set of clauses (P(f(x)) ,  -~P(f(g(a))), f(g(x))--->b) admits a 

straightforward one step refutation by resolution. If we first apply the equation as a demodulator, we 

get the following normalized set of clause: {P(f(x)),~P(b),f(g(x))~b). The shortest refutation we can 

get now uses two steps: one paramodulation step in the first clause followed by one resolution step. Our 

goal is to show that the normalization of clauses does not push the empty clause out of reach of our 

theorem-prover. This goal has been achieved; the proof of that result heavily relies on the noetherian 

feature of the demodulators. 

Subsumption, as simplification, is a rule which decreases the search space. It was studied carefully by 

D.Loveland (1978) from the proof theoretic point of view which is much harder to handle than the 

semantic one. A nice aspect o[ our approach is that it allows a common treatment of snbsumption and 

simplification. 
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In this chapter, an inference rule is a rule for replacing a set of clauses by an equivalent set of clauses. 

With this new definition, we consider now two other inference rules: subsumption and simplification. 

Let us recall their precise definitions: 

8.1. DEFINITIONS 

The classical subsumption rule causes problems, since the relation "is subsumed by" is not well- 

founded, even when it is quotiented by the variable renaming relation: P(f(x)) \ I  P(f(z)) and P(u) V 

P(f(w)) subsume each other, but they are not variants. Therefore, we shall need a slight restriction of 

the subsurnption rule in order to ensure that completeness is preserved. Let us recall that a clause C 1 

properly subsumes C 2 if C 1 subsumes C 2 and C 2 does not subsume C 1. 

PROPER SUBSUMPTION 

One may delete from S any clause which is properly subsumed by another clause in S. 

The advantage of proper subsumption appears in the next lemma: 

8.1.1. LEMMA (Loveland 1978). There is no infinite sequence C0,C1,...,Ci... such that Ci+ 1 prop- 

erly subsumes C i. 

For the next rule, the symbol < represents a complete simplification ordering. This ordering has to be 

the one which is used for defining the other inference rules. If the unit equation s=t is in S and C2[s0] 

is a clause in S which contains an instance sO of s, and sO > tO, and there is an atom A in C2[s0] such 

that A> (s0=t0), then the clause C2[t0] is a simplification of C2[s0] by s=t. 

SIMPLIFICATION 

One may replace in S a clause which has been simplified, by its simplification. 

The restricted format of the simplification rule is needed in order to apply our completeness proof. The 

restriction on the atom A is probably not necessary as noticed in (Peterson 1983). 

We can also notice that, as in (Hsiang and Rusinowitch 1987, Peterson 1983), our definition allows 

unoriented equations to be used as simplifiers: indeed uncomparable terms happen to be comparable 

when instantiated. For instance, f(x,x,y) = f(x,y,y) can simplify P(f(g(a),g(a),a)) into P(f(g(a),a,a), not- 

withstanding the nou-orientable equation. 

8.2. PROOF OF COMPLETENESS 

We now consider the full set of rules DRA, that is: {O-RESOLUTION, O-FACTORING, ORIENTED- 

PARAMODULATION, EXTENDED SUPERPOSITION, SIMPLIFICATION, PROPER SUBSUMP- 

TION}. Let DRA(S) be the set we obtain by application of one of the inference rules of DRA to the set 

of clauses S. Let DRA0(S)=S and DRAn+I(s) = DRA(DRAn(S)). We shall denote DRAn(S) by S n, 
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Because from now on we are dealing with deletion inference rules, we cannot assume any more mono-  

tonicity of the process. The problem is that we cannot ensure anymore that clauses which appear in 

some S n remain available throughout the inference process, and may always take part in a refutation. 

Some clauses might be simplified or subsumed during the process. Suppose for instance that C e S  i, 

DeSj(j>i)  and C and D can be resolved. This resolvent will perhaps never be generated, since C or D 

may not be simultaneously present in the system due to the deletion inference rules. What is enough to 

prove in order to avoid this problem is that clauses involved in a refutation can be chosen in such a 

way that they will never be simplified or subsumed later o n .  

Given an initial set of clauses S and a derivation S0~S1--->...~Si--o... where S O is equal to S and S i is 

obtained by application of a rule of DRA to Si. 1, S* denotes, from now on, ui>_0 S i. A clause C of  S* 

is persisting (w.r.t. the derivation (Si)i_>0) ff there is a k e N  such that C belongs to every S i , for i>_k. 

The crucial proposition is: 

8.2.1. PROPOSITION. Every failure node of S* can be labelled by a persisting clause. Every 

quasi-failure node can be quasi-labelled by a persisting clause. 

Proof: the proposition is proved by considering the smallest clauses (w.r.t.<) in S* which can label the 

(quasi)-failure node. Let GR be the application which associates to a subset of clauses of S* the set of 

its ground instances. Let I be a failure node for S* and let :E be the set of clauses labelling I, namely: 

{G; GE S* and there is G1 ~ GR(G) such that I(G1)=false) 

The set of  minimal elements of GR(Y.) w.r.t. < which are falsified by I is denoted by TG. The set of 

clauses in Y- which have an instance in TG is GR-I(TG); it will be denoted by T. The subset of clauses 

of T which are minimal for the proper subsumption ordering will be denoted by T '  (i.e. the clauses of  T 

which are not properly subsumed by another member of T). We can notice that GR(T)=GR(T')=TG. 

8.2.2. Lemma. If C belongs to T' then C is persisting. 

Proof: let us first prove that C will never be simplified. Otherwise,there exists a j such that C ~ Sj, 

( s~ t )  ~ Sj, C can be written C[so] and Sj+ 1 = (Sj - {C)) w (C[t<r]). Since C e T, there is a ground 

substitution 0 such that: I(C0)=false and CO is minimal in GR(Z). 

By definition of the simplification rule ,  (s=t)o < C; therefore, by stability of <, we have (s=t)o0 < CO. 

However we cannot have I((s-~t)o0)=false because I is a failure node of S*. Hence I((s=t)o0)--true. 

Since I is an E-interpretation we can derive: I(C[to]0) = I(C[so]0) = false. But, C[to]0 < C[so]0. This 

rises a contradiction with the assumption that CO is minimal in GR(Z). 

Let us prove now that C is never subsumed. Assume that F and C belong to Sj, F properly subsumes C 

and Sj+ 1 ~ Sj-{C). By definifiou, C does not subsume F. One can notice that F belongs to Z. Since 
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every ground instance of C contains a ground instance of F, and C belongs to T, 1" also belongs to T. 

However C is in T'  and therefore cannot be properly subsumed by another member of T. 

We can prove with the same technique that a quasi-failure I node can be quasi-labelled by a persisting 

clause. The only change is to define ~ as the set of clauses quasi-labelling I. Afterwards, we have to 

prove that when simplifying (or subsuming) a clause C which quasi-labels a node I we get another 

clause F with the same property. 

We can now express the completeness in presence of subsumption and simplification. 

8.2.3. THEOREM. Every fair derivation, whose initial set is E-unsatisfiable and contains the 

axiom x=x, yields the empty clause. 

Proof: let S be an E-unsatisfiable set of clauses containing x=x. We assume that MCT(S*) is not empty. 

Let K be the last node of the right branch of MCT(S*). We first suppose that K has two successors L 

and R in TEST, which are failure nodes. Let C be a clause of S* labelling L and F a clause of S* 

labelling R. 

K 

Figure 7 

We "know that there is a clause F E INF((C,F}) falsified by K. This F can be obtained by resolution 

between C and F. With the proposition above, we can suppose that: 

Cj~ ~ ni>jS i for some j>--0 

Then F ~ ni>.jlNF(Si). Now, the fairness assumption ensures that r" is subsumed by some clause F' of 

S*. We derive a contradiction with the fact that K belongs to MCT(S*), as usual, by showing that K 

falsifies the clause F'  of S*. When K has only one successor, the proof is quite similar but uses 

paramodulation or superposition instead of resolution. 
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8.3. OTHER DELETION RULES. 

We give now other deletion rules that do not destroy completeness of the previous strategy, as soon as 

fairness is ensured: 

TAUTOLOGY DELETION 

A tautology is any clause which contains a subclause of the following type: A V ~A. The 

tautology deletion rule states that we can delete the tautologies. 

Completeness in presence of the tautology deletion role is trivial: since a tautology never labels a 

failure node, it is never needed to perform an inference step on such a clause. 

CLAUSAL SIMPLIFICATION 

I f  the unit literal L is in S, then we can replace any clause in S which contains a negated 

instance of L, by the same clause where this instance has been deleted. 

The "clausal_simplification rule" can be simulated by one resolution step followed by one subsumption 

step. Completeness is preserved when adding this deletion rule: as above, we prove that a minimal 

clause C of S* which labels a failure node can be chosen to be persisting. We have the same remark for 

the next role: 

FUNCTIONAL S U B S ~ I O N  

I ra  clause C in S contains the literal g[sJ=g[t], and an equation l=r b2 S verify la=s and ra=t, 

then C can be removed of S. 

9. Concluding Remarks 

Using the powerful tool of transfinite-semantic trees, we have been able to prove the completeness of a 

set of inference roles which extend the Knuth-Bendix completion procedure. The only i'estriction is that 

equations are oriented according to a complete simplification ordering. This is not a real drawback since 

most of the orderings that are used in the context of term-rewriting systems are of that type. The stra- 

tegy described above can be refined when we deal with Horn clauses. For instance we can restrict the 

paramodulation or superposition rules to be performed only into the maximal literals of any clause. The 

clauses can then be interpreted as conditional rewrite rules. This is detailed in (Kounalis Rusinowitch 

1988). It is also possible to obtain a complete unit slzategy, as in (Henschen Wos 1974, Paul 1985, 

Bachrnair et al.1987). We think that we should gain more efficiency by incorporating axioms like 
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associativity and commutativity in the unification algorithm (Plotkin 1972) and by extending the notion 

of critical pair criteria to resolution and paramodulation, (see, for instance, (Ktlchlin 1985)). 

Acknowledgements. The author is very grateful to Jean-Luc R6my, Leo Bachmair and Jieh Hsiang for 
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