
Electronic Notes in Theoretical Computer Science 50 No. 3 (2001) { Proc. GT-VMT 2001
URL: http://www.elsevier.nl/locate/entcs/volume50.html 7 pages

Application of Attribute NCE
Graph Grammars to Syntactic Editing

of Tabular Forms

Tomokazu ARITA a;1 Kiyonobu TOMIYAMA a;2

Kensei TSUCHIDA b;3 Takeo YAKU a;4

a Dept. Comput. Sci. and System Analysis, Nihon University

3{25{40, Sakurajosui, Setagaya, Tokyo, 156-8550, Japan

b Dept. Inf. and Comp. Sci., Toyo University

2100, Kujirai, Kawagoe, Saitama, 350{8585, Japan

Abstract

In this paper, we deal with editing tabular forms for program speci�cations based

on a particular graph grammar HNGG [2]. First, we formalize syntax-directed

editing methods by extending of the notion of the Cornell Program Synthesizer [8]

to attribute NCE graph grammars (cf. [1]). Next, we discuss the algorithms of the

editing methods.

Key words: Graph Grammars, Visual Programming, Software

Development, Syntax-Directed Editors

1 Introduction

Mechanical editing of tabular forms is one of the important issues in software

engineering methodology. The Cornell Program Synthesizer is well-known and

is often referred to as a structured and text-based editor which uses an at-

tribute grammar successfully [8]. Tabular forms are represented by several

di�erent models (e.g., Pane [6]). We assigned each item in the tabular form to

an attributed node. This assignment naturally represents the order of items

and location of items in the tabular form. Since the number of items in the

form is generally unbound and the order of items has some valid meaning, tab-

ular forms are denoted by a graph grammar [2]. Accordingly, the mechanical

1
Email: arita@cssa.chs.nihon-u.ac.jp

2
Email: tomiyama@cssa.chs.nihon-u.ac.jp

3
Email: kensei@eng.toyo.ac.jp

4
Email: yaku@cssa.chs.nihon-u.ac.jp

c2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82449678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

Version : 1.1
Original Release : 2000/06/10
Current Release : 2000/10/01
CR-Code :
Software Req. : gcc
Hardware Req. :

Program Name : hanoi
Subtitle :
Library Code : cs-2001-02
Author : K. Tomiyama
Approver :
Keywords : hanoi tower
Language : C
Operation :
Function :

Example :

HEAD

A1

Program Name

Subtitle

Library Code

Author

Approver

Keywords

Language

Operation

Function

Example

Version

Original Release

Current Release

CR-Code

Software Req.

Hardware Req.

ov

ov

ov

ov

ov

ov

ov

ov

lf

lf

lf

lf

lf

lf

in

in

in

Fig. 1. Tabular form in a Hiform document and its corresponding graph.

editing of tabular forms is supposed to be executed by some syntactic editing

methods.

In this paper, we consider a programming documentation, Hiform, as an

example of tabular forms. Hiform document is a collection of 17 types of

tabular forms and includes all items de�ned in the ISO6592 guideline [9],[2].

It should be noted that certain ISO6592 tabular forms are regarded as tabular

forms, since they have modular structures. Such tabular forms are represented

by graphs. Fig. 1 illustrates a Hiform form and its corresponding graph. This

graph is constructed as follows: (1) A node label of the graph shows the type

of an item of a tabular form. (2) An edge label shows relations between items.

`lf' denotes the meaning of `left of', `ov' denotes the meaning of `over', and

`in' denotes the meaning of `within'.

It is supposed that a mechanical processing of tabular forms can be realized

e�ectively by syntactic manipulation of graphs. In [2], the inner structure of

each form in Hiform is de�ned by an attribute NCE graph grammar. Hiform

forms are speci�ed by graphs that are generated its grammar.

The purpose of this paper is to extend Cornell Program Synthesizer mech-

anisms to graphs using the results reported in [1] and [2] and to formalize a

syntactic editing mechanism for graphs. Insertion in HNGG [3] is de�ned so

that this manipulation is validly executed by the conuence [7] of HNGG.

In Section 2, preliminary de�nitions are given. In Section 3, a formal

de�nition for editing mechanisms is given by using instance sequences [1].

And we also show the validity of our de�nition by using the conuence of

HNGG. Section 4 is devoted to our concluding remarks.

2 Preliminaries

2.1 edNCE Graph Grammars [7]

Let � be an alphabet of node labels and � be an alphabet of edge labels. A

graph over alphabets � and � is a 3-tuple H = (V;E; �), where V is a �nite

nonempty set of nodes, E � f(v; ; w) j v; w 2 V; v 6= w; 2 �g is a set of

edges, and � : V ! � is a node labeling function.

2

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

De�nition 2.1 An edNCE graph grammar is a 6-tupleG = (�;�;�;
; P; S),

where � is the alphabet of node labels, � � � is the alphabet of terminal

node labels, � is the alphabet of edge labels,
 � � is the alphabet of �nal

edge labels, P is the �nite set of productions, and S 2 � � � is the initial

nonterminal. A production is denoted by the form p : X ! (D;C), where

X 2 ���, D is a graph over � and �, and C � �� �� �� VD � fin; outg

is the connection relation. 2

2.2 Composition of Production Copies [1]

The composite representation of the production copies of an edNCE graph

grammar is a theoretical and practical method for representing the graph-

rewriting rules for embedding subgraphs of desired structures into a graph.

De�nition 2.2 [1] LetG = (�, �, �,
, P , S) be an edNCE graph grammar.

Let p1 : X1 ! (D1, C1) (D1 = (VD1
, ED1

, �D1
)) and p2 : X2 ! (D2, C2

) (D2 = (VD2
, ED2

, �D2
)) be production copies of G. If u 2 VD1

and X2 =

�D1
(u), and D1 and D2 are disjoint, then a composite production copy (with

a connection relation) p : X1 ! (D;C) is de�ned as follows: D is a graph as

VD = fVD1
-fugg [VD2

about nodes. C = f (�, � = , !, d) 2 C1 j ! 2 VD1
-

fug g [f (�, � = Æ, y, d) j 9 2 �, (�, � = , u, d) 2 C1, (�, = Æ, y, d) 2

C2 g The composite production copy p composed by p1 and p2, and denoted

by p1 Æ p2. 2

2.3 Conuence Property [7]

The conuence property guarantees that the result of a derivation shall not

depend on the order of the applications [7] of the production. Conuence is a

very important property because it guarantees the validity of the application

of the composite production copies. The conuence is also important when

developing eÆcient parsing algorithms.

De�nition 2.3 [7] An edNCE graph grammar G = (�; �; �;
; P; S) is

dynamically conuent if the following holds for every intermediate graph H

generated by G: if H)u1;p1 H1)u2;p2 H12 and H)u2;p2 H2)u1;p1 H21

(p1; p2 2 P) are derivations of G with u1; u2 2 VH and u1 6= u2, then H12 =

H21. 2

2.4 Attribute NCE Graph Grammars [2]

We review an attribute graph grammar for the mechanical drawing of tabular

forms. An attribute NCE graph grammar is given as follows.

De�nition 2.4 [2] An attribute NCE Graph Grammar is a 3-tuple AGG

=< G; Att; F > where G = (�;�;�;
; P; S) is a context-free edNCE graph

grammar, called an underlying graph grammar of AGG. Here Att is the set of

attributes of AGG, and F is the set of semantic rules of AGG. 2

3

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

x(1) = x(0)
y(1) = y(0)
x(2) = x(0)
y(2) = y(0)+height(1)
width(0)
 =max(width(1),width(2))
height(0)
 =height(1)+height(2)

[head]1

[body]2

in

ov

in

inner-
struct[]0

head
scalar[]

head
column[]0

1

head
column[]2

ov

lf

in

ov

ov

ov

in

lf
lf

x(1) = x(0)
y(1) = y(0)
x(2) = x(0)+width(1)
y(2) = y(0)
width(0)
 =width(1)+width(2)
height(0)
 =max(height(1), height(2))

P2 PH5Semantic Rule Semantic Rule

Fig. 2. Part of the productions of HNGG.

in

inner-
struct[]

[head]

[body]

ov

in

P2

Fig. 3. An example of applying a production P2.

2.5 HNGG [2] [3] [4]

We review an attribute NCE graph grammar for tabular forms. The grammar

is called a Hiform Nested tabular form Graph Grammar (HNGG). HNGG =

< GN ; AN ; FN > that generates modular tabular forms called Hiform form

where GN = (�N ;�N ;�N ;
N ; PN ; SN) is the underling edNCE graph gram-

mar. Each production has a semantic rule for drawing information. The

HNGG includes 280 productions and 1248 attribute rules. Fig. 2 illustrates a

part of the productions with attribute rules of HNGG. We write productions

like style of the edNCE graph grammar. Fig. 3 is an example of applying a

production P2. By applying a production P2, a node labeled \inner{struct" is

replaced to a graph of right hand side of P2.

3 Editing of Modular Tabular Forms

In this section, we present a formal de�nition for editing manipulation by

using production instances of HNGG, and we also show the validity of our

de�nition by using conuence of HNGG.

3.1 Production Instance

The editing manipulations are de�ned by production instance as follows.

De�nition 3.1 A production instance (\instance" for short) is a 3-tuple (!,

pi, Hpi), where (1) ! 2 VDi�1
is a node removed during the derivationDi�1)pi

Di, (2) pi : Xpi ! (Hpi; Cpi) 2 P is a production, and (3) Hpi is an embedded

graph isomorphic to Hpi during Di�1)pi Di.

We denote Di�1

!Hpi
)pi Di if Di is directly derived from Di�1 by applying

the instance (!; pi; Hpi). 2

4

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

G1

e

G2

F1

F2

(x1,p1,H1) ... (xn,pn,Hn)
iG1

(y1,q1,D1) ... (ym,qm,Dm)
iq

*

**

insertable ?
Yes

No

(x1,p1,H1) ... (y1,q1,D1)
... (ym,qm,Dm) ... (xn,pn,Hn)

*

**

Error

G F

q=q1 q2 ... qm

iG

X

X

Fig. 4. Flow of an insertion process.

If there is a production sequence p = (p1; � � � ; pn) and instance (!i; pi; Hpi)

for each production pi (1 � i � n), an instance sequence is a sequence of

((!1; p1; Hp1); � � � ; (!n; pn; Hpn)).

A derivation of an edNCE graph grammar is represented by a derivation

tree. However, a derivation sequence is convenient as a representation of a

derivation for a prosessing model. Therefore, we represent a derivation with

a production sequence.

3.2 Syntactic Insertion

In this section, we de�ne the syntactic insertion. This manipulation is based

on HNGG. Syntax-directed editing is de�ned by using instance sequences.

De�nition 3.2 For a derivation sequence D0

!1Hp1
)p1 � � �

!i�1Hpi�1
)pi�1 Di�1

!Hpi
)pi Di

!i+1Hpi+1
)pi+1 � � �

!nHpn
)pn Dn with instance (pj : Xpj ! (Hpj ; Cpj); 1 � j � n), we

assume that q is insertable (for pi) if there is an instance (!; q;Hq) (q : Xq !

(Hq; Cq) 2 PN) such that Di�1

!Hq

)q Q and if there is a derivation sequence

Di�1

!Hq

)q Q
!0Hpi
)pi D0

i

!i+1Hpi+1
)pi+1 � � �

!nHpn
)pn D0

n where !0 is a node in Q, a node

label of !0 is left hand side of pi. 2

De�nition 3.3 For a production q : Xq ! (Hq; Cq) 2 PN , which is insertable

for pi : Xpi ! (Hpi; Cpi) and
Sn

i=1Hpi \ Hq = �, an instance sequence S

is obtained by insertion of an instance (!; q;Hq) into an instance sequence

((!1; p1; Hp1), � � � , (!n; pn; Hpn))
def
, S = ((!1; p1; Hp1), � � �, (!i�1; pi�1; Hpi�1),

(!; q;Hq), (!; pi; Hpi), � � �, (!n; pn; Hpn)). The instance sequence S is given

5

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

as follows. (1) Trace the derivation sequence with instance Dn back to Di�1.

(2) Apply the instance (!; q;Hq) to Di�1, and obtain the resultant graph Q.

(3) Apply the instance sequence ((!0; pi; Hpi), (!i+1; pi+1; Hpi+1), � � �, (!n; pn;

Hpn)) to Q, and get the resultant graph D0

n. 2

Inserting some instances into an instance sequence brings a new item into

existence. That is, they correspond to a manipulation to insert a new item

into a permissible place in a Hiform document.

Remark 3.4 In the same manner as the editing by using the instance of a

production, we can further de�ne insertable by composite production copy. 2

De�nition 3.5 A graph H 0 is obtained by syntactic insertion of a graph A

at an edge x in a graph H, if the following conditions hold: (1) A composite

production copy q for graph A and edge x exists. (2) There exists an instance

sequence iq for q and an instance sequence iH for H. An instance sequence S

is obtained by insertion of iq into an instance sequence iH . (3) The graph H 0

is derived from instance sequence S. 2

Proposition 3.6 Let H be the graph obtained from G by the insertion of

graph a and graph b at edge x and edge y respectively in this order in HNGG.

Let H 0 be the graph obtained from G by the insertion of b and a at y and x

respectively in this order in HNGG. Then, H = H 0.

Proof. HNGG has a conuence property. Thus, the proposition is veri�ed.2

Proposition 3.7 Insertion in HNGG is executed in linear time.

Proof. An insert point of a production instance is found in linear time for

the length of an embedded production sequence. Let n be the number of

nodes in a target graph. In a derivation of our HNGG, any node in a target

graph is changing to a terminal node by at most �ve application. Therefore,

the maximum length of an instance sequence for the target graph is 5n. Since

HNGG is a precedence edNCE graph grammar [2], syntax analysis is executed

in linear time [5]. Attribute evaluation is also executed in linear time [2]. 2

An example of an insertion is given in Fig. 4. Here, we insert a form F2
into a form F1. Let G1 be a graph for F1, and let G2 be a graph for F2. Then,

a syntactic insertion of G2 at edge e in G1 is done as follows: (1) A composite

production copy q for G2 is obtained from e and G2. (2) An instance sequence

iq for q and an instance sequence iG1
existed. If q is insertable for p in iG1

, an

instance sequence iG is obtained by insertion of iq into an instance sequence

iG1
. (3) A graph G is generated from this instance sequence iG. G is a new

form which is obtained by inserting F2 into F1.

4 Conclusion

Spread sheets and software documents are used for software visualization

widely. Our results are a proposal of a theoretical model such visualization.

6

GT-VMT 2001 { T. Arita, K. Tomiyama, K. Tsuchida, and T. Yaku

We proposed an editing method, based on attribute NCE graph grammar of

tabular forms with a homogenous cell size. This method includes attribute

rules for mechanical drawing. It can exactly edit valid tabular forms de�ned

by edNCE graph grammar. A linear time editing algorithm with attribute

rules for primitive drawing exists.

These syntactic editing methods could be applied to syntactic manipula-

tion of spreadsheet languages. We are reconstructing attribute rules for more

sophisticated drawing. We are investigating other edit manipulations such as

a division manipulation, a combination manipulation and so on. Furthermore

we are now developing a tabular-form editor system.

Acknowledgement

We thanks Prof. K. Sugita for his valuable suggestions. We thank Mr. S.

Kanai for his advice in the course of preparing the manuscript. We also thank

Mr. S. Nakagawa and Mr. K. Ruise for their valuable discussions.

References

[1] Adachi, Y., K.Anzai, et al. Hierarchical Program Diagram Editor Based on

Attribute Graph Grammar, Proc. COMPSAC96 (1996), 205-213.

[2] Arita, T., K. Tomiyama, T. Yaku, Y. Miyadera, K. Sugita, K. Tsuchida,

Syntactic Processing of Diagrams by Graph Grammars, Proc. IFIP WCC ICS

2000 (2000), 145-151.

[3] Arita, T., K. Sugita, K. Tsuchida, T. Yaku, Syntactic Tabular Form Processing

by Precedence Attribute Graph Grammars, Proc. IASTED Applied Informatics

2001 (2001), 637-642.

[4] Arita, T., A Precedence Attribute NCE Graph Grammar for Hiform, (2000),

URL: http://www.hichart.org/ or http://www.cssa.chs.nihon-u.ac.jp/

~yaku/keyaki/archive/HC00-001

[5] Franck, Reinhold, A Class of Linearly Parsable Graph Grammars, Acta

Infomatica 10 (1978), 175-201.

[6] Pane, F. John, Brad A. Myers, Tabular and Textual Methods for Selecting

Objects from a Group, Proc. 2000 IEEE Symp. on Visual Language (2000),

157-164.

[7] Rozenberg, Grzegorz(Ed.), \Handbook of Graph Grammar and Computing by

Graph Transformation", World Scienti�c Publishing, (1997).

[8] Teitelbaum, Tim and Thomas Reps, The Cornell Program Synthesizer: A Syntax-

Directed Programming Environment, Comm. ACM, Vol. 24 (1981), 563-573.

[9] ISO 6592{1985, Guidelines for the Documentation of Computer{Based

Application Systems, (1985).

7

