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ABSTRACT Scale-invariant long-range correlations have been reported in fluctuations of time-series signals originating from
diverse processes such as heart beat dynamics, earthquakes, and stock market data. The common denominator of these
apparently different processes is a highly nonlinear dynamics with competing forces and distinct feedback species. We report for
the first time an experimental evidence for scaling behavior in NAD(P)H signal fluctuations in isolatedmitochondria and intact cells
isolated from the liver of a young (5-month-old) mouse. Time-series data were collected by two-photon imaging of mitochondrial
NAD(P)H fluorescence and signal fluctuations were quantitatively analyzed for statistical correlations by detrended fluctuation
analysis and spectral power analysis. Redox [NAD(P)H / NAD(P)1] fluctuations in isolated mitochondria and intact liver cells were
found to display nonrandom, long-range correlations. These correlations are interpreted as arising due to the regulatory dynamics
operative in Krebs’ cycle enzyme network and electron transport chain in the mitochondria. This findingmay provide a novel basis
for understanding similar regulatory networks that govern the nonequilibrium properties of living cells.
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Living cells are open systems that operate far from equi-

librium (1–5). Experimental studies reporting various man-

ifestations of nonlinear dynamics in clinical pathology have

revolutionized our perspectives on health and disease (6,7).

Despite this realization, a fundamental understanding of

these nonequilibrium processes at the level of a single cell is

still lacking. Demands of cellular homeostasis under such

nonequilibrium conditions require coordinated response of

many regulatory networks so as to maintain constant levels of

metabolites and cofactors. These regulatory networks com-

prise transcription factors and regulatory proteins, and form

the hub of the cellular decision-making process—under nor-

mal and stressed conditions. To understand the synergetic

roles of mechanisms that govern regulatory networks at the

single cell level, it is important to develop innovative strat-

egies for monitoring specific in vivo responses in real time.

To this end, we present a novel application of a statistical

correlation analysis tool to gain insight into the enzymekinetics

of a classical mitochondrial enzyme network, the Krebs’ cycle.

The rationale for the choice of this system is based on two

observations: i), generation ofATPbymitochondria occurs in a

highly controlled manner (supply-on-demand) determined by

the cytosolic ADP levels and mitochondrial substrate avail-

ability and ii), regulation of key enzymes in the Krebs’ cycle is

governed by substrate availability and product inhibition. The

mitochondrial electron transport chain couples these two

processes at the biochemical level by feeding the output of

the Krebs’ cycle (NADH and FADH2) to generate ATP and by

utilizing the ATP levels to activate/inhibit the Krebs’ cycle. As

can be seen, this is a classical situation of nonlinear feedback

regulation where the output information (in this case, ADP/

ATP ratio) is fed as the input to regulate the main process of

electron transport mediated by the Krebs’ cycle enzymes.

Having recognized the existence of a nonlinear feedback

regulation mechanism operative in mitochondrial Krebs’

cycle, we then asked a simple question: what is the exper-

imental manifestation of such a regulatory network ? It is

known that complex I of the electron transport chain oxidizes

NADH generated by the Krebs’ cycle thereby initiating the

electron flow. Under normal circumstances, NADH level

determines both (ADP/ATP) ratio as well as the activity of

the Krebs’ cycle enzymes (product inhibition). We therefore

reasoned that monitoring statistical correlations in redox

(NADH/NAD1) fluctuations will be a promising experi-

mental approach for understanding the regulatory dynamics

of the Krebs’ cycle enzymes. We measured NAD(P)H fluo-

rescence in living primary hepatocytes (liver cells) isolated

from young (5-month-old) mouse as well as in intact mito-

chondria isolated from these hepatocytes (8,9). The latter

allowed us to investigate the effects of eliminating nonmito-

chondrial NAD(P)H contributions in the observed signal

fluctuations. Spatially resolved fluorescence images were

collected by a homebuilt two-photon imaging microscope

(see Supplementary Material). Steady-state NAD(P)H fluo-

rescence was collected in XY surface scan mode (5123 512

pixels; ;5 s/scan; 730 nm excitation; 440/90 emission) and

NAD(P)H fluctuations were measured in XT line scan mode

(time-series data; 512 3 T; ;30 ms/scan). Fig. 1, a and b,
show representative steady-state fluorescence images of

individual mitochondria and intact liver cells. In both the

cases, NAD(P)H signals were significantly above the in-

strument background. The representative time-series data (c)
show that the NADH signal fluctuate around the mean value.
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The inset shows the enlarged view of the fluctuations in

a shorter time range. We sought to look for underlying

correlations in these fluorescence fluctuations, by a novel

application of detrended fluctuation analysis (DFA), origi-

nally developed by Peng et al. (10). This algorithm calculates

root mean square fluctuations F(n) as a function of scale

(window) sizes (n) from the original time series to yield a

scaling function F(n) ¼ na (Supplementary Material). The

scaling exponent a characterizes nonrandom correlations (a
, 0.5 for anticorrelations and 0.5 , a , 1.5 for positive

correlations) or uncorrelated randomness (white noise limit

a¼ 0.5 or brown noise limit a¼ 1.5) in the signal. A special

case is when a ¼ 1, which corresponds to scale-free power-

law correlations. Fig. 1 d shows representative DFA plots

(log-log scale, F vs. n) obtained after analysis of the original

time-series NAD(P)H data from isolated mitochondria. As

can be seen, there is a concentration-dependent increase in

positive correlations (a ; 0.62, 0.66, and 1.09 correspond-

ing to different mitochondrial concentrations, expressed in

terms of protein concentrations 1.86, 3.72, and 37.2 mg/ml)

suggesting that viable mitochondria display nonrandom,

non-Gaussian correlations. Also shown for comparison is the

DFA plot calculated for the buffer medium (no mitochon-

dria). As expected, we obtained white noise value of a ;
0.56. This further confirms that the scaling exponents

obtained for isolated mitochondria indeed correspond to

the underlying correlations and are not affected by instru-

mental or other artifacts. Fig. 1 e shows DFA plots obtained

in intact hepatocytes. For shorter scale sizes (0.75, log n,
1.75) the scaling exponent a ; 0.5 resembling white noise

also is evident in 100 mM NADH solution. However, for

larger scales (1.75 , log n ,3.25), there is a significant

deviation of a, which assumes a value a ; 1 (power law

correlations). Conventional fast Fourier transform methods

showed similar positive correlations (Supplementary Mate-

rial). Also plotted in Fig. 1 e are the scaling functions ob-

tained from time-series data in hepatocytes while they are

metabolizing the mitochondrial substrate (5 mM pyruvate/

glutamate) or when electron transport chain complex I

activity is inhibited by 10 mM rotenone. The fact that the

scaling exponents in these two cases are similar to the one

observed in control cells confirms that there is a tight

regulation in mitochondrial metabolism even during acute

metabolic perturbations. Digman et al. recently analyzed

images obtained in scanning fluorescence correlation spec-

troscopy experiments and interpreted the observed spatial

correlations in terms of molecular diffusion processes in

various timescales (11). Our results are consistent with

similar diffusion mechanisms in isolated mitochondria sus-

pended in buffer medium and the dependence of scaling

FIGURE 1 (a–b) Steady-state multiphoton NAD(P)H images of isolated mitochondria and living hepatocytes; (c) representative

NAD(P)H intensity fluctuations plotted from the time-series data; (d) log-log plot of fluctuations (F) and scale size (n) obtained after

detrended fluctuations analysis of time-series data in isolated mitochondria for different protein concentrations as described in the

text; (e) scaling functions for hepatocytes NAD(P)H time series; see text for details.
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exponent on mitochondrial density (protein concentration)

may be reasoned as due to diffusion-limited mitochondrial

aggregations. However, we also observed in the case of

intact hepatocytes that there is a crossover in scaling ex-

ponent from ‘‘uncorrelated’’ randomness (a ; 0.5) to per-

sistent positive correlations (a ; 1.0) whereas there is no

such crossover observed in the case of isolated mitochondria.

Although this observation needs more detailed analysis, we

speculate that this difference may arise from additional

sources of time correlations stemming from regulatory dy-

namics of enzyme network in intact cells. Because the cellu-

lar redox poise has both mitochondrial and nonmitochondrial

influences, intact cells are anticipated to display more com-

plex dynamics than isolated mitochondria. It is possible that

in intact cells, there exists a hierarchial organization of redox

regulation that may modulate mitochondrial redox status in

an interdependent manner. Such a scheme might be abolished

or reduced when mitochondria are isolated from the cells.

Considering the fact that the equilibrium constants of

NAD1-linked dehydrogenases in liver tissues are ;8 3
10�2 mM (12), it is conceivable that intact cells possess more

coupled activity of these dehydrogenases than isolated

mitochondria. Similar crossover in scaling exponent a has

earlier been reported in heart beat dynamics where it was

attributed to multiscale fractality (1,13). Regardless, the

scaling behavior observed in mitochondrial redox fluctua-

tions provide a quantitative basis for understanding meta-

bolic networks in living cells.

Recent studies indicate the critical roles that mitochondria

play in a variety of metabolic syndromes including cancer

and in aging process (14). It will be intriguing to see how our

scaling analysis approach can be exploited to offer insights

into the modifications of regulatory dynamics during aging

and other disease processes. A logical next step will be to

explore the modifications of scaling behavior by selectively

knocking out the genes of regulatory enzymes (for example,

by siRNA interference) to determine the specific role every

member plays in the overall adaptive performance of the

regulatory network.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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