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Abstract

This paper deals with the numerical properties of Runge–Kutta methods for the solution of u′(t) = au(t) + a0u([t +
1
2 ]). It

is shown that the Runge–Kutta method can preserve the convergence order. The necessary and sufficient conditions under which
the analytical stability region is contained in the numerical stability region are obtained. It is interesting that the θ -methods with
0 6 θ < 1

2 are asymptotically stable. Some numerical experiments are given.
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1. Introduction

In this paper we consider the following differential equation with piecewise continuous argument (EPCA):

u′(t) = au(t) + bu
([

t +
1
2

])
, t ≥ 0,

u(0) = u0,

(1.1)

where a, b, u0 are real constants and [·] denotes the greatest integer function. Since the argument deviation for system
(1.1), namely t − [t +

1
2 ], is negative in [n +

1
2 , n + 1) and positive in [n, n +

1
2 ), (1.1) is said to be of alternately

advanced and retarded type. The general form of this type equation is

u′(t) = f (t, u(t), u(α(t))), t ≥ 0,

u(0) = u0,
(1.2)

where the arguments α(t) has intervals of constancy and t − α(t) changes the sign in many times.
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These equations are related to impulse and loaded equations and share the properties of certain models of vertically
transmitted diseases [6]. The study of EPCA of mixed type is initiated by Aftabizadeh and Wiener [1]. They
observe that the change of sign in the argument deviation lead not only to interesting periodic properties but also
to complications in the asymptotic and oscillatory behaviour of solutions. Oscillatory, stability and periodic properties
of (1.1) have been investigated in [7,10,14,15].

If we consider the quantizer effects of a digital feedback control system, the mathematical models are the form of
(1.1) (see [9]). Let

ż(t) = Dz(t) + Ex(t), v = FT z, (1.3)

and a linear digital controller of the form

xk = Axk−1 + Bv(kT ), (1.4)

where D ∈ Rn1×n1 , E ∈ Rn2×n2 and F ∈ Rn1 while A ∈ Rn2×n2 and B ∈ Rn2 . Also k = 0, 1, 2, . . . , T > 0 denotes
the sampling period and

x(t) = xk over the time interval
(

k −
1
2

)
T 6 t <

(
k +

1
2

)
T .

The properties of the analytical solutions have been investigated in the book [16].

Definition 1 ([16]). A function u : [0, ∞) → R is a solution of (1.1) if the following conditions hold:

(1) u(t) is continuous on [0, ∞);
(2) The derivative u′(t) exists at each point t ∈ [0, ∞), with the possible exception of the points t = n +

1
2 ,

n = 0, 1, 2, . . . , where one-sided derivatives exist;
(3) (1.1) is satisfied on [0, 1

2 ) and each interval [n −
1
2 , n +

1
2 ) for n = 1, 2, . . . .

Theorem 2 ([16]). If b 6=
a

e
a
2 −1

, then (1.1) has on [0, ∞) a unique solution

u(t) = m(T (t))λ[t+ 1
2 ]u0, (1.5)

where

m(t) = eat
+ (eat

− 1)a−1b, T (t) = t −

[
t +

1
2

]
, λ =

m( 1
2 )

m(− 1
2 )

.

The solution u(t) is asymptotically stable (u(t) → 0 as t → ∞) for any given u0, if and only if |λ| < 1, i.e.,

−
a(ea

+ 1)

(e
a
2 − 1)2

< b < −a, for a > 0,

b < −a or b > −
a(ea

+ 1)

(e
a
2 − 1)2

, for a < 0,

b < 0, for a = 0.

(1.6)

The convergence and the stability of numerical solutions for the linear EPCA of the retarded type and the advanced
type have been investigated in [8,11,12], but the authors are not aware of any published results on the numerical
solutions of (1.1).

In this paper we investigate the numerical properties of Runge–Kutta methods for the solution of (1.1) and show
the numerical solution is of order p for the pth-order Runge–Kutta method. We also give the necessary and sufficient
conditions under which the analytical stability region is contained in the numerical stability region. It is interesting
that the analytical stability region is contained in the numerical stability region for the even stage Radau IA and IIA
methods and the θ -methods with 0 6 θ < 1

2 , which is different from the results for the EPCA of the retarded type or
the advanced type [8,11,12]. Some numerical experiments are given.
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2. Runge–Kutta methods

In this section we consider the adaptation of the Runge–Kutta methods (A, B, C) given by the Butcher tabular
C A

BT
where the matrix A = (ai j )µ×µ and the vectors B = (B1, B2, . . . , Bµ)T and C = (C1, C2, . . . , Cµ)T. Let

h =
1

2m be a given stepsize with integer m > 1 and the gridpoints tn be defined by tn = nh (n = 0, 1, 2, . . .). For
the Runge–Kutta methods we always assume that B1 + B2 + · · · + Bν = 1 and 0 6 C1 6 C2 6 · · · 6 Cν 6 1.
The adaptation of the Runge–Kutta methods to (1.2) leads to a numerical process of the following type, generating
approximations u1, u2, u3, . . . to the exact solution u(t) of (1.2) at the gridpoints tn (n = 1, 2, 3, . . .)

un+1 = un + h
ν∑

i=1

Bi f (tn + Ci h, y(n)
i , z(n)

i ), (2.1)

where y(n)
1 , y(n)

2 , . . . , y(n)
ν satisfy

y(n)
i = un + h

ν∑
j=1

ai j f (tn + C j h, y(n)
j , z(n)

j ), (2.2)

and the argument z(n)
i denotes the given approximation to u(α(tn + Ci h)), i = 1, 2, . . . , ν, n = 0, 1, 2, . . . .

We are interested in the application of (2.1) and (2.2) to (1.1). The application of the process (2.1) and (2.2), in the
case of (1.1), yields

un+1 = un + h
ν∑

i=1

Bi (ay(n)
i + bz(n)

i ),

y(n)
i = un + h

ν∑
j=1

ai j (ay(n)
j + bz(n)

j ),

(2.3)

where z(n)
i is the approximation to u([tn + Ci h +

1
2 ]) (n = 0, 1, . . .). If we denote L(k) = {0, 1, . . . , m − 1} for k = 0

and L(k) = {−m, −m + 1, . . . , m − 1} for k > 1, n = 2km + l, then z(2km+l)
i can be defined as u2km according to

Definition 1 (i = 1, 2, . . . , ν, l ∈ L(k)). Let Y (n)
= (y(n)

1 , y(n)
2 , . . . , y(n)

ν )T, then (2.3) reduces to

u2km+l+1 = u2km+l + haBTY (2km+l)
+ hbu2km,

Y (2km+l)
= u2km+le + ha AY (2km+l)

+ hbAeu2km,
(2.4)

where e = (1, 1, . . . , 1)T.

3. Convergence

Now we assume a 6= 0. From (2.4) we can see that if I − x A is invertible, then

u2km+l+1 = R(x)u2km+l +
b
a

(R(x) − 1)u2km, (3.1)

where x = ha, R(x) = 1 + x BT(I − x A)−1e is the stability function of the method and l ∈ L(k).
Assume that R(x) 6= 0 and b 6=

a
Rm (x)−1 . Then it follows from (3.1) that

u2km+l = m̃(l)u2km, (3.2)

and

u2(k+1)m = λ̃u2km, (3.3)
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where λ̃ =
m̃(m)

m̃(−m)
and

m̃(l) =

(
Rl(x) +

b
a

(Rl(x) − 1)

)
, −m 6 l 6 m.

The process (2.4) can be represented as

ul = m̃(l)u0, l ∈ L(0),

u2km = λ̃u2(k−1)m, k > 1,

u2km+l = m̃(l)u2km, l ∈ L(k).

(3.4)

Lemma 3. Assume that the Runge–Kutta method is of order p. Then there exist constants K and h0 such that for
h =

1
2m < h0

max
−m6l6m

∣∣∣∣m̃(l) − m
(

l
2m

)∣∣∣∣ 6 K h p. (3.5)

What is more, if u2km = u(k), then

|u2(k+1)m − u(k + 1)| = O(h p). (3.6)

Proof. Since the method is of order p, there exist constants K1 and δ1 > 0 such that for |x | < δ1

|R(x) − ex
| 6 K1|x |

p+1.

Therefore there exist constant K and δ > 0 such that for |x | < δ

max
−m6l6m

|Rl(x) − elx
| 6 K |x |

p.

It is easily seen that

λ̃ =
m̃(m)

m̃(−m)
= λ + O(h p),

which implies from (1.5) and (3.4) that (3.6) is true. �

Theorem 4. Assume that a 6= 0, the Runge–Kutta method is of order p and un , n = 0, 1, . . . , 2m, is the numerical
solution on the interval [0, 1]. Then there exist constants c1 > 0 and h1 > 0 such that for all h < h1 and tn ∈ [0, 1]

|un − u(tn)| 6 c1h p. (3.7)

Proof. From (1.5) and (3.4) and Lemma 3, we can see that if tn ∈ [0, 1
2 ) then

|un − u(tn)| 6 K h p, for h <
δ

|a|
,

where K and δ are given by Lemma 3. Specially, we have |u2m − u(1)| 6 K h p. Therefore there exist constant K ′ and
δ′ > 0 such that for tn ∈ [

1
2 , 1]

|un − u(tn)| =

∣∣∣∣m̃(l)u2m − m
(

l
2m

)
u(1)

∣∣∣∣ 6 K ′h p, for h <
δ′

|a|
.

Hence (3.8) holds for c1 = max{K , K ′
} and h1 = min{

δ
|a|

, δ′

|a|
}.

If a = 0, then from (1.1) and (2.4) we have un = u(tn) for all tn > 0. �
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Theorem 5. Assume that the Runge–Kutta method is of order p. Then the convergence of the numerical solution un
approximating the analytic solution u(t) is of order p, namely, for any integer k > 0, there exist constants ck > 0 and
hk > 0 such that for all h < hk

max
06tn6k

|un − u(tn)| 6 ckh p. (3.8)

4. Numerical stability

Definition 6. Process (2.1) for (1.1) is called asymptotically stable at (a, b) if and only if there exists a constant
number M such that for all h =

1
2m , m > M and any given u0, relation (3.4) defines un that satisfies un → 0 for

n → ∞.

Definition 7. The set of all points (a, b) at which the process (2.1) for (1.1) is asymptotically stable is called the
asymptotical stability region denoted by S.

For any given Runge–Kutta method we assume that δ1 < 0 < δ2 are such that

1 < R(x) < ∞ for 0 < x < δ2,

0 < R(x) < 1 for δ1 < x < 0,
(4.1)

which implies

0 <
R(x) − 1

x
< ∞ for δ1 < x < δ2. (4.2)

Lemma 8. For any given Runge–Kutta method, if (4.1) holds, then there exists a constant number N > 0 independent
of k and l such that

|u2km+l | 6 N |u2km | for all k > 0 and l ∈ L(k). (4.3)

Proof. From (4.1), we can obtain that there is an N > 0 such that

|m̃(l)| 6 N for all k > 0 and l ∈ L(k),

which implies from (3.2) that the result is true. �

Corollary 9. un → 0 as n → ∞ if and only if u2km → 0 as k → ∞.

It is well known by (3.4) that u2km → 0 as k → ∞ if and only if

|λ̃| < 1, (4.4)

which is in view of (4.1) equivalent to

−
a(R2m(x) + 1)

(Rm(x) − 1)2 < b < −a, for a > 0,

b < −a or b > −
a(R2m(x) + 1)

(Rm(x) − 1)2 , for a < 0,

b < 0, for a = 0.

(4.5)

In this section we will discuss the stability of the Runge–Kutta methods. We introduce the set H consisting of
all points (a, b) ∈ R2 satisfying (1.6). In the following we will investigate which conditions lead to H ⊆ S. For
convenience, we divide the region H into three parts:

H0 = {(a, b) ∈ H : a = 0} ,

H1 = {(a, b) ∈ H\H0 : a < 0} ,

H2 = {(a, b) ∈ H\H0 : a > 0} ,
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and in the similar way we denote

S0 = {(a, b) ∈ S : a = 0} ,

S1 = {(a, b) ∈ S\S0 : a < 0} ,

S2 = {(a, b) ∈ S\S0 : a > 0} .

It is easy to see that H = H0 ∪ H1 ∪ H2, S = S0 ∪ S1 ∪ S2 and

Hi ∩ H j = ∅, Si ∩ S j = ∅, Hi ∩ S j = ∅, i 6= j, i, j = 0, 1, 2.

Therefore we can conclude that H ⊆ S is equivalent to Hi ⊆ Si , i = 0, 1, 2.

4.1. The padé approximation to the exponential function

In this subsection, we will investigate the stability of Runge–Kutta method with the stability function which is
given by the (r, s)-Padé approximation to ex .

The following lemmas will be useful to determine the stability conditions:

Lemma 10 ([2–4,13]). The (r, s)-Padé approximation to ez is given by

R(z) =
Pr (z)
Qs(z)

(4.6)

where

Pr (z) = 1 +
r

r + s
z +

r(r − 1)

(r + s)(r + s − 1)

z2

2 !
+ · · · +

r ! s !

(r + s) !

zr

r !
,

Qs(z) = 1 −
s

r + s
z +

s(s − 1)

(r + s)(r + s − 1)

z2

2 !
+ · · · + (−1)s s ! r !

(r + s) !

zs

s !
,

with error

ez
− R(z) = (−1)s r ! s !

(r + s) ! (r + s + 1) !
zr+s+1

+ O(zr+s+2). (4.7)

It is the unique rational approximation to ez of order r + s, such that the degrees of numerator and denominator are
r and s, respectively.

Following [2,4,5,13], we define the order star

D = {z ∈ C : |R(z)| > |ez
|}.

Lemma 11 ([2,4,5,13]). If the Runge–Kutta method is of order p, then for z → 0, D behaves like a star with p + 1
sectors of equal width π

p+1 , separated by p + 1 similar white sectors of the complement of D, each of the same width.

Lemma 12 ([2,4,5,13]). If R(z) is the (r, s)-Padé approximation to ez , then

(1) there are s star sectors in the right-half plane, each containing a pole of R(z);
(2) there are r white sectors in the left-half plane, each containing a zero of R(z);
(3) all sectors are symmetrical with respect to the real axis.

Corollary 13. Suppose R(z) is the (r, s)-Padé approximation to ez . Then R(x) 6 ex for all x > 0 if and only if s is
even, and there exists a δ > 0 such that 0 < R(x) 6 ex for −δ < x < 0 if and only if r is odd.

Lemma 14. Let f (x) =
x2

+1
(x−1)2 . Then f (x) is increasing on [0, 1) and decreasing on (1, ∞).

Theorem 15. Suppose that the stability function R(x) of the Runge–Kutta method is given by the (r, s)-Padé
approximation to ex . Then H1 ⊆ S1 if and only if r is odd and H2 ⊆ S2 if and only if s is even.
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Table 1
The higher order Runge–Kutta methods

Gauss–Legendre Radau IA, IIA Lobatto IIIA, IIIB Lobatto IIIC

(r, s) (ν, ν) (ν − 1, ν) (ν − 1, ν − 1) (ν − 2, ν)

H1 ⊆ S1 ν is odd ν is even ν is even ν is odd
H2 ⊆ S2 ν is even ν is even ν is odd ν is even

Proof. In view of (1.6), (4.5) and (4.1), we know that H1 ⊆ S1 if and only if

−
a(R2m(x) + 1)

(Rm(x) − 1)2 6 −
a(ea

+ 1)

(e
a
2 − 1)2

for m > M, (4.8)

which from Lemma 14 is equivalent to

0 < R(x) 6 ex .

Similarly H2 ⊆ S2 if and only if

−
a(R2m(x) + 1)

(Rm(x) − 1)2 6 −
a(ea

+ 1)

(e
a
2 − 1)2

for m > M, (4.9)

which from Lemma 14 is equivalent to

1 < R(x) 6 ex .

As a consequence of Corollary 13, the proof is complete. �

Theorem 16. For all Runge–Kutta methods, we have H0 = S0.

Remark 17. If we define

M =


a

2δ2
, a > 0,

a
2δ1

, a < 0,

then from the above discussion, we have I − x A is invertible for m > M . And in view of (4.4), it is easy to see
1 −

b
a (R(x)m

− 1) 6= 0 in H1 and H2. Therefore, the process (3.4) is well defined for m > M .

Remark 18. Assume R(x) is given by the (r, s)-Padé approximation to ex , then we have

(1) if r is odd, then δ1 > −∞ is the zero of R(z);
(2) if s is even and s 6 r , then δ2 = +∞, in particular δ2 = +∞ for the ν-stage explicit Runge–Kutta method of

order p with p = ν;
(3) if s is even and s > r , then δ2 < +∞ is the smallest positive zero of the function R(x) − 1.

Remark 19. For the A-stable higher order Runge–Kutta methods, it is easy to see from Theorem 15 (see Table 1):

(1) For the ν-stage Radau IA and IIA methods, H ⊆ S if and only if ν is even;
(2) For the ν-stage Lobatto IIIA and IIIB methods, H1 ⊆ S1 if and only if ν is even and H2 ⊆ S2 if and only if ν is

odd;
(3) For the ν-stage Gauss–Legendre and Lobatto IIIC methods, H1 ⊆ S1 if and only if ν is odd and H2 ⊆ S2 if and

only if ν is even.
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4.2. The θ -methods

Lemma 20. Assume that φ(x) : R → R is defined by φ(x) =
1
x −

1
ex −1 . Then φ(x) is a monotone decreasing function

of x with φ(+∞) = 0, φ(0) =
1
2 and φ(−∞) = 1.

Theorem 21. For the one-leg θ -methods, H1 ⊆ S1 if and only if

0 6 θ 6
1
2
, for

1
θ − 1

< x < 0,

and H2 ⊆ S2 if and only if

0 6 θ <
1
2
, for 0 < x 6 φ−1(θ).

Proof. For the one-leg θ -methods, we have

R(x) =
1 + (1 − θ)x

1 − θx
, ex

− R(x) =
(ex

− 1)x
1 − θx

(φ(x) − θ).

Therefore δ1 =
1

θ−1 and δ2 = ∞. Similarly to the proof of Theorem 15, we can obtain that H1 ⊆ S1 if and only if
φ(x) > θ , which from Lemma 20 is equivalent to θ 6 φ(0), i.e. 0 6 θ 6 1

2 .
From the proof of Theorem 15, we can obtain that H2 ⊆ S2 if and only if φ(x) > θ and xθ < 1. From Lemma 20

and φ(x) < 1
x , we can obtain that H2 ⊆ S2 if and only if

0 6 θ <
1
2
, for 0 < x 6 φ−1(θ).

The proof is complete. �

Remark 22. Applying the one-leg θ -method and the linear θ -method to the Eq. (1.1), we obtain the same recurrence
relation. Hence the stability function of the two θ -methods are the same. Therefore Theorem 21 is also valid for the
linear θ -methods.

Remark 23. For the alternately advanced and retarded type, the stability condition of the θ -methods for a < 0 given
by Theorem 21 is different from the stability conditions for the linear EPCA of the retarded type or the advanced type,
which is 1

2 < θ 6 1 for a < 0 and a + a0 < 0 (see [8,11,12]).

5. Numerical experiments

In this section we give some examples to illustrate the conclusions in the paper.
Consider the following problems:

u′(t) = u(t) − 2u
([

t +
1
2

])
, u(0) = 1. (5.1)

We shall use several methods listed in Table 2 with the stepsize h =
1

2m to get the numerical solution at t = 10,
where the true solutions are u(10) ≈ 1.036440451448093E–6. In Table 2, we have listed the absolute errors (AE) and
relative errors (RE) at t = 10 and the Ratio of the errors of the case m = 50 over that of m = 100. We can see from
Table 2 that the methods preserve their order of convergence.

In Fig. 1 we draw the numerical solutions of these methods with m = 20. It is easy to see that the numerical
solutions are asymptotically stable for these methods.

Next we consider the application of the one-leg θ -method with m = 10 to the following equation:

u′(t) = −u(t) + 9u
([

t +
1
2

])
, u(0) = 1. (5.2)

In Fig. 2(a) θ = 0 and in Fig. 2(b) θ = 1. We can see from Fig. 2 that yn → 0 as n → ∞ for θ = 0 and yn → ∞

as n → ∞ for θ = 1, which show that the stability condition of the one-leg θ -method for a < 0 is different from the
results in the papers [8,11,12].
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Table 2
Problem (5.1)

3-Lobato IIIA 2-Radau IIA θ = 0.5
AE RE AE RE AE RE

m = 2 1.4474E−10 1.3965E−4 6.2100E−9 5.9917E−3 1.3155E−7 1.2693E−1
m = 3 2.8531E−11 2.7528E−5 1.7917E−9 1.7287E−3 6.0149E−8 5.8034E−2
m = 5 3.6936E−12 3.5638E−6 3.7946E−10 3.6612E−4 2.1969E−8 2.1197E−2
m = 10 2.3075E−13 2.2264E−7 4.6772E−11 4.5127E−5 5.5259E−9 5.3316E−3
m = 20 1.4420E−14 1.3913E−8 5.8067E−12 5.6026E−6 1.3836E−9 1.3349E−3
m = 50 3.6897E−16 3.5600E−10 3.7013E−13 3.5712E−7 2.2147E−10 2.1368E−4
m = 100 2.2864E−17 2.2060E−11 4.6205E−14 4.4580E−8 5.5370E−11 5.3423E−5
Ratio 16.138 16.138 8.0108 8.0108 3.9998 3.9998

(a) 3-Lobato IIIA. (b) 2-Radau IIA.

(c) The one-leg θ -method with θ = 0.5. (d) The one-leg θ -method with θ = 0.

Fig. 1. The numerical solution for (5.1).

(a) θ = 0. (b) θ = 1.

Fig. 2. The numerical solution of one-leg θ -method for (5.2).
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