Symposium: Molecular Self-Assembly - from in Vitro to Cellular Systems

2248-Symp
Symmetry-Based Design and Structure of Self-Assembling Protein Cages and Nanomaterials
Yen-Ting Lai1, Neil P. King2, William Sheffler2, Dan E. McNamara2, Jacob D. Bale1, David Baker2, Todd O. Yeates1
1Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA, 2Department of Biochemistry, University of Washington, Seattle, WA, USA.

Nature is replete with self-assembling molecular structures having diverse cellular functions. The largest and most sophisticated types are built from many copies of one protein molecule (or a few distinct protein molecules) arranged following principles of symmetry. Well-studied viral capsids and lesser-known bacterial microcompartments provide examples of natural closed shell architectures. A long-standing engineering goal has been to design novel protein molecules to self-assemble into geometrically specific structures similar to the extraordinary structures evolved in Nature. Practical routes to this goal have been developed by using ideas in symmetry to articulate the minimum design requirements for achieving various types of symmetric architectures, including cages, extended two-dimensional layers, and three-dimensional crystalline materials. The key requirement is generally that two distinct self-assembling interfaces have to be built into the designed protein molecule, following specific geometric specifications. Recent experiments have demonstrated success using two alternate strategies, one based on fusing together two simple oligomers (e.g., a dimer and a trimer) in a geometrically specific orientation, and one based on designing one new interface into a natural oligomer (which already bears one interface). The success of these strategies has been proven by determining crystal structures of several giant, self-assembling protein cages (100-200 Å in diameter), created by design. The ability to create sophisticated supramolecular structures from designed protein subunits opens the way to broad applications in synthetic biology. Design principles and strategies will be discussed, along with current successes.

2249-Symp
Sequestered: Molecular Physiology of Bacterial Microcompartments
David Savage
University of California, Berkeley, Berkeley, CA, USA.

Complex spatial organization is a hallmark of the eukaryotic cell. More recently, it has been shown that prokaryotes possess a similar, yet unique, degree of organization. Striking examples of this include complexes such as bacterial microcompartments and encapsulins, which use protein shells to compartmentalize metabolic function in a manner analogous to classic lipid-based organelles. Although characterized structurally, there is a lack of understanding how microcompartments and encapsulins assemble, carry out their function, and are degraded in the context of a living cell. Here, I will discuss our recent work investigating these themes using the cyanobacterial carboxysome and thermophilic encapsulin as model systems.

2250-Symp
Leveraging Cell-To-Cell Variability to Understand Signal Transduction Networks
Suzanne Gaudet, Robin E.C. Lee
Cancer Biology/Genetics, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA, USA.

Secreted ligands such as tumor necrosis factor (TNF) regulate cell behavior by triggering series of intracellular signaling events. One striking aspect of this process is that cell-to-cell variability in the response to many ligands is present, and sometimes qualitative, cell-to-cell variability. We are leveraging the cell-to-cell variability in the response of cancer cells to TNF to better understand the system properties of the regulation of transcription by NF-κB.

In response to TNF, intracellular signals promote relocation of NF-κB transcription factors from the cytoplasm to the nucleus where they promote transcription of inflammatory and stress-responsive genes. Because dysregulation of NF-κB is associated with chronic inflammatory diseases, autoimmunity, and cancer, one might expect the nuclear abundance of NF-κB to be tightly regulated. Instead, the amount of nuclear NF-κB varies considerably from cell to cell, even in the absence of stimulus. To resolve this paradox and determine how transcription-inducing signals are encoded, we quantified single-cell NF-κB translocation dynamics and transcriptional responses in the same cells.

We found that TNF-induced transcription correlates best with fold-change in nuclear NF-κB, not absolute nuclear NF-κB abundance. This fold-change detection property suggests that the system encodes memory of its pre-ligand state. To complement our experimental approaches we use computational modeling and have found that an incoherent feed-forward loop, from competition for binding to κB motifs, can provide the required memory. A model with competition recapitulates the distinct patterns of transcription we observed experimentally for different NF-κB-dependent genes. Fold-change detection buffers against stochastic variation in signaling molecules and explains how cells tolerate variability in NF-κB abundance and localisation. Overall, our approaches provide a framework for understanding how transcriptional networks interpret and act on dynamical signals in ligand-induced cellular responses.

Symposium: Applications of Quantum Mechanics to Biophysical Problems

2252-Symp
QM/MM Methods: Recent Developments and Application to Membrane Proteins and Molecular Motors
Qiang Cui, Ph.D.
Chemistry, Univ. of Wisc., Madison, Madison, WI, USA.

I’ll briefly discuss recent developments of QM/MM methods in our lab, with an emphasis on methods that allow an efficient sampling of at least local motions coupled to the biochemical process of interest. Next, I’ll discuss the application of these methods to address specific mechanistic questions in proton pumps and biomolecular motors. The applications highlight that calibrated QM/MM methods are valuable because they provide not only energetic/kinetic information for the relevant biochemical driving forces (e.g., ATP hydrolysis) in these biomolecular machines but also spectroscopic observables that can be compared directly to experiments. Another feature that emerges from these applications is that changing hydration level of internal protein cavities may play an important role in modulating the proton affinity of key groups and thus the timing of key chemical events. In short, the discussions highlight the advantages of an efficient QM/MM framework based on an approximate DFT method (DFTB3) and the diverse roles of water molecules in biomolecular functions.

2253-Symp
Hydrogen Tunneling, Electrostatics, and Conformational Motions in Enzyme Catalysis
Sharon Hammes-Schiffer
University of Illinois at Urbana-Champaign, Urbana, IL, USA.

The roles of hydrogen tunneling, electrostatics, and conformational motions in enzyme catalysis will be discussed. We have developed hybrid quantum/classical molecular dynamics methods that include the quantum mechanical effects of the active electrons and transferring proton(s), as well as the motions of the entire solvated enzyme. These methods have been used to study the proton and hydride transfer reactions catalyzed by the enzymes dihydrofolate reductase (DHFR) and ketosteroid isomerase (KSI). The free energy profiles are generated along a collective reaction coordinate, and the changes in hydrogen bonding and electrostatic interactions are analyzed along the entire reaction pathway. An analysis of the simulations resulted in the identification and characterization of a network of coupled motions that extends throughout the enzyme and represents equilibrium conformational changes that facilitate the chemical reaction. Mutations distal to the active site are shown to significantly impact the catalytic rate constant by altering the conformational sampling of the entire enzyme, thereby changing the probability of sampling configurations conducive to the catalyzed reaction. We have also developed quantum mechanical/molecular mechanical methodology to calculate the vibrational frequency shifts of thioconate probes incorporated into the active site of an enzyme. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of an intermediate analog to KSI for two different nitrile probe positions. Analysis of the simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. This approach is also being used to study the vibrational shifts of nitrile probes.
for intermediates along the reaction pathway of DHFR to elucidate the conformational changes and the variation of the electrostatic microenvironments during catalysis.

2254-Symp Using Quantum Mechanics in Biological Structure Refinement

Kenneth M. Merz
Michigan State University, East Lansing, MI, USA.

The starting point for structure-based drug design (SBDD) efforts is a high quality structural model obtained using X-ray crystallography or NMR spectroscopic techniques. In most instances classical tools are used as structural surrogates in X-ray and NMR refinement protocols in order to improve the parameter to observation ratio realized from these experimental techniques. While classical approaches are useful structural surrogates, they do suffer from a number of issues that affect their performance including: electrostatic modeling, parameter defects and missing parameters. The way in which these issues can be mitigated is to use more robust structural theories like quantum mechanical (QM) methods, which have had a tremendous impact on our understanding of "small" chemical and biological systems. In this talk we will focus on the application of ab initio QM methods to refine protein/ligand complexes for use in SBDD applications using NMR and X-ray methods. We will discuss the computational details and describe several uses of QM in structure refinement efforts using NMR and X-ray datasets. The strengths and weaknesses of a QM approach in structure refinement will be discussed as well as future prospects of this strategy.

2255-Symp Classical and Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) Simulations of G Protein Coupled Receptors

Ursula Rothlisberger
Swiss Federal Institute of Technology, Lausanne, Switzerland.

We use a combination of classical and quantum mechanical (QM/MM) simulation methods to study the structural, dynamical and optical properties of the prototypical G protein coupled receptor (GPCR) rhodopsin along the photocycle and assess the possible role of aggregation and lipid interaction for early signal transduction [1-3].

Our simulations predict structures of the early photointermediates batho and lumi that are in good agreement with the available experimental data. In addition we are able to predict a structure of the Blue shifted intermediate BSI, for which no experimental high-resolution structure is available yet. Applying techniques from machine learning, we are also able to identify the main factors responsible for the distinct color shifts between the early intermediates. Comparison of our results with those obtained for the other GPCRs, β1 and β2 adrenergic receptors [4-6] helps to characterize some of the common features as well as variations among different members of Class A GPCRs.


Platform: Excitation-Contraction Coupling

2256-Plat Dissecting Roles of Cav1.2 (z1C) Intracellular Loops in Cardiac Excitation-Contraction Coupling

Prakash Subramanayam, Donald D. Chang, Henry M. Cleaftcafu, Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.

Cardiac excitation-contraction (EC) coupling relies on Ca2+ induced Ca2+ release (CICR) enabled by an intimate relationship between L-type (Cav1.2) channels and ryanodine receptors (RyRs) at dyadic junctions. The determinants underlying Cav1.2/RyR functional proximity responsible for effective CICR are unknown, but likely entail protein interactions involving one or more intracellular loops of Cav1.2 pore-forming z1C subunit. We hypothesized that over-expressing z1C intracellular loops that play a critical role in Cav1.2/RyR communication would disrupt CICR in cardiomyocytes. We used adenoviruses to overexpress CFP-tagged z1C intracellular loops and termini (NT, I-II, II-III, III-IV, CT) in cardiomyocytes and determined their impact on field-stimulation-evoked rhod-2-reported Ca2+ transients. Over-expressed NT, II-III, and III-IV loops had minimal effect on CICR. By contrast, over-expressed I-II and CT produced dramatic disruption of EC coupling characterized by two distinct signatures: a sharp augmentation in CICR failure, and an

Nearby impossible to obtain mature fibers starting from precursor satellite cells. However, starting from newborn mice one can obtain cultures of contracting and striated myotubes that can be used for a number of manipulations. As to human muscle cells, primary cultures can be obtained in vitro by culturing satellite cells from biopsies and differentiating them into myotubes, but there is a clear necessity to develop cell lines from control and diseased individuals which will develop into myotubes. In the present investigation we characterized for the first time the excitation contraction coupling machinery of HMLC-7304 an immortalized human skeletal muscle cell line. Intracellular Ca2+ measurements showed a normal response to pharmacological activation of the ryanodine receptor whereas super resolution structured illumination microscopy (3D-SIM) revealed a low level of structural organization of ryanodine receptors and dihydropyridine receptors. Interestingly, the expression levels of several transcripts of proteins involved in calcium homeostasis and differentiation indicate that the cell line has a phenotype closer to that of slow twitch than fast twitch muscles. These results point to the potential application of such human muscle-derived cell lines to the study of neuromuscular disorders; in addition they may serve as a platform for the development of therapeutic strategies aimed at correcting defects in calcium homeostasis due to mutations in genes involved in calcium regulation.