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a b s t r a c t

The Schur-convexity and the Schur-geometric convexity with variables (x, y) ∈ R2
++
for

fixed (s, t) of Gini means G(r, s; x, y) are discussed. Some new inequalities are obtained.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by Rn.

Rn
+
= {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n},

Rn
−
= {x = (x1, . . . , xn) ∈ Rn : xi < 0, i = 1, . . . , n}.

In particular, R1, R1
+
and R1

−
denoted by R, R+ and R− respectively.

Let (s, t) ∈ R2, (x, y) ∈ R2
+
. The Gini means of (x, y) is defined in [1,2, pp.189] as

G(r, s; x, y) =


(
xs + ys

xr + yr

)1/(s−r)
, r 6= s,

exp
(
xs ln x+ ys ln y
xr + yr

)
, r = s.

The Gini means are also called the ‘‘sum means’’. Clearly, G(0,−1; x, y) is the harmonic mean, G(0, 0; x, y) is the
geometric mean, G(1, 0; x, y) is the arithmetic mean.
Some properties of Gini means are given in next theorem.
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Theorem A ([3, p. 249]).

(i) lim
s→r
G(r, s; x, y) = G(r, r; x, y);

lim
s→∞

G(r, s; x, y) = max{x, y}; lim
s→−∞

G(r, s; x, y) = min{x, y}.

(ii) if s1 ≤ s2, r1 ≤ r2 then

G(r1, s1; x, y) ≤ G(r2, s2; x, y); (1)

further if s1 6= s2 or r1 ≤ r2 then inequality (1) is strict unless x = y.
(iii) if s ≥ 1 ≥ r ≥ 0 then

G(r, s; x1 + x2, y1 + y2) ≤ G(r, s; x1, y1)+ G(r, s; x2, y2). (2)

The Stolarsky means of (x, y) is defined in [4,5] as

E(r, s; x, y) =



(
r
s
·
ys − xs

yr − xr

)1/(s−r)
, rs(r − s)(x− y) 6= 0,(

1
r
·
yr − xr

ln y− ln x

)1/r
, r(x− y) 6= 0;

1
e1/r

(
xx
r

yyr

)1/(xr−yr )
, r(x− y) 6= 0;

√
xy, x 6= y;
x, x = y.

The Stolarsky means are sometimes called the ‘‘difference means’’, or the ‘‘extended means’’.
The Schur-convexities of the Stolarsky means E(r, s; x, y)with (r, s) and (x, y)were presented in [6,7] as follows.

Theorem B ([6]). For fixed (x, y) ∈ R2
+
with x 6= y, E(r, s; x, y) is Schur-concave on R2

+
and Schur-convex on R2

−
with (r, s).

Theorem C ([7]). For fixed (r, s) ∈ R2,

(i) if 2 < 2r < s or 2 ≤ 2s ≤ r, then E(r, s; x, y) is Schur-convex on R2
+
with (x, y),

(ii) if (r, s) ∈ {r < s ≤ 2r, 0 < r ≤ 1} ∪ {s < r ≤ 2s, 0 < s ≤ 1} ∪ {0 < s < r ≤ 1} ∪ {0 < r < s ≤ 1} ∪ {s ≤ 2r <
0} ∪ {r ≤ 2s < 0}, then E(r, s; x, y) is Schur-concave on R2

+
with (x, y).

In a recent paper, József Sándor [8] has proved the following result:

Theorem D. For fixed (x, y) ∈ R2
+
with x 6= y, G(r, s; x, y) is Schur-concave on R2

+
and Schur-convex on R2

−
with (r, s).

And József Sándor point out that the Schur-convexity problem of G(r, s; x, y) for fixed (s, t) with respect to (x, y) ∈ R2
+

are still open.
In this paper, the Schur-convexity and the Schur-geometric convexity with variables (x, y) ∈ R2

+
for fixed (s, t) of Gini

means G(r, s; x, y) are discussed, and some new inequalities are obtained. We obtain the following results.

Theorem 1. For fixed (r, s) ∈ R2,

(i) if (r, s) ∈ {r ≥ 0, s ≥ 0, r + s ≥ 1}, then G(r, s; x, y) is the Schur-convex with (x, y) ∈ R2
+
;

(ii) if (r, s) ∈ {r ≤ 0, r + s ≤ 1} ∪ {s ≤ 0, r + s ≤ 1}, then G(r, s; x, y) is the Schur-concave with (x, y) ∈ R2
+
.

Theorem 2. If (r, s) ∈ R2
+
, then G(r, s; x, y) is the Schur-geometrically convex with (x, y) ∈ R2

+
.

For more information on the Stolarsky means and the Gini means, please refer to [9–15] and the references therein.

2. Definitions and lemmas

We need the following definitions and lemmas.

Definition 1 ([16,17]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k
i=1 x[i] ≤

∑k
i=1 y[i] for k = 1, 2, . . . , n− 1 and

∑n
i=1 xi =

∑n
i=1 yi,

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.
(ii) Ω ⊂ Rn is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for any x and y ∈ Ω , where α and β ∈ [0, 1] with

α + β = 1.
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(iii) letΩ ⊂ Rn, ϕ:Ω → R is said to be a Schur-convex function onΩ if x ≺ y on Ω implies ϕ (x) ≤ ϕ (y) .ϕ is said to be
a Schur-concave function onΩ if, and only if,−ϕ is a Schur-convex function.

Definition 2 ([18,19]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn
+
.

(i) Ω ⊂ Rn
+
is called a geometrically convex set if (xα1y

β

1 , . . . , x
α
ny
β
n ) ∈ Ω for any x and y ∈ Ω , where α and β ∈ [0, 1]with

α + β = 1.
(ii) let Ω ⊂ Rn

+
, ϕ: Ω → R+ is said to be a Schur-geometrically convex function on Ω if (ln x1, . . . , ln xn) ≺

(ln y1, . . . , ln yn) on Ω implies ϕ (x) ≤ ϕ (y) .ϕ is said to be a Schur-geometrically concave function on Ω if, and
only if,−ϕ is a Schur-geometrically convex function.

Lemma 1 ([16, p. 58]). Let Ω ⊂ Rn be symmetric with respect to permutations and the convex set, and have a nonempty interior
set Ω0. Let ϕ : Ω → R be continuous onΩ and differentiable inΩ0. Then ϕ is the Schur-convex(Schur-concave) function if, and
only if, it is symmetric onΩ and if

(x1 − x2)
(
∂ϕ

∂x1
−
∂ϕ

∂x2

)
≥ 0 (≤ 0)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0.

Lemma 2 ([18, p. 108]). Let Ω ⊂ Rn
+
is a symmetric with respect to permutations and the geometrically convex set, and has a

nonempty interior set Ω0. Let ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0. Then ϕ is the Schur-geometrically
convex (Schur-geometrically concave) function if ϕ is symmetric onΩ and

(ln x1 − ln x2)
(
x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0.

Lemma 3. Let a ≤ b, u(t) = tb+ (1− t)a, v(t) = ta+ (1− t)b. If 1/2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1, then

(u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (3)

Proof. Case 1. When 1/2 ≤ t2 ≤ t1 ≤ 1, it is easy to see that u(t1) ≥ v(t1), u(t2) ≥ v(t2), u(t1) ≥ u(t2) and
u(t2)+ v(t2) = u(t1)+ v(t1) = a+ b, that is (3) holds.
Case 2. When 0 ≤ t1 ≤ t2 ≤ 1, then 1/2 ≤ 1− t2 ≤ 1− t1 ≤ 1, by the Case 1, it follows

(u(1− t2), v(1− t2)) ≺ (u(1− t1), v(1− t1)) ,

i.e. (u(t2), v(t2)) ≺ (u(t1), v(t1)). �

Lemma 4 ([20]). Let l, t, p, q ∈ R+, p > q and p+ q ≤ 3(l+ t). Assume also that 1/3 ≤ l/t ≤ 3 or q ≤ l+ t. Then

G(l, t; x, y) ≤ (p/q)1/(p−q) E(p, q; x, y).

Lemma 5. Let

g(t, z) =
zt + 1

t(zt−1 − 1)
.

Then for fixed z > 1,

(i) g(t, z) is increasing on (−∞, 0) with t;
(ii) g(t, z) is increasing on (0, ξz) with t,
(iii) g(t) is decreasing on (ξz, 1) or (1,+∞) with t,

where ξz is a zero of the function

g1(t, z) = t(zt + zt−1) ln z + (zt + 1)(zt−1 − 1)

with 0 < ξz < 1/2.
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Proof. Differentiate g(t, z)with respect to t to obtain

∂g(t, z)
∂t

=
tzt(zt−1 − 1) ln z − (zt + 1)(zt−1 − 1)− tzt−1(zt + 1) ln z

t2(zt−1 − 1)2
= −

g1(t, z)
t2(zt−1 − 1)2

.

For fixed z > 1, g1(t, z) < 0 and
∂g(t,z)
∂t > 0 on (−∞, 0), then g(t, z) increases on (−∞, 0)with t , and g1(t, z) > 0 and

∂g(t,z)
∂t < 0 on (1,+∞), then g(t, z) decreases on (1,+∞)with t .
Differentiate g1(t, z)with respect to t to obtain

∂g1(t, z)
∂t

= [2z2t−1 + 2zt−1 + t(zt + zt−1) ln z] ln z.

Since ∂g1(t,z)
∂t > 0 on (0, 1), g1(t, z) increases on (0, 1), it following that g1(0, z) ≤ g1(t, z) ≤ g1(1, z). Furthermore,

g1(0, z) = 2(z−1 − 1) < 0 and g1(1, z) = (z + 1) ln z > 0, hence there exist ξz ∈ (0, 1) such that g1(ξz, z) = 0, and
g1(t, z) ≤ 0 and

∂g(t,z)
∂t ≥ 0 for 0 < t ≤ ξz , and g1(t, z) > 0 and

∂g(t,z)
∂t < 0 for ξz < t < 1. this is, g(t, z) increases on

(0, ξz) and decreases on (ξz, 1).
Differentiate g1(t, z)with respect to z to obtain

∂g1(t, z)
∂z

= tzt−1(zt−1 − 1)+ (t − 1)zt−2(zt + 1)+ t(zt−1 + zt−2)+ t[tzt−1 + (t − 1)zt−2] ln z

= (2t − 1)z2t−2 + t2zt−1 ln z + (2t − 1)zt−2 + (t2 − t)zt−2 ln z.

For 1 > t ≥ 1/2, we have

∂g1(t, z)
∂z

≥ t2zt−1 ln z + (2t − 1)zt−2 + (t2 − t)zt−2 ln z

= (t2z + t2 − t)zt−2 ln z
> (2t2 − t)zt−2 ln z = t(2t − 1)zt−2 ln z ≥ 0.

Hence, for 1 > t ≥ 1/2, g1(t, z) increases on (1,+∞)with z, and then

g1(t, z) > lim
z→1+

g1(t, z) = g1(t, 1) = 0.

Thus we conclude that 0 < ξz < 1/2. �

Lemma 6. For fixed (x, y) with x > y > 0. If (r, s) ∈ {r > 1, s < 0, r + s ≤ 1} ∪ {1 < r ≤ s} ∪ {0 < r ≤ 1 − r ≤ s <
1} ∪ {1/2 ≤ r ≤ s < 1}, then

s(xr + yr)(xs−1 − ys−1) ≥ r(xs + ys)(xr−1 − yr−1), (4)

if (r, s) ∈ {s > 1, r < 0, r + s ≤ 1} ∪ {r ≤ s < 0}, then (4) is reversed.

Proof. Let g(t) = zt+1
t(zt−1−1)

with z = x/y > 1. Notice that y > 0, it is easy to see that (4) equivalent to g(r) ≥ g(s). For
r > 1, we first prove that g(r) ≥ g(1− r), i.e.

y(zr + 1)
r(zr−1 − 1)

≥
y(z1−r + 1)

(1− r)(z−r − 1)
=

y(zr + z)
(r − 1)(zr − 1)

.

It is sufficient prove that

h(z) := (r − 1)(zr − 1)(zr + 1)− r(zr−1 − 1)(zr + z) ≥ 0.

Directly calculating yields

h(z) = (r − 1)z2r − rx2r−1 + rx− r + 1,
h′(z) = 2r(r − 1)z2r−1 − r(2r − 1)z2r−2 + r,
h′′(z) = 2r(r − 1)(2r − 1)z2r−3(z − 1).

By r > 1, and z > 1, it follows h′′(z) > 0. Therefore, h′(z) > h′(1) = 0, moreover, h(z) > h(1) = 0, i.e. g(r) ≥ g(1− r).
If r > 1, s < 0, r + s ≤ 1, then s ≤ 1− r < 0, from (i) of Lemma 5, we have g(r) ≥ g(s), i.e. (4) holds.
If s > 1, r < 0, r + s ≤ 1, replacing r by s and replacing s by r in the above case, it follows that g(r) ≤ g(s), i.e. (4) is

reversed.
If 0 < r ≤ 1/2 ≤ 1 − r ≤ s < 1, then h′′(z) > 0, it follows h′(z) > h′(1) = 0, moreover, h(z) > h(1) = 0,

i.e. g(r) ≥ g(1− r), from (iii) of Lemma 5, we have g(r) ≥ g(1− r) ≥ g(s), i.e. (4) holds.
If 1/2 ≤ r ≤ s < 1 or 1 < r ≤ s, from (iii) of Lemma 5, we have g(r) ≥ g(s) i.e. (4) holds.
If r ≤ s < 0, from (i) of Lemma 5, we have g(r) ≤ g(s) i.e. (4) is reversed. �
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3. Proofs of main results

Proof of Theorem 1

Proof. Let ϕ(x, y) = xs+ys

xr+yr . When r 6= s, for fixed (x, y) ∈ R2, we have

∂ϕ

∂x
=
sxs−1(xr + yr)− rxr−1(xs + ys)

(xr + yr)2
,

∂ϕ

∂y
=
sys−1(xr + yr)− ryr−1(xs + ys)

(xr + yr)2
.

∂ϕ

∂x
−
∂ϕ

∂y
=
s(xr + yr)(xs−1 − ys−1)− r(xs + ys)(xr−1 − yr−1)

(xr + yr)2

=
s(xr−1 − yr−1)
(xr + yr)

[
s− 1
r − 1

·
(r − 1)(xs−1 − ys−1)
(s− 1)(xr−1 − yr−1)

−
r
s
·
xs + ys

xr + yr

]
=
s(xr−1 − yr−1)
(xr + yr)

[
s− 1
r − 1

· Es−r(r − 1, s− 1; x, y)−
r
s
· Gs−r(r, s; x, y)

]
,

and then

∆ := (x− y)
(
∂G
∂x
−
∂G
∂y

)
=
x− y
s− r

(
∂ϕ

∂x
−
∂ϕ

∂y

)
ϕ

1
s−r −1(x, y)

=
s(x− y)(xr−1 − yr−1)
(s− r)(xr + yr)

[
s− 1
r − 1

· Es−r(r − 1, s− 1; x, y)−
r
s
· Gs−r(r, s; x, y)

]
ϕ

1
s−r −1(x, y).

In Lemma 4, taking l = r, t = s, p = r − 1, q = s− 1, we have
l > 0, t > 0, p > 0, q > 0
p > q
p+ q ≤ 3(l+ t)
1/3 ≤ l/t ≤ 3

⇔


r > 1, s > 1
r > s
r + s ≥ −1
s/3 ≤ r ≤ 3s

⇔ 3s ≥ r > s > 1

and 
l > 0, t > 0, p > 0, q > 0
p > q
p+ q ≤ 3(l+ t)
q ≤ l+ t

⇔


r > 1, s > 1
r > s
r + s ≥ −1
r ≥ −1

⇔ r > s > 1.

Hence, when r > s > 1, we have

G(r, s; x, y) ≤
(
r − 1
s− 1

) 1
r−s

E(r − 1, s− 1; x, y),

i.e.

Gs−r(r, s; x, y) ≥
s− 1
r − 1

· Es−r(r − 1, s− 1; x, y). (5)

When r > s > 1, we have s− r < 0 and (x− y)(xr−1 − yr−1) ≥ 0. Combining with (3), it follows that∆ ≥ 0. By Lemma 1,
G(r, s; x, y) is the Schur-convex with (x, y) ∈ R2

++
.

Now we consider other cases. Notice that

(x− y)
(
∂ϕ

∂x
−
∂ϕ

∂y

)
=
s(xr + yr)(x− y)(xs−1 − ys−1)− r(xs + ys)(x− y)(xr−1 − yr−1)

(xr + yr)2
,

when r ≥ 1, 0 ≤ s ≤ 1, since t r−1 and ts−1 is increasing and decreasing in R+ respectively, it follows that (x − y)(xs−1 −
ys−1) ≥ 0 and (x− y)(xr−1 − yr−1) ≤ 0, moreover, (x− y)

(
∂ϕ

∂x −
∂ϕ

∂y

)
≤ 0 and

∆ =
x− y
s− r

(
∂ϕ

∂x
−
∂ϕ

∂y

)
ϕ

1
s−r −1(x, y) ≥ 0.

That is, when r ≥ 1, 0 ≤ s ≤ 1, G(r, s; x, y) is the Schur-convex with (x, y) ∈ R2
+
.
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When r < 0, 0 < s ≤ 1, since t r−1 and ts−1 are decreasing in R++, it follows that (x − y)(xs−1 − ys−1) ≤ 0 and
(x− y)(xr−1 − yr−1) ≤ 0, moreover, (x− y)

(
∂ϕ

∂x −
∂ϕ

∂y

)
≤ 0 and∆ ≤ 0, that is, when r < 0, 0 < s ≤ 1, G(r, s; x, y) is the

Schur-concave with (x, y) ∈ R2
+
.

Without loss of generality, we may assume x > y > 0. Notice that

∆ =
x− y
s− r

·
s(xr + yr)(xs−1 − ys−1)− r(xs + ys)(xr−1 − yr−1)

(xr + yr)2
ϕ

1
s−r −1(x, y).

When r > 1, s < 0, r+ s ≤ 1, from Lemma 6, it following that∆ ≤ 0, i.e. G(r, s; x, y) is the Schur-concave with (x, y) ∈ R2
+
.

Similarly, we can prove that when r ≤ s < 0, G(r, s; x, y) is the Schur-concave with (x, y) ∈ R2
+
, and when

0 < r ≤ 1− r ≤ s or 1/2 ≤ r ≤ s < 1, G(r, s; x, y) is the Schur-convex with (x, y) ∈ R2
+
.

When r = s ≥ 1, let

ψ(x, y) =
xs ln x+ ys ln y
xr + yr

=
xs ln x+ ys ln y
xs + ys

.

Then

∂ψ

∂x
=
xs−1h(x, y)
(xs + ys)2

,
∂ψ

∂y
=
ys−1k(x, y)
(xs + ys)2

,

where

h(x, y) = (s ln x+ 1)(xs + ys)− s(xs ln x+ ys ln y),
k(x, y) = (s ln y+ 1)(xs + ys)− s(xs ln x+ ys ln y).

By computing,

xs−1h(x, y)− ys−1k(x, y) = (xs + ys)
[
xs−1(s ln x+ 1)− ys−1(s ln y+ 1)

]
− s(xs ln x+ ys ln y)(xs−1 − ys−1)

= ss−1ys−1(x+ y)(ln x− ln y)+ (xs−1 − ys−1)(xs + ys),

and then,

(x− y)
(
∂G
∂x
−
∂G
∂y

)
= (x− y)

(
∂ψ

∂x
−
∂ψ

∂y

)
eψ(x,y)

=
sxs−1ys−1(x+ y)(x− y)(ln x− ln y)+ (x− y)(xs−1 − ys−1)(xs + ys)

(xs + ys)2
eψ(x,y).

Since ln t and ts−1 are increasing in R+ with t for s ≥ 1, therefore, (x− y)(ln x− ln y) ≥ 0 and (x− y)(xs−1 − ys−1) ≥ 0,
moreover, (x− y)

(
∂G
∂x −

∂G
∂y

)
≥ 0. That is, when r = s ≥ 1, G(r, s; x, y) is the Schur-convex with (x, y) ∈ R2

+
.

In conclusion, if (r, s) ∈ {r > s > 1}∪{r = s ≥ 1}∪{r ≥ 1, 0 ≤ s ≤ 1}∪{0 < r ≤ 1− r ≤ s}∪{1/2 ≤ r ≤ s < 1}, then
G(r, s; x, y) is the Schur-convexwith (x, y) ∈ R2

+
, and if (r, s) ∈ {r < 0, 0 < s ≤ 1}∪{r > 1, s < 0, r+s ≤ 1}∪{r ≤ s < 0},

then G(r, s; x, y) is the Schur-concave with (x, y) ∈ R2
+
.

Since G(r, s; x, y) is symmetric with (r, s), if (r, s) ∈ {s > r > 1} ∪ {s ≥ 1, 0 ≤ r ≤ 1} ∪ {0 < s ≤ 1− s ≤ r} ∪ {1/2 ≤
s ≤ r < 1}, then G(r, s; x, y) is also the Schur-convex with (x, y) ∈ R2

+
, and if (r, s) ∈ {s < 0, 0 < r ≤ 1} ∪ {s > 1, r <

0, r + s ≤ 1} ∪ {s ≤ r < 0}, then G(r, s; x, y) is also the Schur-concave with (x, y) ∈ R2
+
.

The proof is complete. �

Remark 1. The Schur-convexity of the function G(r, s; x, y) on the set {s < 0, r + s > 1} or {r < 0, r + s > 1} or
{r > 0, s > 0, r + s < 1}with (x, y) is uncertain.

Example 1. Let (r, s) = (2.5,−1.2). It is clear that (2.5,−1.2) ∈ {s < 0, r+ s > 1}. For (3, 3) ≺ (5, 1), directly calculating
yields

G(2.5,−1.2; 3, 3) = 3.000000000 > G(2.5,−1.2; 5, 1) = 2.873884533.

But, for (1.25, 1.25) ≺ (1.5, 1), directly calculating yields

G(2.5,−1.2; 1.25, 1.25) = 1.25.0000000 < G(2.5,−1.2; 1.5, 1) = 1.256253447.

Example 2. Let (r, s) = (−0.2, 1.5). It is clear that (−0.2, 1.5) ∈ {r < 0, r + s > 1}. For (8, 8) ≺ (15, 1), directly
calculating yields

G(−0.2, 1.5; 8, 8) = 8.000000000 < G(−0.2, 1.5; 15, 1) = 8.412747770.
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But, for (25.5, 25.5) ≺ (50, 1), directly calculating yields

G(−0.2, 1.5; 25.5, 25.5) = 25.5.0000000 > G(−0.2, 1.5; 50, 1) = 25.32833093.

Example 3. Let (r, s) = (0.6, 0.2). It is clear that (0.6, 0.2) ∈ {r > 0, s > 0, r + s < 1}. For (10.5, 10.5) ≺ (20.9, 0.1),
directly calculating yields

G(0.6, 0.2; 10.5, 10.5) = 10.5.0000000 < G(0.6, 0.2; 20.9, 0.1) = 11.03249418.

But, for (10.5, 10.5) ≺ (18, 3), directly calculating yields

G(0.6, 0.2; 10.5, 10.5) = 10.50000000 > G(0.6, 0.2; 18, 3) = 9.970045812.

Proof of Theorem 2

Proof. Let

ϕ(x, y) =
xs + ys

xr + yr
.

When r 6= s, for fixed (x, y) ∈ R2, we have

x
∂ϕ

∂x
=
sxs(xr + yr)− rxr(xs + ys)

(xr + yr)2
,

y
∂ϕ

∂y
=
sys(xr + yr)− ryr(xs + ys)

(xr + yr)2
.

x
∂ϕ

∂x
− y

∂ϕ

∂y
=
s(xr + yr)(xs − ys)− r(xs + ys)(xr − yr)

(xr + yr)2

=
s(xr − yr)
xr + yr

[
s
r
·
r(xs − ys)
s(xr − yr)

−
r
s
·
xs + ys

xr + yr

]
=
s(xr − yr)
xr + yr

[ s
r
· Es−r(r, s; x, y)−

r
s
· Gs−r(r, s; x, y)

]
,

and then

(ln x− ln y)
(
x
∂G
∂x
− y

∂G
∂y

)
=
ln x− ln y
s− r

(
x
∂ϕ

∂x
− y

∂ϕ

∂y

)
ϕ

1
s−r −1(x, y)

=
s(ln x− ln y)(xr − yr)
(s− r)(xr + yr)

[ s
r
· Es−r(r, s; x, y)−

r
s
· Gs−r(r, s; x, y)

]
ϕ

1
s−r −1(x, y).

In Lemma 4, taking l = p = r, t = q = s, we have
l > 0, t > 0, p > 0, q > 0
p > q
p+ q ≤ 3(l+ t)
1/3 ≤ l/t ≤ 3

⇔


r > 0, s > 0
r > s
r + s ≥ −1
s/3 ≤ r ≤ 3s

⇔ 3s ≥ r > s > 0

and 
l > 0, t > 0, p > 0, q > 0
p > q
p+ q ≤ 3(l+ t)
q ≤ l+ t

⇔


r > 0, s > 0
r > s
r + s ≥ −1
r ≥ 0

⇔ r > s > 0.

Hence, when r > s > 0, we have

G(r, s; x, y) ≤
( r
s

) 1
r−s
E(r, s; x, y),

i.e.

Gs−r(r, s; x, y) ≥
s
r
· Es−r(r, s; x, y). (6)

When r > s > 0, we have s− r < 0, and since ln t and t r are increasing in R+ with t , therefore (ln x− ln y)(xr − yr) ≥ 0.
Combiningwith (6), it follows that (ln x−ln y)

(
x ∂G
∂x − y

∂G
∂y

)
≥ 0. By Lemma2,G(r, s; x, y) is the Schur-geometrically convex
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with (x, y) in R2
+
. Since G(r, s; x, y) is symmetric with (r, s), when s > r > 0, G(r, s; x, y) is also the Schur-geometrically

convex with (x, y) ∈ R2
+
.

Now we consider other cases.
Without loss of generality, we may assume x > y > 0. Notice that

Λ =
ln x− ln y
s− r

·
s(xr + yr)(xs − ys)− r(xs + ys)(xr − yr)

(xr + yr)2
ϕ

1
s−r −1(x, y),

when r = s > 0, we have

∂ψ

∂x
=
xs−1h(x, y)
(xs + ys)2

,
∂ψ

∂y
=
xs−1k(x, y)
(xs + ys)2

,

where h(x, y), k(x, y) and ψ(x, y) are the same as in Theorem 2.
By computing,

xsh(x, y)− ysk(x, y) = ssys(x+ y)(ln x− ln y)+ (xs − ys)(xs + ys),

and then,

(ln x− ln y)
(
x
∂G
∂x
− y

∂G
∂y

)
= (ln x− ln y)

(
x
∂ψ

∂x
− y

∂ψ

∂y

)
eψ(x,y)

=
sxsys(x+ y)(ln x− ln y)2 + (ln x− ln y)(xs − ys)(xs + ys)

(xs + ys)2
eψ(x,y).

Since when s > 0, ln t and ts are increasing in R+, (ln x − ln y)(xs − ys) ≥ 0, moreover, (ln x − ln y)
(
x ∂G
∂x − y

∂G
∂y

)
≥ 0.

That is, when r = s > 0, G(r, s; x, y) is the Schur-geometrically convex with (x, y) ∈ R2
+
.

In conclusion, if (r, s) ∈ {r > s > 0} ∪ {s > r > 0} ∪ {r = s > 0} = R2
+
, G(r, s; x, y) is the Schur-geometrically convex

with (x, y) ∈ R2
+
.

The proof is complete. �

4. Applications

Theorem 3. Let (x, y) ∈ R2
++
, u(t) = ty+(1−t)x, v(t) = tx+(1−t)y. Assume also that 12 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1.

If (r, s) ∈ {r ≥ 0, s ≥ 0, r + s ≥ 1} ⊆ R2, then for fixed (r, s) ∈ R2, we have

G
(
r, s;

x+ y
2

,
x+ y
2

)
≤ G (r, s; u(t2), v(t2))

≤ G (r, s; u(t1), v(t1)) ≤ G(r, s; x, y) ≤ G(r, s; x+ y, 0). (7)

If (r, s) ∈ {r ≤ 0, r + s ≤ 1} ∪ {s ≤ 0, r + s ≤ 1} ⊆ R2, then inequalities in (7) are all reversed.

Proof. From Lemma 3, we have(
x+ y
2

,
x+ y
2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (r, s)

and it is clear that (x, y) ≺ (x+ y− ε, ε), where ε is enough small positive number.
If (r, s) ∈ {r ≥ 1, s > 0} ∪ {0 < r < 1, s ≥ 1}, by Theorem 1, and let ε → 0, it follows that (7) holds. If

(r, s) ∈ {r < 0, 0 < s < 1} ∪ {0 < r < 1, s < 0}, then inequalities in (7) are all reversed.
The proof is complete. �

Theorem 4. Let (x, y) ∈ R2
++
. For fixed (r, s) ∈ R2

+
, we have

G
(
r, s;
√
xy,
√
xy
)
≤ G(r, s; x, y). (8)

Proof. Since (ln
√
xy, ln

√
xy) ≺ (ln x, ln y), by Theorem 2, it follows that (8) holds.

The proof is complete. �
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