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1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by R".

Ry ={x=(,....,%) €eR":%,>0,i=1,...,n},

R ={x=(x1,....,%) €ER":x,<0,i=1,...,n}.

In particular, R', R} and R! denoted by R, R; and R_ respectively.
Let (s, t) € R?, (x,y) € R%. The Gini means of (x, y) is defined in [1,2, pp.189] as

X+ 1/(s—r)

Xy TES
G(rasaxsy): ()Csll‘lx—‘rysll‘ly)
exp| ——— ),

xr +y1’

The Gini means are also called the “sum means”. Clearly, G(0, —1; x, y) is the harmonic mean, G(0, 0; x, y) is the
geometric mean, G(1, 0; x, y) is the arithmetic mean.
Some properties of Gini means are given in next theorem.
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Theorem A ([3, p. 249]).

(1) lim G(r, s; %, ¥) = G(r, 15 %, ¥);
S—>T
lim G(r, s; x, y) = max{x, y}; lim G(r,s; x, y) = min{x, y}.
$—00 §——00

(ll) lf S1 <8, "M <1 then
G(r1, s13%,¥) < G(r2, 523 %, ¥); (M
further if s1 # s, or r1 < ry then inequality (1) is strict unless x = y.

(iii) if s > 1 >r > O then

G(r, 85 %1 + X2, ¥1 +¥2) < G(r, s; %1, ¥1) + G(r, S, X2, ¥2). (2)

The Stolarsky means of (x, y) is defined in [4,5] as

roy —x 1/(s—r)
(7 ) , Is(r—s)(x—y) #0,

sy =X

1 yr _XT 1/r
<;m) , r(x—y) #0;
E(r,s;x,y) = L 1765 2y
N TR E
X, X=}y.

The Stolarsky means are sometimes called the “difference means”, or the “extended means”.
The Schur-convexities of the Stolarsky means E(r, s; x, y) with (r, s) and (x, y) were presented in [6,7] as follows.

Theorem B ([6]). For fixed (x,y) € Ri withx # y, E(r, s; x, y) is Schur-concave on R2+ and Schur-convex on R with (r, s).

Theorem C ([7]). For fixed (r,s) € R?,

(i) if 2 <2r <sor 2 <2s <r,thenE(r,s; x,y) is Schur-convex on ]R{i with (x, y),
({i)if(r,s) e{r<s<2r,0<r<1}JU{s<r<250<s<1}JU{0<s<r<1jU{0<r<s<1}U{s<2r<
0} U {r < 2s < 0}, then E(r, s; X, y) is Schur-concave on Ri with (x, y).

In a recent paper, Jozsef Sandor [8] has proved the following result:

Theorem D. For fixed (x,y) € Ri with x # y, G(r, s; x, ¥) is Schur-concave on Ri and Schur-convex on R% with (r, s).

And J6zsef Sandor point out that the Schur-convexity problem of G(r, s; x, y) for fixed (s, t) with respect to (x, y) € IR{?,_
are still open.

In this paper, the Schur-convexity and the Schur-geometric convexity with variables (x, y) € Ri for fixed (s, t) of Gini
means G(r, s; x, y) are discussed, and some new inequalities are obtained. We obtain the following results.
Theorem 1. For fixed (r, s) € R?,
(i) if (r,s) e {r >0,5s>0,r +s > 1}, then G(r, s; x, y) is the Schur-convex with (x, y) € R%;
(i) if (r,s) e{r <0, r+s<1}U{s <0,r +s < 1}, then G(r, s; x, y) is the Schur-concave with (x,y) € Ri.
Theorem 2. If (r,s) € Ri, then G(r, s; x, y) is the Schur-geometrically convex with (x,y) € Ri.

For more information on the Stolarsky means and the Gini means, please refer to [9-15] and the references therein.

2. Definitions and lemmas
We need the following definitions and lemmas.

Definition 1 ([16,17]). LetX = (x1,...,X,) andy = (y1,...,yn) € R".

(i) xis said to be majorized by y (in symbols x < y)if 5, xy < 3%,y fork=1,2,....,n—Tand > .1, x; = >, yi,
where X[} > - -+ > Xy and yjq) > - - - >y are rearrangements of x and y in a descending order.

(ii) £2 C R"is called a convex set if (ax; + By1, ..., ax, + By,) € 2 foranyxandy € £2, where ¢ and 8 € [0, 1] with
a+p=1
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(iii) let £2 C R", ¢: £2 — R is said to be a Schur-convex function on 2 if ¥ < y on £ implies ¢ () < ¢ (¥) .¢ is said to be
a Schur-concave function on §2 if, and only if, —¢ is a Schur-convex function.

Definition 2 ([18,19]). Letx = (X1, ...,xp) andy = ()1, ..., ¥n) € R},

i C R is called a geometrically convex set if (xy/, ..., x%yy) € §2 foranyxandy € 2, where @ and 8 € [0, 1] wit

(i) 2 C R is called icall if (x2y” oyl € Q2 f dy € £2,wh d B € [0, 1] with
a+p =1

ii) let C , @ — R, is said to be a Schur-geometrically convex function on £ if (Inxy,...,Inx;) =<

(ii) let £2 RY 2 R, is said to be a Sch icall functi £ if (1 Inx,)
(Inyq,...,Iny,) on £ implies ¢ (X) < ¢ (¥) .¢ is said to be a Schur-geometrically concave function on 2 if, and
only if, —¢ is a Schur-geometrically convex function.

Lemma 1 ([16, p. 58]). Let $2 C R"™ be symmetric with respect to permutations and the convex set, and have a nonempty interior
set 29, Let ¢ : 2 — R be continuous on §2 and differentiable in £2°. Then ¢ is the Schur-convex(Schur-concave) function if, and
only if, it is symmetric on §2 and if

(X1 — X2) (8<p_8<p) >0(<0)

8X1 3X2
holds for any x = (x1, X2, .. ., X;) € £2°.

Lemma 2 ([18, p. 108]). Let £2 C R} is a symmetric with respect to permutations and the geometrically convex set, and has a

nonempty interior set 2°. Let ¢ : 2 — R, be continuous on £2 and differentiable in $2°. Then ¢ is the Schur-geometrically
convex (Schur-geometrically concave) function if ¢ is symmetric on 2 and

0 0
(Inx; — Inxy) xl—(p —xzi >0(<0)
8x1 8x2

holds for any x = (x4, X2, .. ., X;) € £2°.

Lemma3. leta <b,u(t)=th+ (1 —t)a,v(t)=ta+ (1—¢t)b.If1/2<t; <t; <1or0<t; <t; <1,then
(u(t2), v(t2)) < (u(ty), v(t1)) < (a, b). 3)
Proof. Case 1. When 1/2 < t, < t; < 1, it is easy to see that u(t;) > v(ty),u(tz) > wv(ty),u(t;) > u(ty) and

u(ty) + v(ty) = u(ty) + v(ty) = a + b, that is (3) holds.
Case2.When0 <t; <t <1,then1/2 <1—1t; <1—t; < 1,by the Case 1, it follows

(1 —t2), v(1 = tz)) < W —ty), v(1 —1ty)),
ie (u(ty), v(tx) < (u(ty), v(ty)). O

Lemma4 ([20]). Let I, t,p,q € Ry,p > qandp + q < 3(I 4 t). Assume also that 1/3 <1/t <3or q <[+ t. Then

Gl t;x,y) < (/9P E(p, ¢ x,y).

Lemma 5. Let

z'+1
tzt-1—1)
Then for fixed z > 1,

g(t,z) =

(i) g(t, z) is increasing on (—oo, 0) with t;
(ii) g(t, z) is increasing on (0, &,) with t,
(iii) g(t) is decreasing on (&, 1) or (1, +00) with t,

where &, is a zero of the function
git,2) =t +z" NIz + @ +DE" - 1)
with0 < &, < 1/2.
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Proof. Differentiate g(t, z) with respect to t to obtain

dg(t,z) '@ '—DInz— '+ D" -1) -2 + Dinz g1(t, 2)
9t - t2(zt-1 — 1)2 - t£2(zt-1 — 1)2'
For fixed z > 1,g1(t,z) < 0and % > 0on (—o0, 0), then g(t, z) increases on (—oo, 0) with t, and g(t, z) > 0 and

%2 0 on (1, 4+00), then g(t, z) decreases on (1, +00) with .
Differentiate g (t, z) with respect to t to obtain

agi1(t, z
% =227+ 22 1@ + 2 ) Inz] Inz.
Since %1EZ > 0 on (0, 1), g1(t, 2) increases on (0, 1), it following that g1(0,2) < g (t,z) < g (1, 2). Furthermore,

£1(0,z2) = 2(z7' —1) < 0and gi(1,z) = (z + 1)Inz > 0, hence there exist & € (0, 1) such that g;(£,,z) = 0, and
g1(t,z) < 0and % > 0for0 <t < &, andg(t,z) > 0and % < O0for&, <t < 1.thisis, g(t, z) increases on
(0, &) and decreases on (&, 1).

Differentiate g (t, z) with respect to z to obtain

g (t, z)

p =t T = D)+ =D 2E D)+t ) e 4+ (6= D22 Inz
z

=2t —D22 2+t " nz+ 2t — D22+ (> = )z' % Inz.
For 1 >t > 1/2, we have

agl (tv Z)

p > 22" M nz+ @t — D22+ (2 — )2 2 Inz
z

= (t?z+ > - )2 %Inz
> 22 =)z ?Inz =t(2t — 1)z ?Inz > 0.

Hence, for 1 > t > 1/2, g¢(t, z) increases on (1, +00) with z, and then
&i(t,2) > linll+ &i(t,2) =g (t, 1) =0.
z—
Thus we conclude that 0 < &, < 1/2. O

Lemma 6. For fixed (x,y) withx >y > 0.If (r,s) e {r > 1,s < 0,r+s<1JU{1l <r<sjuU{f0<r<1-r<s<
1}U{1/2 <r <s < 1}, then

S +YNET =y =@ + )T =y, (4)
if r,s) e{s>1,r <0,r+s <1} U{r <s < 0}, then (4) is reversed.

Proof. Let g(t) = : th_“lq_l with z = x/y > 1. Notice thaty > 0, it is easy to see that (4) equivalent to g(r) > g(s). For
r > 1, we first prove that g(r) > g(1 —r), i.e.
ye'+1n y'" T+ y@ +2)

rZ-1—-1) - A-nE"-1) @T-DE -1’
It is sufficient prove that
h@) =T —-1DE - DE +1)—r@ "= 1)E +2) >0
Directly calculating yields
h@) =T -1z = Tdm—r+1,
W@ =2rr— D" ' —r@r = D222 +r,
W) =2rr—D@r - 1223z -1).
Byr > 1,and z > 1, it follows h”(z) > 0. Therefore, h’(z) > h’'(1) = 0, moreover, h(z) > h(1) = 0,i.e.g(r) > g(1 —r).
Ifr>1,s<0,r+s<1,thens <1—r <0, from (i) of Lemma 5, we have g(r) > g(s), i.e. (4) holds.
Ifs > 1,r < 0,r +s < 1, replacing r by s and replacing s by r in the above case, it follows that g(r) < g(s), i.e. (4) is
reversed.
Ifo<r <1/2<1-r <s < 1,thenh’(z) > 0, it follows h'(z) > h'(1) = 0, moreover, h(z) > h(1) = 0,
i.e.g(r) > g(1 —r), from (iii) of Lemma 5, we have g(r) > g(1 —r) > g(s), i.e. (4) holds.

If1/2 <r <s<1lorl<r <s, from(iii) of Lemma 5, we have g(r) > g(s) i.e. (4) holds.
Ifr <s <0, from (i) of Lemma 5, we have g(r) < g(s) i.e. (4) isreversed. O
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3. Proofs of main results

Proof of Theorem 1

Proof. Let p(x,y) = % When r # s, for fixed (x, y) € R?, we have

a(p st—l (Xr + yr) _ TXr71(XS + y3)

ax (" +y")? ’
0 _ sy I YD) 1y + )
oy * +y)? '
dp 9 s AV =y ) —r@+y)X T =y
w Ay (x" +y")?
SKT—y Hls—1 r—DE "=y 1 X+
T+ [r—l D -y _S.Xr"H’r]
_ s -y [5—1 .Es_r(r—l,s—l;x,y)—r'Gs_r(r’S;x’Y)]’
& +y)  Lr-1 )
and then
G 9G\ _x—y (d¢ dp\ 1 _
a=0n(5 -5 ) =57 (G ) e

sx—y) X —yh [S -1
s=r)&x +y") r—1

In Lemma 4, takingl =r,t =s,p=r —1,q =s — 1, we have

.
BT —1,5—1;x,y) — . G'(r, s, y)} 05 (X, ).

I>0,t>0,p>0,g>0 r>1,s>1
pP>q r>s
P+q<3(+0 < r+s>—1 & 3s>r>s>1
1/3<1/t<3 s/3<r<3s

and
I>0,t>0,p>0,g>0 r>1,s>1
p>4q = r=s Sr>s>1
p+q=<31+¢) r+s>—1 = :
q=<l+t r>-—1

Hence, whenr > s > 1, we have

1

r—1\rs
G(r,s;x,y) < <—1> Er—1,5—1;x,y),
S_

s—1
CTrsxy) 2 — BT - 1s—1xy). (5)

Whenr > s > 1,wehaves —r < 0and (x — y)(x*~! —y"~!) > 0. Combining with (3), it follows that A > 0. By Lemma 1,
G(r, s; x,y) is the Schur-convex with (x,y) € R?H.
Now we consider other cases. Notice that
x_y (22 _ 09} sy —PNETT =y @+ =& =y
Y 0x ay - (Xr +yr)2 ’
whenr > 1,0 < s < 1, since t"~! and t*~! is increasing and decreasing in R, respectively, it follows that (x — y)(x** ! —
¥y~ >0and (x —y)(x "' —y"~!) < 0, moreover, (x — y) (‘;—‘;’ — g—t) < 0and
X — a a
A_XTY ( ¢ dp

1y
- s=r X, > Q.
o ay) @ (*,y) >

S—r

. . . . 2
Thatis, whenr > 1,0 <s < 1,G(r, s; X, y) is the Schur-convex with (x, y) € R7.
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Whenr < 0,0 < s < 1,since t""' and t*~' are decreasing in R, it follows that (x — y)(x**"! — y*"1) < 0 and

(x —y)x*~! —y"~1) < 0, moreover, (x — y) (3—‘)’? — %) <0and A <0, thatis,whenr < 0,0 <s < 1, G(r, s; x,y) is the

Schur-concave with (x, y) € Rﬁ_.
Without loss of generality, we may assume x > y > 0. Notice that

_ XY SWAYET -y ) i Ty

A= = (x, y).
s—r (x" 4 y)? *.5)

Whenr > 1,5 < 0,r+s < 1, from Lemma 6, it following that A < 0,i.e. G(r, s; X, y) is the Schur-concave with (x, y) € Rﬁ_.
Similarly, we can prove that when r < s < 0, G(r,s; x,y) is the Schur-concave with (x,y) € R2, and when
O<r<1l-r<sorl/2<r<s<1,G(r,s;x,Yy) is the Schur-convex with (x,y) € ]Ri.
Whenr =s > 1, let

Xlnx+y'Iny  xInx+ylny

vxy) = iy T xay
Then

Iy xhx.y) Wy k. y)

R o T ST
where

h(x,y) = (slnx+ DX’ +y°) —s(x’Inx + y° Iny),
k(x,y) = (slny + (¥’ +y°) —s( Inx + y° Iny).
By computing,
X7hxy) =y T k(xy) = (€ +y) [¥ T sInx 4+ 1) =y siny + D] — s Inx +y Iny) X -y
=5y ' x+y)Inx—Iny) + &' =y HE +y°),

and then,
G 9G 9 a0
x—N[———)=x-y i _ i eV xy)
ax  dy ox ay
_ sy T )@ ) Inx—Iny) + @ =)@y E Y
(XS + ys)z :
Since Int and t°~! are increasing in R, with t for s > 1, therefore, (x — y)(Inx —Iny) > 0and (x — y)(x** "' —y*~1) > 0,
moreover, (X — y) (% — %) > 0.Thatis, whenr =s > 1, G(r, s; X, y) is the Schur-convex with (x, y) € Ri.

In conclusion, if (r,s) e {r > s> 1}U{r=s>1}JU{r > 1,0 <s<1}JU{0 <r <1—-r <s}U{1/2 <r <s < 1},then
G(r, s; x, y) is the Schur-convex with (x, y) € R2,andif (r,s) e {r < 0,0 <s < 1}JU{r > 1,s < 0,r4+s < 1}JU{r <s < 0},
then G(r, s; x, y) is the Schur-concave with (x,y) € Ri.

Since G(r, s; x, y) is symmetric with (r,s),if (r,s) e {s>r > 1}U{s>1,0<r <1}JU{0<s<1-s<rju{l/2 <
s < r < 1}, then G(r, s; x, y) is also the Schur-convex with (x, y) € R?,andif (r,s) € {s < 0,0 <r < 1}U{s > 1,1 <

0,7r4+s<1}U{s <r < 0}, then G(r, s; x, y) is also the Schur-concave with (x, y) € Ri.
The proof is complete. O

Remark 1. The Schur-convexity of the function G(r,s; x,y) on the set {s < 0,r +s > 1}or{r < 0,r +s > 1} or
{r >0,5s>0,r+s < 1} with (x, y) is uncertain.

Example 1. Let (r,s) = (2.5, —1.2).Itisclear that (2.5, —1.2) € {s < 0,r+s > 1}.For (3, 3) < (5, 1), directly calculating
yields

G(2.5, —1.2; 3, 3) = 3.000000000 > G(2.5, —1.2; 5, 1) = 2.873884533.
But, for (1.25, 1.25) < (1.5, 1), directly calculating yields
G(2.5, —1.2; 1.25, 1.25) = 1.25.0000000 < G(2.5, —1.2; 1.5, 1) = 1.256253447.

Example 2. Let (r,s) = (—0.2, 1.5). It is clear that (—0.2,1.5) € {r < 0,r +s > 1}. For (8,8) < (15, 1), directly
calculating yields

G(—0.2, 1.5; 8, 8) = 8.000000000 < G(—0.2, 1.5; 15, 1) = 8.412747770.
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But, for (25.5, 25.5) < (50, 1), directly calculating yields
G(—0.2, 1.5; 25.5, 25.5) = 25.5.0000000 > G(—0.2, 1.5; 50, 1) = 25.32833093.

Example 3. Let (r,s) = (0.6, 0.2). It is clear that (0.6,0.2) € {r > 0,s > 0,r +s < 1}. For (10.5, 10.5) < (20.9,0.1),
directly calculating yields

G(0.6, 0.2; 10.5, 10.5) = 10.5.0000000 < G(0.6, 0.2; 20.9,0.1) = 11.03249418.
But, for (10.5, 10.5) < (18, 3), directly calculating yields
G(0.6,0.2; 10.5, 10.5) = 10.50000000 > G(0.6, 0.2; 18, 3) = 9.970045812.

Proof of Theorem 2
Proof. Let
XS +y5
X,y) = .
(. y) Y.

When r # s, for fixed (x, y) € R?, we have
dp W ) — (¢ +y)

Xax - x4+ y")? '
B W HY) - )
Yoy = " +y)? '
e e sWAHYHX —y) T + Yy —y')
ax ay (" +y)2
ST =YD [s 1 -y X4y
- Xy ros(x —yn) s X 4y
s —y") [S . roo.
= — 2| - BT, s5;x,y) — - -G (r,s; %, ]
vl = ( = ( )
and then
aG oG Inx —Iny [/ d¢ dp\ 14
(Inx—Iny) (x— —y— | = ——— [x——y— o= '(x,¥)
ax ay s—r ax ay

s(Inx — Iny)(x" —y") [s . r _ 1
= --E r , $5 X, - = GS r , S5 X, :I s=r ! ) .
Gne 1y Lr (T, 8:%,y) — rs;xy) o= (%)

In Lemma 4, taking = p =r,t = q = s, we have

[>0,t>0,p>0,g>0 r>0,s>0

p>q r>s
P+q=30+0) S rt+s>—1 ©32r>s5>0
1/3 <1/t <3 /3 <r<3s

and
I>0,t>0,p>0,g>0 r>0,s>0

p>q r>s . 0
p+q=<3(+1¢) < r4s>—1 &Sr>s>0.
g=l+t r>0

Hence, whenr > s > 0, we have

1
r\ r=s
G(r,s;x,y) < (7) E(r,s;x,y),
S

S
GCT(r,s;x,y) > - CESTN(r, 55 %, ). (6)

Whenr > s > 0, we haves — r < 0, and since Int and t" are increasing in R, with t, therefore (Inx — Iny)(x" —y") > 0.
Combining with (6), it follows that (Inx—Iny) (x% - yg—g) > 0.By Lemma 2, G(r, s; X, y) is the Schur-geometrically convex



H.-N. Shi et al. / Computers and Mathematics with Applications 57 (2009) 266-274 273

with (x, y) in ]Ri. Since G(r, s; X, y) is symmetric with (r, s), whens > r > 0, G(r, s; x, y) is also the Schur-geometrically
convex with (x, y) € R2.
Now we consider other cases.
Without loss of generality, we may assume x > y > 0. Notice that
Inx—Iny s +y)x—y)—rx+y )& —y") 1
A= : 3 T (X, ),
s—r *+y")
whenr =s > 0, we have

3y x'h(x,y) Y xTk(x,y)
o eHy2T ey
where h(x, y), k(x, y) and ¥ (x, y) are the same as in Theorem 2.
By computing,

hx,y) —y’k(x,y) =y’ (x+y)(Inx — Iny) + (¥ — y*)(x* +y°),

and then,
B 0
(anx —Iny) (2% — 2V ) even
0x oy

sy (x +y)(Inx — Iny)> 4+ (Inx — Iny) (¥ — y*) (X’ +¥°) V)
(XS + ys)z !

=
5
x
|
=)
=
—
=
E
|
<
13
~—
Il

Since when s > 0, Int and t° are increasing in R, (Inx — Iny)(¥* — ¥°) > 0, moreover, (Inx — Iny) (xg—f — y%) > 0.
That is, whenr = s > 0, G(r, s; x, y) is the Schur-geometrically convex with (x, y) € Ri.

In conclusion, if (r,s) € {r > s> 0}U{s >r > 0} U{r =s > 0} =R2, G(r, s; x, ¥) is the Schur-geometrically convex
with (x, y) € RZ.

The proof is complete. [

4. Applications

Theorem 3. Let (x,y) € ]R?H,u(t) =ty+(1—0t)x, v(t) = tx+(1—t)y. Assume also that% <thb<ti<lor0<t; <t <1

If (r,s) e {r =0,s>0,r+s > 1} C R? then for fixed (r, s) € R?, we have

G <r,5; X;y, %) < G(r,s;u(ty), v(tr))

< G(r, s u(ty), v(ty) < G(r,s;x,y) <Gr,s;x+Y,0). (7)
If@,s)e{r<0,r+s<1}U{s<0,r+s <1} CR? then inequalities in (7) are all reversed.
Proof. From Lemma 3, we have

X+y x4y
2 7 2

) < (u(tz), v(tz)) < (u(t1), v(t1)) < (r,5)
and it is clear that (x, y) < (x +y — ¢, €), where ¢ is enough small positive number.
If (r,s) €¢ {r = 1,s > 0 U{0 < r < 1,s > 1}, by Theorem 1, and let ¢ — 0, it follows that (7) holds. If
(r,s) e{r <0,0<s<1}U{0 <r < 1,s < 0}, then inequalities in (7) are all reversed.
The proof is complete. [
Theorem 4. Let (x,y) € R% . For fixed (r,s) € R2, we have

G (r,s; VXY, V/XY) < G(r,5: %, ). (8)

Proof. Since (In /xy, In \/xy) < (Inx, Iny), by Theorem 2, it follows that (8) holds.
The proof is complete. O
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