FISEVIER

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Schur-convexity and Schur-geometrically concavity of Gini means

Huan-Nan Shi^{a,*}, Yong-Ming Jiang^b, Wei-Dong Jiang^c

^a Department of Electronic Information, Teacher's College, Beijing Union University, Beijing City, 100011, PR China

^b LongXi Middle School, Chang Shou Chong Qing 401249, PR China

^c Department of Information Engineering, Wei Hai Vocational College, Wei Hai, Shan Dong, 264200, PR China

ARTICLE INFO

Article history: Received 30 July 2007 Received in revised form 8 September 2008 Accepted 8 November 2008

Keywords: Gini means Stolarsky means Schur-convexity Schur-geometric concavity Inequalities

ABSTRACT

The Schur-convexity and the Schur-geometric convexity with variables $(x, y) \in \mathbb{R}^2_{++}$ for fixed (s, t) of Gini means G(r, s; x, y) are discussed. Some new inequalities are obtained. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the paper we assume that the set of *n*-dimensional row vector on the real number field by \mathbb{R}^{n} .

$$\mathbb{R}^{n}_{+} = \{x = (x_{1}, \ldots, x_{n}) \in \mathbb{R}^{n} : x_{i} > 0, i = 1, \ldots, n\},\$$

 $\mathbb{R}^{n}_{-} = \{ x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} : x_{i} < 0, i = 1, \dots, n \}.$

In particular, \mathbb{R}^1 , \mathbb{R}^1_+ and \mathbb{R}^1_- denoted by \mathbb{R} , \mathbb{R}_+ and \mathbb{R}_- respectively. Let $(s, t) \in \mathbb{R}^2$, $(x, y) \in \mathbb{R}^2_+$. The Gini means of (x, y) is defined in [1,2, pp.189] as

$$G(r, s; x, y) = \begin{cases} \left(\frac{x^s + y^s}{x^r + y^r}\right)^{1/(s-r)}, & r \neq s, \\ \exp\left(\frac{x^s \ln x + y^s \ln y}{x^r + y^r}\right), & r = s. \end{cases}$$

The Gini means are also called the "sum means". Clearly, G(0, -1; x, y) is the harmonic mean, G(0, 0; x, y) is the geometric mean, G(1, 0; x, y) is the arithmetic mean.

Some properties of Gini means are given in next theorem.

* Corresponding author. E-mail addresses: shihuannan@yahoo.com.cn, sfthuannan@buu.com.cn (H.-N. Shi), jymsf@163.com (Y.-M. Jiang), jackjwd@163.com (W.-D. Jiang).

^{0898-1221/\$ –} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2008.11.001

Theorem A ([3, p. 249]).

 $\lim G(r, s; x, y) = G(r, r; x, y);$ (i) $\lim_{s\to\infty} G(r, s; x, y) = \max\{x, y\}; \qquad \lim_{s\to-\infty} G(r, s; x, y) = \min\{x, y\}.$

(ii) if
$$s_1 \le s_2, r_1 \le r_2$$
 then

$$G(r_1, s_1; x, y) \le G(r_2, s_2; x, y);$$
(1)

further if $s_1 \neq s_2$ or $r_1 \leq r_2$ then inequality (1) is strict unless x = y. (iii) if $s \ge 1 \ge r \ge 0$ then

$$G(r, s; x_1 + x_2, y_1 + y_2) \le G(r, s; x_1, y_1) + G(r, s; x_2, y_2).$$
⁽²⁾

The Stolarsky means of (x, y) is defined in [4,5] as

$$E(r, s; x, y) = \begin{cases} \left(\frac{r}{s} \cdot \frac{y^{s} - x^{s}}{y^{r} - x^{r}}\right)^{1/(s-r)}, & rs(r-s)(x-y) \neq 0, \\ \left(\frac{1}{r} \cdot \frac{y^{r} - x^{r}}{\ln y - \ln x}\right)^{1/r}, & r(x-y) \neq 0; \\ \frac{1}{e^{1/r}} \left(\frac{x^{x^{r}}}{y^{y^{r}}}\right)^{1/(x^{r} - y^{r})}, & r(x-y) \neq 0; \\ \sqrt{xy}, & x \neq y; \\ x, & x = y. \end{cases}$$

The Stolarsky means are sometimes called the "difference means", or the "extended means". The Schur-convexities of the Stolarsky means E(r, s; x, y) with (r, s) and (x, y) were presented in [6,7] as follows.

Theorem B ([6]). For fixed $(x, y) \in \mathbb{R}^2_+$ with $x \neq y$, E(r, s; x, y) is Schur-concave on \mathbb{R}^2_+ and Schur-convex on \mathbb{R}^2_- with (r, s).

Theorem C ([7]). For fixed $(r, s) \in \mathbb{R}^2$,

(i) if 2 < 2r < s or $2 \le 2s \le r$, then E(r, s; x, y) is Schur-convex on \mathbb{R}^2_+ with (x, y), (ii) if $(r, s) \in \{r < s \le 2r, 0 < r \le 1\} \cup \{s < r \le 2s, 0 < s \le 1\} \cup \{0 < s < r \le 1\} \cup \{0 < r < s \le 1\} \cup \{s \le 2r < 0\} \cup \{r \le 2s < 0\}$, then E(r, s; x, y) is Schur-concave on \mathbb{R}^2_+ with (x, y).

In a recent paper, József Sándor [8] has proved the following result:

Theorem D. For fixed $(x, y) \in \mathbb{R}^2_+$ with $x \neq y$, G(r, s; x, y) is Schur-concave on \mathbb{R}^2_+ and Schur-convex on \mathbb{R}^2_- with (r, s).

And József Sándor point out that the Schur-convexity problem of G(r, s; x, y) for fixed (s, t) with respect to $(x, y) \in \mathbb{R}^2_+$ are still open.

In this paper, the Schur-convexity and the Schur-geometric convexity with variables $(x, y) \in \mathbb{R}^2_+$ for fixed (s, t) of Gini means G(r, s; x, y) are discussed, and some new inequalities are obtained. We obtain the following results.

Theorem 1. For fixed $(r, s) \in \mathbb{R}^2$,

(i) if $(r, s) \in \{r \ge 0, s \ge 0, r + s \ge 1\}$, then G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_+$;

(ii) if $(r, s) \in \{r \le 0, r + s \le 1\} \cup \{s \le 0, r + s \le 1\}$, then G(r, s; x, y) is the Schur-concave with $(x, y) \in \mathbb{R}^2_+$.

Theorem 2. If $(r, s) \in \mathbb{R}^2_+$, then G(r, s; x, y) is the Schur-geometrically convex with $(x, y) \in \mathbb{R}^2_+$.

For more information on the Stolarsky means and the Gini means, please refer to [9–15] and the references therein.

2. Definitions and lemmas

We need the following definitions and lemmas.

Definition 1 ([16,17]). Let $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n$.

- (i) *x* is said to be majorized by *y* (in symbols *x* ≺ *y*) if ∑_{i=1}^k x_[i] ≤ ∑_{i=1}^k y_[i] for *k* = 1, 2, ..., *n* − 1 and ∑_{i=1}ⁿ x_i = ∑_{i=1}ⁿ y_i, where x_[1] ≥ ··· ≥ x_[n] and y_[1] ≥ ··· ≥ y_[n] are rearrangements of *x* and *y* in a descending order.
 (ii) Ω ⊂ ℝⁿ is called a convex set if (αx₁ + βy₁, ..., αx_n + βy_n) ∈ Ω for any *x* and *y* ∈ Ω, where α and β ∈ [0, 1] with
- $\alpha + \beta = 1.$

(iii) let $\Omega \subset \mathbb{R}^n$, $\varphi \colon \Omega \to \mathbb{R}$ is said to be a Schur-convex function on Ω if $\mathbf{x} \prec \mathbf{y}$ on Ω implies $\varphi(\mathbf{x}) \le \varphi(\mathbf{y}) \cdot \varphi$ is said to be a Schur-concave function on Ω if, and only if, $-\varphi$ is a Schur-convex function.

Definition 2 ([18,19]). Let $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n) \in \mathbb{R}^n_+$.

- (i) $\Omega \subset \mathbb{R}^n_+$ is called a geometrically convex set if $(x_1^{\alpha}y_1^{\beta}, \ldots, x_n^{\alpha}y_n^{\beta}) \in \Omega$ for any \boldsymbol{x} and $\boldsymbol{y} \in \Omega$, where α and $\beta \in [0, 1]$ with $\alpha + \beta = 1$.
- (ii) let $\Omega \subset \mathbb{R}^n_+$, $\varphi: \Omega \to \mathbb{R}_+$ is said to be a Schur-geometrically convex function on Ω if $(\ln x_1, \ldots, \ln x_n) \prec (\ln y_1, \ldots, \ln y_n)$ on Ω implies $\varphi(\mathbf{x}) \leq \varphi(\mathbf{y}) \cdot \varphi$ is said to be a Schur-geometrically concave function on Ω if, and only if, $-\varphi$ is a Schur-geometrically convex function.

Lemma 1 ([16, p. 58]). Let $\Omega \subset \mathbb{R}^n$ be symmetric with respect to permutations and the convex set, and have a nonempty interior set Ω^0 . Let $\varphi : \Omega \to \mathbb{R}$ be continuous on Ω and differentiable in Ω^0 . Then φ is the Schur-convex(Schur-concave) function if, and only if, it is symmetric on Ω and if

$$(x_1 - x_2)\left(rac{\partial \varphi}{\partial x_1} - rac{\partial \varphi}{\partial x_2}
ight) \ge 0 \ (\le 0)$$

holds for any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \Omega^0$.

Lemma 2 ([18, p. 108]). Let $\Omega \subset \mathbb{R}^n_+$ is a symmetric with respect to permutations and the geometrically convex set, and has a nonempty interior set Ω^0 . Let $\varphi : \Omega \to \mathbb{R}_+$ be continuous on Ω and differentiable in Ω^0 . Then φ is the Schur-geometrically convex (Schur-geometrically concave) function if φ is symmetric on Ω and

$$(\ln x_1 - \ln x_2) \left(x_1 \frac{\partial \varphi}{\partial x_1} - x_2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \ (\le 0)$$

holds for any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \Omega^0$.

Lemma 3. Let $a \le b$, u(t) = tb + (1 - t)a, v(t) = ta + (1 - t)b. If $1/2 \le t_2 \le t_1 \le 1$ or $0 \le t_1 \le t_2 \le 1$, then

$$(u(t_2), v(t_2)) \prec (u(t_1), v(t_1)) \prec (a, b).$$

Proof. Case 1. When $1/2 \le t_2 \le t_1 \le 1$, it is easy to see that $u(t_1) \ge v(t_1), u(t_2) \ge v(t_2), u(t_1) \ge u(t_2)$ and $u(t_2) + v(t_2) = u(t_1) + v(t_1) = a + b$, that is (3) holds.

(3)

Case 2. When $0 \le t_1 \le t_2 \le 1$, then $1/2 \le 1 - t_2 \le 1 - t_1 \le 1$, by the Case 1, it follows

$$(u(1-t_2), v(1-t_2)) \prec (u(1-t_1), v(1-t_1)),$$

i.e. $(u(t_2), v(t_2)) \prec (u(t_1), v(t_1))$. \Box

Lemma 4 ([20]). Let $l, t, p, q \in \mathbb{R}_+$, p > q and $p + q \leq 3(l + t)$. Assume also that $1/3 \leq l/t \leq 3$ or $q \leq l + t$. Then

 $G(l, t; x, y) \leq (p/q)^{1/(p-q)} E(p, q; x, y).$

Lemma 5. Let

$$g(t,z) = \frac{z^t + 1}{t(z^{t-1} - 1)}.$$

Then for fixed z > 1,

- (i) g(t, z) is increasing on $(-\infty, 0)$ with t;
- (ii) g(t, z) is increasing on $(0, \xi_z)$ with t,
- (iii) g(t) is decreasing on $(\xi_z, 1)$ or $(1, +\infty)$ with t,

where ξ_z is a zero of the function

$$g_1(t, z) = t(z^t + z^{t-1}) \ln z + (z^t + 1)(z^{t-1} - 1)$$

with $0 < \xi_z < 1/2$.

Proof. Differentiate g(t, z) with respect to t to obtain

$$\frac{\partial g(t,z)}{\partial t} = \frac{tz^t(z^{t-1}-1)\ln z - (z^t+1)(z^{t-1}-1) - tz^{t-1}(z^t+1)\ln z}{t^2(z^{t-1}-1)^2} = -\frac{g_1(t,z)}{t^2(z^{t-1}-1)^2}.$$

For fixed z > 1, $g_1(t, z) < 0$ and $\frac{\partial g(t, z)}{\partial t} > 0$ on $(-\infty, 0)$, then g(t, z) increases on $(-\infty, 0)$ with t, and $g_1(t, z) > 0$ and $\frac{\partial g(t, z)}{\partial t} < 0$ on $(1, +\infty)$, then g(t, z) decreases on $(1, +\infty)$ with t.

^{ot} Differentiate $g_1(t, z)$ with respect to t to obtain

$$\frac{\partial g_1(t,z)}{\partial t} = [2z^{2t-1} + 2z^{t-1} + t(z^t + z^{t-1})\ln z]\ln z.$$

Since $\frac{\partial g_1(t,z)}{\partial t} > 0$ on (0, 1), $g_1(t, z)$ increases on (0, 1), it following that $g_1(0, z) \leq g_1(t, z) \leq g_1(1, z)$. Furthermore, $g_1(0, z) = 2(z^{-1} - 1) < 0$ and $g_1(1, z) = (z + 1) \ln z > 0$, hence there exist $\xi_z \in (0, 1)$ such that $g_1(\xi_z, z) = 0$, and $g_1(t, z) \leq 0$ and $\frac{\partial g(t, z)}{\partial t} \geq 0$ for $0 < t \leq \xi_z$, and $g_1(t, z) > 0$ and $\frac{\partial g(t, z)}{\partial t} < 0$ for $\xi_z < t < 1$. this is, g(t, z) increases on $(0, \xi_z)$ and decreases on $(\xi_z, 1)$.

Differentiate $g_1(t, z)$ with respect to z to obtain

$$\frac{\partial g_1(t,z)}{\partial z} = tz^{t-1}(z^{t-1}-1) + (t-1)z^{t-2}(z^t+1) + t(z^{t-1}+z^{t-2}) + t[tz^{t-1}+(t-1)z^{t-2}]\ln z$$
$$= (2t-1)z^{2t-2} + t^2z^{t-1}\ln z + (2t-1)z^{t-2} + (t^2-t)z^{t-2}\ln z.$$

For $1 > t \ge 1/2$, we have

$$\begin{aligned} \frac{\partial g_1(t,z)}{\partial z} &\geq t^2 z^{t-1} \ln z + (2t-1) z^{t-2} + (t^2-t) z^{t-2} \ln z \\ &= (t^2 z + t^2 - t) z^{t-2} \ln z \\ &> (2t^2 - t) z^{t-2} \ln z = t (2t-1) z^{t-2} \ln z \geq 0. \end{aligned}$$

Hence, for $1 > t \ge 1/2$, $g_1(t, z)$ increases on $(1, +\infty)$ with z, and then

$$g_1(t,z) > \lim_{z \to 1^+} g_1(t,z) = g_1(t,1) = 0.$$

Thus we conclude that $0 < \xi_z < 1/2$. \Box

Lemma 6. For fixed (x, y) with x > y > 0. If $(r, s) \in \{r > 1, s < 0, r + s \le 1\} \cup \{1 < r \le s\} \cup \{0 < r \le 1 - r \le s < 1\} \cup \{1/2 \le r \le s < 1\}$, then

$$s(x^{r} + y^{r})(x^{s-1} - y^{s-1}) \ge r(x^{s} + y^{s})(x^{r-1} - y^{r-1}),$$
(4)

if $(r, s) \in \{s > 1, r < 0, r + s \le 1\} \cup \{r \le s < 0\}$, then (4) is reversed.

Proof. Let $g(t) = \frac{z^{t+1}}{t(z^{t-1}-1)}$ with z = x/y > 1. Notice that y > 0, it is easy to see that (4) equivalent to $g(r) \ge g(s)$. For r > 1, we first prove that $g(r) \ge g(1 - r)$, i.e.

$$\frac{y(z^r+1)}{r(z^{r-1}-1)} \ge \frac{y(z^{1-r}+1)}{(1-r)(z^{-r}-1)} = \frac{y(z^r+z)}{(r-1)(z^r-1)}$$

It is sufficient prove that

$$h(z) := (r-1)(z^r-1)(z^r+1) - r(z^{r-1}-1)(z^r+z) \ge 0.$$

Directly calculating yields

$$\begin{split} h(z) &= (r-1)z^{2r} - rx^{2r-1} + rx - r + 1, \\ h'(z) &= 2r(r-1)z^{2r-1} - r(2r-1)z^{2r-2} + r, \\ h''(z) &= 2r(r-1)(2r-1)z^{2r-3}(z-1). \end{split}$$

By r > 1, and z > 1, it follows h''(z) > 0. Therefore, h'(z) > h'(1) = 0, moreover, h(z) > h(1) = 0, i.e. $g(r) \ge g(1 - r)$.

If r > 1, s < 0, $r + s \le 1$, then $s \le 1 - r < 0$, from (i) of Lemma 5, we have $g(r) \ge g(s)$, i.e. (4) holds.

If s > 1, r < 0, $r + s \le 1$, replacing r by s and replacing s by r in the above case, it follows that $g(r) \le g(s)$, i.e. (4) is reversed.

If $0 < r \le 1/2 \le 1 - r \le s < 1$, then h''(z) > 0, it follows h'(z) > h'(1) = 0, moreover, h(z) > h(1) = 0, i.e. $g(r) \ge g(1 - r)$, from (iii) of Lemma 5, we have $g(r) \ge g(1 - r) \ge g(s)$, i.e. (4) holds.

If $1/2 \le r \le s < 1$ or $1 < r \le s$, from (iii) of Lemma 5, we have $g(r) \ge g(s)$ i.e. (4) holds.

If $r \le s < 0$, from (i) of Lemma 5, we have $g(r) \le g(s)$ i.e. (4) is reversed. \Box

3. Proofs of main results

Proof of Theorem 1

Proof. Let $\varphi(x, y) = \frac{x^s + y^s}{x^r + y^r}$. When $r \neq s$, for fixed $(x, y) \in \mathbb{R}^2$, we have

$$\begin{split} \frac{\partial\varphi}{\partial x} &= \frac{sx^{s-1}(x^r + y^r) - rx^{r-1}(x^s + y^s)}{(x^r + y^r)^2}, \\ \frac{\partial\varphi}{\partial y} &= \frac{sy^{s-1}(x^r + y^r) - ry^{r-1}(x^s + y^s)}{(x^r + y^r)^2}. \\ \frac{\partial\varphi}{\partial x} &- \frac{\partial\varphi}{\partial y} &= \frac{s(x^r + y^r)(x^{s-1} - y^{s-1}) - r(x^s + y^s)(x^{r-1} - y^{r-1})}{(x^r + y^r)^2} \\ &= \frac{s(x^{r-1} - y^{r-1})}{(x^r + y^r)} \left[\frac{s-1}{r-1} \cdot \frac{(r-1)(x^{s-1} - y^{s-1})}{(s-1)(x^{r-1} - y^{r-1})} - \frac{r}{s} \cdot \frac{x^s + y^s}{x^r + y^r} \right] \\ &= \frac{s(x^{r-1} - y^{r-1})}{(x^r + y^r)} \left[\frac{s-1}{r-1} \cdot E^{s-r}(r-1, s-1; x, y) - \frac{r}{s} \cdot G^{s-r}(r, s; x, y) \right], \end{split}$$

and then

$$\Delta := (x - y) \left(\frac{\partial G}{\partial x} - \frac{\partial G}{\partial y} \right) = \frac{x - y}{s - r} \left(\frac{\partial \varphi}{\partial x} - \frac{\partial \varphi}{\partial y} \right) \varphi^{\frac{1}{s - r} - 1}(x, y)$$

= $\frac{s(x - y)(x^{r-1} - y^{r-1})}{(s - r)(x^r + y^r)} \left[\frac{s - 1}{r - 1} \cdot E^{s - r}(r - 1, s - 1; x, y) - \frac{r}{s} \cdot G^{s - r}(r, s; x, y) \right] \varphi^{\frac{1}{s - r} - 1}(x, y).$

In Lemma 4, taking l = r, t = s, p = r - 1, q = s - 1, we have

$$\begin{cases} l > 0, t > 0, p > 0, q > 0\\ p > q\\ p + q \le 3(l+t)\\ 1/3 \le l/t \le 3 \end{cases} \Leftrightarrow \begin{cases} r > 1, s > 1\\ r > s\\ r + s \ge -1\\ s/3 \le r \le 3s \end{cases} \Leftrightarrow 3s \ge r > s > 1 \end{cases}$$

and

$$\begin{cases} l > 0, t > 0, p > 0, q > 0\\ p > q\\ p + q \le 3(l + t)\\ q \le l + t \end{cases} \Leftrightarrow \begin{cases} r > 1, s > 1\\ r > s\\ r + s \ge -1\\ r \ge -1 \end{cases} \Leftrightarrow r > s > 1.$$

Hence, when r > s > 1, we have

$$G(r, s; x, y) \leq \left(\frac{r-1}{s-1}\right)^{\frac{1}{r-s}} E(r-1, s-1; x, y),$$

i.e.

$$G^{s-r}(r,s;x,y) \ge \frac{s-1}{r-1} \cdot E^{s-r}(r-1,s-1;x,y).$$
(5)

When r > s > 1, we have s - r < 0 and $(x - y)(x^{r-1} - y^{r-1}) \ge 0$. Combining with (3), it follows that $\Delta \ge 0$. By Lemma 1, G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_{++}$.

Now we consider other cases. Notice that

$$(x-y)\left(\frac{\partial\varphi}{\partial x}-\frac{\partial\varphi}{\partial y}\right)=\frac{s(x^r+y^r)(x-y)(x^{s-1}-y^{s-1})-r(x^s+y^s)(x-y)(x^{r-1}-y^{r-1})}{(x^r+y^r)^2}$$

when $r \ge 1$, $0 \le s \le 1$, since t^{r-1} and t^{s-1} is increasing and decreasing in \mathbb{R}_+ respectively, it follows that $(x - y)(x^{s-1} - y^{s-1}) \ge 0$ and $(x - y)(x^{r-1} - y^{r-1}) \le 0$, moreover, $(x - y)\left(\frac{\partial \varphi}{\partial x} - \frac{\partial \varphi}{\partial y}\right) \le 0$ and

$$\Delta = \frac{x-y}{s-r} \left(\frac{\partial \varphi}{\partial x} - \frac{\partial \varphi}{\partial y} \right) \varphi^{\frac{1}{s-r}-1}(x,y) \ge 0.$$

That is, when $r \ge 1, 0 \le s \le 1$, G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_+$.

When $r < 0, 0 < s \le 1$, since t^{r-1} and t^{s-1} are decreasing in \mathbb{R}_{++} , it follows that $(x - y)(x^{s-1} - y^{s-1}) \le 0$ and $(x-y)(x^{r-1}-y^{r-1}) \leq 0$, moreover, $(x-y)\left(\frac{\partial \varphi}{\partial x}-\frac{\partial \varphi}{\partial y}\right) \leq 0$ and $\Delta \leq 0$, that is, when $r < 0, 0 < s \leq 1$, G(r, s; x, y) is the Schur-concave with $(x, y) \in \mathbb{R}^2_+$.

Without loss of generality, we may assume x > y > 0. Notice that

$$\Delta = \frac{x - y}{s - r} \cdot \frac{s(x^r + y^r)(x^{s-1} - y^{s-1}) - r(x^s + y^s)(x^{r-1} - y^{r-1})}{(x^r + y^r)^2} \varphi^{\frac{1}{s - r} - 1}(x, y).$$

When r > 1, s < 0, $r + s \le 1$, from Lemma 6, it following that $\Delta \le 0$, i.e. G(r, s; x, y) is the Schur-concave with $(x, y) \in \mathbb{R}^2_+$. Similarly, we can prove that when $r \leq s < 0$, G(r, s; x, y) is the Schur-concave with $(x, y) \in \mathbb{R}^2_+$, and when

 $0 < r \le 1 - r \le s$ or $1/2 \le r \le s < 1$, G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_+$.

When
$$r = s \ge 1$$
, let

$$\psi(x, y) = \frac{x^{s} \ln x + y^{s} \ln y}{x^{r} + y^{r}} = \frac{x^{s} \ln x + y^{s} \ln y}{x^{s} + y^{s}}$$

Then

$$\frac{\partial \psi}{\partial x} = \frac{x^{s-1}h(x,y)}{(x^s+y^s)^2}, \qquad \frac{\partial \psi}{\partial y} = \frac{y^{s-1}k(x,y)}{(x^s+y^s)^2},$$

where

$$h(x, y) = (s \ln x + 1)(x^{s} + y^{s}) - s(x^{s} \ln x + y^{s} \ln y),$$

$$k(x, y) = (s \ln y + 1)(x^{s} + y^{s}) - s(x^{s} \ln x + y^{s} \ln y).$$

By computing,

$$\begin{aligned} x^{s-1}h(x,y) - y^{s-1}k(x,y) &= (x^s + y^s) \left[x^{s-1}(s\ln x + 1) - y^{s-1}(s\ln y + 1) \right] - s(x^s\ln x + y^s\ln y)(x^{s-1} - y^{s-1}) \\ &= s^{s-1}y^{s-1}(x+y)(\ln x - \ln y) + (x^{s-1} - y^{s-1})(x^s + y^s), \end{aligned}$$

and then.

$$\begin{aligned} (x-y)\left(\frac{\partial G}{\partial x} - \frac{\partial G}{\partial y}\right) &= (x-y)\left(\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y}\right)e^{\psi(x,y)} \\ &= \frac{sx^{s-1}y^{s-1}(x+y)(x-y)(\ln x - \ln y) + (x-y)(x^{s-1} - y^{s-1})(x^s + y^s)}{(x^s + y^s)^2}e^{\psi(x,y)}. \end{aligned}$$

Since $\ln t$ and t^{s-1} are increasing in \mathbb{R}_+ with t for $s \ge 1$, therefore, $(x - y)(\ln x - \ln y) \ge 0$ and $(x - y)(x^{s-1} - y^{s-1}) \ge 0$, moreover, $(x - y) \left(\frac{\partial G}{\partial x} - \frac{\partial G}{\partial y}\right) \ge 0$. That is, when $r = s \ge 1$, G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_+$.

In conclusion, if $(r, s) \in \{r > s > 1\} \cup \{r = s \ge 1\} \cup \{r \ge 1, 0 \le s \le 1\} \cup \{0 < r \le 1 - r \le s\} \cup \{1/2 \le r \le s < 1\}$, then G(r, s; x, y) is the Schur-convex with $(x, y) \in \mathbb{R}^2_+$, and if $(r, s) \in \{r < 0, 0 < s \le 1\} \cup \{r > 1, s < 0, r+s \le 1\} \cup \{r \le s < 0\}$, then G(r, s; x, y) is the Schur-concave with $(x, y) \in \mathbb{R}^2_+$.

Since G(r, s; x, y) is symmetric with (r, s), if $(r, s) \in \{s > r > 1\} \cup \{s \ge 1, 0 \le r \le 1\} \cup \{0 < s \le 1 - s \le r\} \cup \{1/2 \le 1 \le r \le 1\}$ $s \le r < 1$ }, then G(r, s; x, y) is also the Schur-convex with $(x, y) \in \mathbb{R}^2_+$, and if $(r, s) \in \{s < 0, 0 < r \le 1\} \cup \{s > 1, r < s < 0\}$ 0, r + s < 1 \cup {s < r < 0}, then G(r, s; x, y) is also the Schur-concave with $(x, y) \in \mathbb{R}^2_+$.

The proof is complete. \Box

Remark 1. The Schur-convexity of the function G(r, s; x, y) on the set $\{s < 0, r + s > 1\}$ or $\{r < 0, r + s > 1\}$ or $\{r > 0, s > 0, r + s < 1\}$ with (x, y) is uncertain.

Example 1. Let (r, s) = (2.5, -1.2). It is clear that $(2.5, -1.2) \in \{s < 0, r+s > 1\}$. For $(3, 3) \prec (5, 1)$, directly calculating vields

G(2.5, -1.2; 3, 3) = 3.00000000 > G(2.5, -1.2; 5, 1) = 2.873884533.

But, for $(1.25, 1.25) \prec (1.5, 1)$, directly calculating yields

G(2.5, -1.2; 1.25, 1.25) = 1.25.0000000 < G(2.5, -1.2; 1.5, 1) = 1.256253447.

Example 2. Let (r, s) = (-0.2, 1.5). It is clear that $(-0.2, 1.5) \in \{r < 0, r + s > 1\}$. For $(8, 8) \prec (15, 1)$, directly calculating yields

G(-0.2, 1.5; 8, 8) = 8.000000000 < G(-0.2, 1.5; 15, 1) = 8.412747770.

But, for $(25.5, 25.5) \prec (50, 1)$, directly calculating yields

G(-0.2, 1.5; 25.5, 25.5) = 25.5.0000000 > G(-0.2, 1.5; 50, 1) = 25.32833093.

Example 3. Let (r, s) = (0.6, 0.2). It is clear that $(0.6, 0.2) \in \{r > 0, s > 0, r + s < 1\}$. For $(10.5, 10.5) \prec (20.9, 0.1)$, directly calculating yields

G(0.6, 0.2; 10.5, 10.5) = 10.5.0000000 < G(0.6, 0.2; 20.9, 0.1) = 11.03249418.

But, for $(10.5, 10.5) \prec (18, 3)$, directly calculating yields

G(0.6, 0.2; 10.5, 10.5) = 10.50000000 > G(0.6, 0.2; 18, 3) = 9.970045812.

Proof of Theorem 2

Proof. Let

$$\varphi(x, y) = \frac{x^s + y^s}{x^r + y^r}$$

When $r \neq s$, for fixed $(x, y) \in \mathbb{R}^2$, we have

$$\begin{aligned} x \frac{\partial \varphi}{\partial x} &= \frac{sx^s(x^r + y^r) - rx^r(x^s + y^s)}{(x^r + y^r)^2}, \\ y \frac{\partial \varphi}{\partial y} &= \frac{sy^s(x^r + y^r) - ry^r(x^s + y^s)}{(x^r + y^r)^2}. \\ x \frac{\partial \varphi}{\partial x} - y \frac{\partial \varphi}{\partial y} &= \frac{s(x^r + y^r)(x^s - y^s) - r(x^s + y^s)(x^r - y^r)}{(x^r + y^r)^2} \\ &= \frac{s(x^r - y^r)}{x^r + y^r} \left[\frac{s}{r} \cdot \frac{r(x^s - y^s)}{s(x^r - y^r)} - \frac{r}{s} \cdot \frac{x^s + y^s}{x^r + y^r} \right] \\ &= \frac{s(x^r - y^r)}{x^r + y^r} \left[\frac{s}{r} \cdot E^{s-r}(r, s; x, y) - \frac{r}{s} \cdot G^{s-r}(r, s; x, y) \right]. \end{aligned}$$

and then

$$(\ln x - \ln y)\left(x\frac{\partial G}{\partial x} - y\frac{\partial G}{\partial y}\right) = \frac{\ln x - \ln y}{s - r}\left(x\frac{\partial \varphi}{\partial x} - y\frac{\partial \varphi}{\partial y}\right)\varphi^{\frac{1}{s - r} - 1}(x, y)$$
$$= \frac{s(\ln x - \ln y)(x^r - y^r)}{(s - r)(x^r + y^r)}\left[\frac{s}{r} \cdot E^{s - r}(r, s; x, y) - \frac{r}{s} \cdot G^{s - r}(r, s; x, y)\right]\varphi^{\frac{1}{s - r} - 1}(x, y).$$

In Lemma 4, taking l = p = r, t = q = s, we have

$$\begin{cases} l > 0, t > 0, p > 0, q > 0\\ p > q\\ p + q \le 3(l + t)\\ 1/3 \le l/t \le 3 \end{cases} \Leftrightarrow \begin{cases} r > 0, s > 0\\ r > s\\ r + s \ge -1\\ s/3 \le r \le 3s \end{cases} \Leftrightarrow 3s \ge r > s > 0$$

and

$$\begin{cases} l > 0, t > 0, p > 0, q > 0 \\ p > q \\ p + q \le 3(l + t) \\ q \le l + t \end{cases} \Leftrightarrow \begin{cases} r > 0, s > 0 \\ r > s \\ r + s \ge -1 \\ r \ge 0 \end{cases} \Leftrightarrow r > s > 0.$$

Hence, when r > s > 0, we have

$$G(r, s; x, y) \leq \left(\frac{r}{s}\right)^{\frac{1}{r-s}} E(r, s; x, y),$$

i.e.

$$G^{s-r}(r,s;x,y) \ge \frac{s}{r} \cdot E^{s-r}(r,s;x,y).$$
(6)

When r > s > 0, we have s - r < 0, and since $\ln t$ and t^r are increasing in \mathbb{R}_+ with t, therefore $(\ln x - \ln y)(x^r - y^r) \ge 0$. Combining with (6), it follows that $(\ln x - \ln y)\left(x\frac{\partial G}{\partial x} - y\frac{\partial G}{\partial y}\right) \ge 0$. By Lemma 2, G(r, s; x, y) is the Schur-geometrically convex with (x, y) in \mathbb{R}^2_+ . Since G(r, s; x, y) is symmetric with (r, s), when s > r > 0, G(r, s; x, y) is also the Schur-geometrically convex with $(x, y) \in \mathbb{R}^2_+$.

Now we consider other cases.

Without loss of generality, we may assume x > y > 0. Notice that

$$\Lambda = \frac{\ln x - \ln y}{s - r} \cdot \frac{s(x^r + y^r)(x^s - y^s) - r(x^s + y^s)(x^r - y^r)}{(x^r + y^r)^2} \varphi^{\frac{1}{s - r} - 1}(x, y),$$

when r = s > 0, we have

$$\frac{\partial \psi}{\partial x} = \frac{x^{s-1}h(x,y)}{(x^s+y^s)^2}, \qquad \frac{\partial \psi}{\partial y} = \frac{x^{s-1}k(x,y)}{(x^s+y^s)^2},$$

where h(x, y), k(x, y) and $\psi(x, y)$ are the same as in Theorem 2.

By computing,

$$x^{s}h(x, y) - y^{s}k(x, y) = s^{s}y^{s}(x + y)(\ln x - \ln y) + (x^{s} - y^{s})(x^{s} + y^{s}),$$

and then,

$$(\ln x - \ln y) \left(x \frac{\partial G}{\partial x} - y \frac{\partial G}{\partial y} \right) = (\ln x - \ln y) \left(x \frac{\partial \psi}{\partial x} - y \frac{\partial \psi}{\partial y} \right) e^{\psi(x,y)}$$
$$= \frac{s x^s y^s (x+y) (\ln x - \ln y)^2 + (\ln x - \ln y) (x^s - y^s) (x^s + y^s)}{(x^s + y^s)^2} e^{\psi(x,y)}.$$

Since when s > 0, $\ln t$ and t^s are increasing in \mathbb{R}_+ , $(\ln x - \ln y)(x^s - y^s) \ge 0$, moreover, $(\ln x - \ln y)\left(x\frac{\partial G}{\partial x} - y\frac{\partial G}{\partial y}\right) \ge 0$. That is, when r = s > 0, G(r, s; x, y) is the Schur-geometrically convex with $(x, y) \in \mathbb{R}^2_+$.

In conclusion, if $(r, s) \in \{r > s > 0\} \cup \{s > r > 0\} \cup \{r = s > 0\} = \mathbb{R}^2_+$, G(r, s; x, y) is the Schur-geometrically convex with $(x, y) \in \mathbb{R}^2_+$.

The proof is complete. \Box

4. Applications

Theorem 3. Let $(x, y) \in \mathbb{R}^2_{++}$, u(t) = ty + (1-t)x, v(t) = tx + (1-t)y. Assume also that $\frac{1}{2} \le t_2 \le t_1 \le 1$ or $0 \le t_1 \le t_2 \le 1$. If $(r, s) \in \{r \ge 0, s \ge 0, r+s \ge 1\} \subseteq \mathbb{R}^2$, then for fixed $(r, s) \in \mathbb{R}^2$, we have

$$G\left(r, s; \frac{x+y}{2}, \frac{x+y}{2}\right) \le G(r, s; u(t_2), v(t_2))$$

$$\le G(r, s; u(t_1), v(t_1)) \le G(r, s; x, y) \le G(r, s; x+y, 0).$$
(7)

If $(r, s) \in \{r \le 0, r + s \le 1\} \cup \{s \le 0, r + s \le 1\} \subseteq \mathbb{R}^2$, then inequalities in (7) are all reversed.

Proof. From Lemma 3, we have

$$\left(\frac{x+y}{2},\frac{x+y}{2}\right) \prec \left(u(t_2),v(t_2)\right) \prec \left(u(t_1),v(t_1)\right) \prec (r,s)$$

and it is clear that $(x, y) \prec (x + y - \varepsilon, \varepsilon)$, where ε is enough small positive number.

If $(r, s) \in \{r \ge 1, s > 0\} \cup \{0 < r < 1, s \ge 1\}$, by Theorem 1, and let $\varepsilon \to 0$, it follows that (7) holds. If $(r, s) \in \{r < 0, 0 < s < 1\} \cup \{0 < r < 1, s < 0\}$, then inequalities in (7) are all reversed.

The proof is complete. \Box

Theorem 4. Let $(x, y) \in \mathbb{R}^2_{++}$. For fixed $(r, s) \in \mathbb{R}^2_+$, we have

$$G(r,s;\sqrt{xy},\sqrt{xy}) \le G(r,s;x,y). \tag{8}$$

Proof. Since $(\ln \sqrt{xy}, \ln \sqrt{xy}) \prec (\ln x, \ln y)$, by Theorem 2, it follows that (8) holds. The proof is complete. \Box

Acknowledgment

The first author was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611417009).

References

- [1] C. Gini, Di una formula compresiva delle medie, Metron 13 (1938) 3-22.
- [2] P.S. Bullen, D.S. Mitrinović, P.M. Vasić, Means and Their Inequalities, Reidel, Dordecht, 1988.
- [3] P.S. Bullen, Handbook of Means and their Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003, p. 15.
- [4] K.B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (2) (1975) 87–92. 16.
- [5] K.B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly 87 (1980) 545-548.
- [6] Feng Qi, József Sándor, Sever S. Dragomir, Anthony Sofo, Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (3) (2005) 411–420. Available online at http://www.math.nthu.edu.tw/tjm/.
- [7] Huan-nan Shi, Shan-he Wu, Feng Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl. 9 (2) (2006) 219-224. MR2225008 (2007a:26016).
- [8] József Sándor, The Schur-convexity of Stolarsky and Gini Means, Banach J. Math. Anal. 1 (2) (2007) 212–215.
- [9] Edward Neuman, Zsolt Ples, On comparison of Stdlarsky and Gini means, J. Math. Anal. Appl. 278 (2003) 274–284.
- [10] Zsolt Ples, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988) 265-270.
- [11] Zsolt Ples, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988) 271-281.
- [12] József Sándor, Anote on the Gini means, Genneral Math. 12 (4) (2004) 17-21.
- [13] C.E.M. Pearce, J. Pečarić, J. Sándor, A generalization of Pólya's inequality to Stolarsky and Gini means, Math. Inequal. Appl. 1 (2) (1998) 211–222.
- [14] Peter Czinder, Zsolt Ples, An extension of the Gini and Stdlarsky means, J. Inequl. Pure Appl. Math. 5 (2) (2004) Art. 42; Available online at http://jipam.vu.edu.an/.
- [15] Pter Czindeer, Zsolt Ples, An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, J. Inequal. Pure Appl. Math. 5 (2) (2004) Paper No. 42, 8 p., electronic only. Zbl 1057.26014.
- [16] Bo-ying Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990 (in Chinese).
- [17] A.M. Marshall, I. Olkin, Inequalities: Theory of majorization and its application, Academies Press, New York, 1979.
- [18] Xiao-ming Zhang, Geometrically Convex Functions, An'hui University Press, Hefei, 2004 (in Chinese).
- [19] Constantin P. Niculescu, Convexity According to the Geometric Mean, Math. Inequal. Appl. 3 (2) (2000) 155-167.
- [20] Peter A. Hasto, Monotonicity property of ratios of symmetric homogeneous means, J. Inequal. Pure Appl. Math. 3 (5) (2002) 1–23. Article 71.