Discrete Mathematics 14 (1976) 247-255. © North-Holland Publishing Company

TRAVERSABILITY AND CONNECTIVITY OF THE MIDDLE GRAPH OF A GRAPH

Takashi HAMADA

Department of Applied Mathematics, Science University of Tokyo, Tokyo, Japan

Izumi YOSHIMURA

Tokai University, Kitakaname, Hiratsuka, Japan

Received 4 April 1973 Revised 15 December 1973 Final version received 24 June 1974

We define a graph M(G) as an intersection graph $\Omega(F)$ on the point set V(G) of any graph G. Let X(G) be the line set of G and $F = V'(G) \cup X(G)$, where V'(G) indicates the family of all one point subsets of the set V(G). Let $M(G) = \Omega(F)$. M(G) is called the middle graph of G. The following theorems result:

Theorem 1. Let G be any graph and G^+ be a graph constructed from G. Then we have $L(G^+) \cong M(G)$, where $L(G^+)$ is the line graph of G^+ .

Theorem 2. Let G be a graph. The middle graph M(G) of G is hamiltonian if and only if G contains a closed spanning trail.

Theorem 3. If a graph G is culerian, then the middle graph M(G) of G is culerian and hamiltonian.

Theorem 4. If M(G) is eulerian, then G is eulerian and M(G) is hamiltonian.

Theorem 5. Let G be a graph. The middle graph M(G) of G contains a closed spanning trail if and only if G is connected and without points of degree ≤ 1 .

Theorem 6. If a graph G is n-line connected, then the middle graph M(G) is n-connected.

1. Introduction

In this paper we shall consider a graph as finite, undirected, with single lines and no loops. All definitions not presented here can be found in [5].

1.1. Let $u_1, u_2, ..., u_p; x_1 = \{u_{i_1}, u_{j_1}\}, x_2 = \{u_{i_2}, u_{j_2}\}, ..., x_q = \{u_{i_q}, u_{j_q}\},$ denote the points and lines of a (p, q) graph G.

$$V(G) = \{u_1, u_2, ..., u_p\},$$

$$X(G) = \{x_1, x_2, ..., x_q\},$$

$$V'(G) = \{[u_1]\}, \{u_2\}, ..., \{u_p\}\}.$$

Definition 1. We define the *middle graph* of G, denoted M(G), as an intersection graph $\Omega(F)$ on V(G), where

$$F = V'(G) \cup X(G) = \{\{u_1\}, ..., \{u_p\}, x_1, x_2, ..., x_q\}.$$

1.2. Let L(G), T(G), S(G) denote the line graph, the total graph and the subdivision graph of G, respectively. Then,

$$L(G) \subset M(G) \subset T(G), \quad S(G) \subset M(G);$$

$$|V(M(G))| = |V(G)| + |V(L(G))| = p + q;$$

$$|X(M(G))| = |X(S(G))| + |X(L(G))| = |X(T(G))| - |X(G)|$$

1

$$= \frac{1}{2} \sum_{i=1}^{p} (\rho_G(u_i))^2 + q ,$$

where |A| denotes the cardinality of set A and $\rho_G(u_i)$ is the degree of u_i in G.

We define the iterated middle graph $M^k(G)$ as follows: $M^1(G) = M(G)$, $M^2(G) = M(M(G)), M^k(G) = M(M^{k-1}(G)), k \ge 2$. We abbreviate L(G). $T(G), S(G), M(G), M^k(G)$ as L, T, S, M, M^k , respectively.

The following equalities hold:

(1)
$$\rho_M(u) = \rho_{Mk}(u) = \rho_G(u) \quad \text{for } u \in G.$$

(2)
$$\rho_M(v) = \rho_L(v) + 2 = \rho_G(s) + \rho_G(t) \quad \text{for } v \in L(G)$$

where s, t are the two end points of line x in G, corresponding to v.

1.3. Construction $(t \ M(G))$: Construct the subdivision graph S(G) of a given graph G. Construct further the complete graph K_{ti} $(t_i = \rho_G(u_i) + 1)$ for each point u_i of G, containing u_i and $\rho_G(u_i)$ points of S(G) adjacent to u_i (i = 1, 2, ..., p). Then the result is the middle graph M(G) of G (Fig. 1(i)).

248

1.4. M(G) is partitioned into line-disjoint complete graphs K_{t_i} (i = 1, 2, ..., p) in such a way that two distinct K_{t_i} , K_{t_j} $(i \neq j)$ have only the subdivision point of line $\{u_i, u_j\}$ in common if and only if u_i and u_j are adjacent.

Definition 2. Let G be any (p,q) graph and V(G), X(G) be the point set of G and the line set of G respectively (see 1.1). We add to G p points v_i and p lines $\{u_i, v_i\}$ (i = 1, 2, ..., p), where v_i are different from the points u_i of G and from each other. Then we obtain a (2p, p+q) graph which consists of the point set $V(G^+) = \{u_1, ..., u_p, v_1, ..., v_p\}$ and the line set $X(G^+) = \{x_1, ..., x_q, \{u_1, v_1\}, ..., \{u_p, v_p\}\}$. Let us denote this graph by G^+ (Fig. 1(ii)).

Theorem 1. Let G be any graph. Then $L(G^+) \cong M(G)$, where the symbol \cong means isomorphism.

Proof. By the definitions of line graph and middle graph, we have $L(G^+) = \Omega(X(G^+))$. $M(G) = \Omega(V'(G) \cup X(G))$ (see 1.1).

Let the elements $\{u_i, v_i\}, x_j$ of the set $X(G^+)$ correspond to the elements $\{u_i\}, x_j$ of the set $V'(G) \cup X(G)$, respectively. Then we have a one to one correspondence between the elements of the two sets. Hence we have a one to one correspondence between the points of the graphs $L(G^+)$ and M(G).

By the assumption that the points v_i are different from the points u_j of G, and that v_i are distinct from each other, we have

$$\{u_i, v_i\} \cap \{u_j, v_j\} = \{u_i\} \cap \{u_j\} = \emptyset \quad (i \neq j) ,$$

$$\{u_i, v_i\} \cap x_j = \{u_i\} \cap x_j , \quad x_i \cap x_j = x_i \cap x_j .$$

This shows that the intersection of the two elements of $X(G^+)$ coincides with that of the corresponding two elements of $V'(G) \cup X(G)$. Hence we see that the adjacency of two points in $L(G^+)$ coincides with that of the corresponding two points in M(G).

Therefore the two graphs $L(G^+)$ and M(G) are isomorphic. Thus the theorem is proved.

2. The traversability of M(G)

Proposition 8 in [6] states: L(G) is hamiltonian if and only if there is a tour in G which includes at least one end-point of each line of G (a tour is the same as the closed trail).

If G contains a closed spanning trail, say T, then G^+ contains a tour T, that is a closed trail as is described in [6, Proposition 8]. Conversely let us suppose that G^+ contains a tour T, which includes at least one endpoint of each line of G^+ . Then it is evident that T does not pass points v_i (i = 1, ..., p) (see Definition 2).

Assume that T does not pass a point u_i (see Definition 2). Then T cannot pass any one of the endpoints of line $\{u_i, v_i\}$, contradicting the hypothesis. Hence T passes all the points u_i (i = 1, ..., p) of G, i.e., G contains a closed spanning trail T. The above considerations and Theorem 1 lead to:

Theorem 2. Let G be a graph. The middle graph M(G) of G is hamiltonian if and only if G contains a closed spanning trail.

Theorem 3. If a graph G is eulerian, then the middle graph M(G) of G is eulerian and hamiltonian.

Proof. It is evident that M(G) is eulerian from the equalities (1) and (2). M(G) is hamiltonian by Theorem 2.

Corollary 3.1. If G is eulerian, then $M^k(G)$, $k \ge 1$, is eulerian and hamiltonian.

Theorem 4. If M(G) is culerian, then G is culerian and M(G) is hamiltonian.

Proof. G is eulerian by (1), and hence M(G) is hamiltonian by Theorem 3.

The proof of the following Theorem 5 is due to the referee of this paper.

Theorem 5. Let G be a graph. The middle graph M(G) of G contains a closed spanning trail if and only if G is connected and without points of degree ≤ 1 .

Proof. If G is disconnected, then clearly M(G) is also disconnected. Accordingly, M(G) cannot contain a spanning trail. If G has a point of degree ≤ 1 , then M(G) has also a point of degree ≤ 1 from the equality (1). Accordingly, M(G) cannot contain a closed trail. Therefore the necessity is established. Let us turn to the proof of sufficiency.

Let G be connected and without points of degree less than 2 and let T be a spanning tree of G. By the very definitions, M(T) is a subgraph of M(G). Let us construct a closed almost-spanning trail of M(T), where we define an almost-spanning trail as a trail which passes through all points of M(T) except the pendant ones (which are also pendant in T, as obvious).

Fig. 2.

The construction is as follows: First take a path P in T linking two pendant vertices, p_1 and p_2 . Starting from a point in M(P) adjacent to say p_1 (which represents the pendant edge of P incident to p_1) follow the lines in L(P) and return by those in S(P). We obtain a trail as required corresponding to P. If $T \neq P$, then points of Jegree higher than 2 exist in P. Let w be such a point and $p_3 (\neq p_1, p_2)$ a pendant vertex in a branch of T rooted at w. A path $P'(w, p_3)$ exists. The non-pendant points in M(P')will be included in an extended trail obtained from the preceding one by taking, in an obvious notation, x_2 , x_3 , L(C'), S(P'), x_3 , w, x_1 instead of x_2 , w, x_1 (see Fig. 2, where not all lines are pictured).

If the degree of w is higher than 3 (as in the case shown in Fig. 2), then consider another pendant vertex, s=y p_4 , and the path $P''(w, p_4)$ and insert now $x_3, x_4, L(P''), S(P''), x_4, w, x_1$ instead of x_3, w, x_1 , and so on.

Repeat this construction as long as points of degree higher than 2 are to be considered. A closed almost-spanning trail of M(T) will be obtained.

Now let us add to T, successively, the edges in E(G) - E(T). We successively extend the trail so that the points representing these edges in

Fig. 4.

į

Fig. 5.

M(G) are included:

(a) If the added edge x_q links two non-pendant vertices w', w" (Fig. 3) in the graph we have at this stage, then, in the trail ... $x_i, w', x_j, ..., x_m$, w", x_n, ..., we insert x_m, x_q, w", x_n instead of x_m, w", x_n.
(b) If x_q links a pendant vertex w" to a non-pendant vertex w' (Fig. 4),

then, in the trail ... x_m , ..., x_i , w', x_j , ..., we set x_i , x_q , x_m , w'', x_q , w', x_j instead of x_i , w', x_i .

(c) If x_q links two pendant vertices w', w" (Fig. 5), then, in the trail ... $x_m, ..., x_n, ..., we$ set $x_n, x_q, x_m, w', x_q, w'', x_n$ instead of x_n . These additions of lines do not use already used lines. Moreover, all

points will be introduced in the trail.

This completes the proof of the theorem.

Corollary 5.1. The graph $M^k(G)$, $k \ge 2$, is hamiltonian if and only if G is connected and without points of degree ≤ 1 .

3. The connectivity of M(G)

The connectivity and the line-connectivity of M(G) are simpler than those of T(G), L(G) (see [1,3,4,7,8]).

Theorem 6. If a graph G is n-line connected, then the middle graph M(G)of G is n-connected

Proof. The theorem is evident for n = 0 or $G = K_2$. Therefore we assume that $n \ge 1$ and $G \ne K_2$ in the following. It suffices to show that there exist at least n disjoint paths between any two distinct points u, v in M(G)(see [5, Theorem 5.101).

(i) When $u \in G$, $v \in G$, there exist at least *n* line-disjoint paths between *u* and *v* in *G*. If we subdivide all lines of all these paths, then they may be considered as *n* line-disjoint paths between *u*, *v* in M(G). Suppose that some of them have a point *w* in common. Further let $u_1, v_1 \in L(G)$ be two points on one of these paths and adjacent to *w*. Then the new path obtained by replacing subpath $u_1 w v_1$ with line (u_1, v_1) is a path between *u*, *v* in M(G) which does not pass *w*. Let us perform similar constructions on all other paths passing *w*. Repeating this process for all paths which have points in common, we obtain *n* disjoint paths between *u*, *v* in M(G).

(ii) Let $u \in G$, $v \in L(G)$ and let $v', v'' \in G$ be the end-points of the edge v in G. There are at least n line-disjoint paths in G between u and v' and consequently, as shown in case (i), n point-disjoint paths in M(G). Consider the n lines in G incident to v', say $(w_1, v'), ..., (w_n, v')$, each one belonging to a distinct path. Let $u_1, ..., u_n$ be the points in L(G) corresponding to these lines (eventually $u_j = v$). We obtain n point-disjoint paths between u and v, by taking now, for each i, the subpath $w_i u_i v$ instead of the subpath $w_i u_i v'$. If $u_j = v$, then take (v'', v) instead of the subpath $u''_i v'$.

(iii) When $u \in L(G)$, $v \in L(G)$, there are two distinct points u, v in L(G), since $n \ge 1$. $G \ne K_2$. Therefore there exist *n* disjoint paths between u, v in M(G) (see [3, Theorem 1]).

Thus the proof of Theorem 6 is completed.

Corollary 6.1. If G is n-line connected, then $M^k(G)$ is n-connected for all $k \ge 1$.

Corollary 6.2. If G is n-connected, then $M^k(G)$ is n-connected for all $k \ge 1$.

Acknowledgement

We are very grateful to the referee for his suggestions in advancing the proofs of Theorems 2, 5 and 6 and pointing out some mistakes.

References

- [1] M. Belizad, The connectivity of total graphs, J. Austral. Math. Soc. 1 (1969) 175-181.
- [2] M. Behzad and G. Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. 15 (1966) 117-120.

- [3] G. Chartrand and M. James Stewart, The connectivity of line graphs, Math. Ann. 182 (1969) 170-174.
- [4] T. Hamada, T. Nonaka and I. Yoshimura, On the connectivity of total graphs, Math. Ann. 196 (1972) 30-38.
- [5] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
- [6] F. Harary and C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701-709.
- [7] J.M.S. Simões-Pereira, Connectivity, line-connectivity and J-connection of the total graphs. Math. Ann. 196 (1972) 48-57.
- [8] T. Zamfirescu, On the line connectivity of line graphs, Math. Ann. 187 (1970) 305-309.