TRAVERSABILITY AND CONNECTIVITY OF THE MIDDLE GRAPH OF A GRAPH

Takashi HAMADA
Department of Applied Muthematics, Science Unve rsity of Tokyo, Tokyo, Japan

Izumi YOSHIMURA

Tokai University, Kitakaname, Hiratsuka, Japan

Received 4 April 1973
Revised 15 December 1973
Final version received 24 June 1974

We define a graph $M(G)$ as an intersection graph $\Omega(F)$ on the point set $V(G)$ of any graph G. Let $X(G)$ be the line set of G and $F=V^{\prime}(G) \cup X(G)$, where $V^{\prime}(G)$ indicates the family of all ore point subsets of the set $V(G)$. Let $M(G)=\Omega(F) . M(G)$ is called the middle graph of G. The following theorems result:

Theorem 1. Let G be any graph and G^{+}be a graph constructed from G. Then we have $L\left(G^{+}\right) \approx M(G)$, where $L\left(G^{+}\right)$is the line graph of G^{+}.

7heorem 2. Let G be a graph. The middle graph $M(G)$ of G is hamiltonian if and only if G contains a closed sparning trail.

Theorem 3. If a graph G is eulerian, then the middle graph $M(G)$ of G is eulerian and hamit nian.

Theorem 4. If $M(G)$ is eulerian, then G is eulerian and $M(G)$ is hamiltonian.
Theorem 5. Let G be a graph. The middle graph $M(G)$ of G contains a closed spanning trail if and only if G is connected and without points of degree $\leqslant 1$.

Theorem 6. If a graph G is n-line connected, then the middle graph $M(G)$ is n-connected.

1. Introduction

In this paper we s lall consider a graph as finite, undirected, with single lines and no loops. All definitions not nresented here can be found in [5].
1.1. Let $u_{1}, u_{2}, \ldots, u_{p} ; x_{1}=\left\{u_{i_{1}}, u_{j_{1}}\right\}, x_{2}=\left\{u_{i_{2}}, u_{j_{2}}\right\}, \ldots, x_{q}=\left\{u_{i_{q}}, u_{i_{q}}\right\}$, denote the points and lines of a (p, q) graph G.

Let

$$
\begin{aligned}
& V(G)=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\} \\
& X(G)=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}, \\
& V^{\prime}(G)=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{p}\right\}\right\} .
\end{aligned}
$$

Definition 1. We define the midale graph of G, denoted $M(G)$, as an intersection graph $\Omega(F)$ on $V(G)$, where

$$
F=V^{\prime}(G) \cup X(G)=\left\{\left\{u_{1}\right\}, \ldots,\left\{u_{p}\right\}, x_{1}, \otimes_{2}, \ldots, x_{q}\right\}
$$

1.2. Let $L(G), T(G), S(G)$ denote the line graph, the total graph and the subdivision graph of G, respectively. Then,

$$
\begin{aligned}
& L(G) \subset M(G) \subset T(G), \quad S(G) \subset M(G) \\
& |V(M(G))|=|V(G)|+|V(L(G))|=p+q \\
& \mid X(M(G)|=|X(S(G))|+|X(L(G))|=|X(T(G))|-|X(G)|
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{i=1}^{p}\left(\rho_{G}\left(u_{i}\right)\right)^{2}+q,
$$

where $|A|$ denotes the cardinality of set A and $\rho_{G}\left(u_{i}\right)$ is the degree of u_{i} in G.

We define the iterated middle graph $M^{k}(G)$ as follows: $M^{1}(G)=M(G)$. $M^{2}(G)=M(M(G)), M^{k}(G)=M\left(M^{k-1}(G)\right), k \geqslant 2$. We abbreviate $L(G)$. $T(G), S(G), M(G), M^{k}(G)$ as L, T, S, M, M^{k}, respectively.

The following equalities hoid:

$$
\begin{equation*}
\rho_{M}(u)=\rho_{M^{k}}(u)=\rho_{G^{(i d)}} \quad \text { for } u \in G . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{M}(v)=\sigma_{L}(v)+2=\rho_{G}(s)+\rho_{G}(t) \quad \text { for } v \in L(G), \tag{2}
\end{equation*}
$$

where s, t are the two end points of line x in G, corresponding to v.
1.3. Construction ($M(G)$: Construct the subdivision graph $S(G)$ of a given graph G. Construit further the complete graph $K_{t_{i}}\left(t_{i}=\rho_{G}\left(u_{i}\right)+1\right)$ for each point u_{i} of G, containing u_{i} and $\rho_{G}\left(u_{i}\right)$ points of $S(G)$ adjacent to $u_{i}(!=1,2, \ldots, p)$. Then the result is the middle graph $M(G)$ of G (Fig. III)

Fig. 1.
1.4. $M(G)$ is partitioned into line-disjoint complete graphs $K_{t_{i}}(i=1,2$. ...p) in such a way that two distinct $K_{t_{i}}, K_{t_{j}}(i \neq j)$ have only the subdivision point of line $\left\{u_{i}, u_{i}\right\}$ in common if and only if u_{i} and u_{j} are adjacent.

Definition 2. Let G be any (p, q) graph and $V(G), X(G)$ be the point set of G and the line set of G respectively (see 1.1). We add to $G p$ points v_{i} and p lines $\left\{u_{i}, v_{i}\right\}(i=1,2, \ldots, p)$, where v_{i} are different from the points u_{i} of G and from each other. Then we obtain a $(2 p, p+q)$ graph which consists of the point set $V\left(G^{+}\right)=\left\{u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{p}\right\}$ and the line set $X\left(G^{+}\right)=\left\{x_{1}, \ldots, x_{q},\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{p}, v_{p}\right\}\right\}$.

Let us denote the graph by G^{+}(Fig. (iii)).
Theorem 1. Let C be any graph. Then $L\left(G^{+}\right) \geq M(G)$, where the symbol \cong means isomorphism.

Proof. By the defintions of line graph and midlle graph, we have $L\left(G^{+}\right)=$ $\Omega\left(X\left(G^{+}\right)\right), M(G)=\Omega\left(V^{\prime}(G) \cup X(G)\right)$ (see 1.1$)$.

Let the elements $\left\{u_{i}, v_{i}\right\}, x_{j}$ of the set $X\left(G^{+}\right)$correspond to the elements $\left\{u_{i}\right\}, x_{j}$ of the set $V^{\prime}(G) \cup X(G)$, respectiveiy. Then we have a one to one correspondence between the elements of the two sets. Hence we have a one to one correspondence between the points of the graphs $L\left(G^{+}\right)$and $M(G)$.

By the assumption that the points v_{i} are different from the points u_{j} of G. and that v_{i} are distinct from each other, we have

$$
\begin{aligned}
& \left\{u_{i}, u_{i}\right\} \cap\left\{u_{j}, v_{j}\right\}=\left\{u_{i}\right\} \cap\left\{u_{j}\right\}=\emptyset \quad(i \neq j), \\
& \left\{u_{i}, v_{i}\right\} \cap x_{j}=\left\{u_{i}\right\} \cap x_{j}, \quad x_{i} \cap x_{j}=x_{i} \cap x_{j}
\end{aligned}
$$

This shows that the intersection of the two elements of $X\left(G^{+}\right)$coincides with that of the corresponding two elements of $V^{\prime}(G) \cup X(G)$. Hence we see that the adjacency of two points in $L\left(G^{+}\right)$coincides with tha! of the corresponding two points in $M(G)$.

Therefore the two graphs $L\left(G^{+}\right)$anc $M(G)$ are isomorphic. Thus the thecrem is proved.

2. The traversability of $M(G)$

Proposition 8 in [6] states: $L(G)$ is hamiltonian if and only if there is a tour in G which includes at least one end-point of each line of G (a tour is the same as the closed trail).

If G contains a closed spanning trail, say T, then G^{+}contains a tour T. that is a closed trail as is described in [6, Proposition 8]. Conversely let us suppose that G^{+}contains a tour T, which includes at least one endpoint of each line of G^{+}. Then it is evident that T does not pass points $v_{i}(i=1, \ldots, p)$ (see Definition 2).

Assume that T does not pass a point u_{i} (see Definition 2). Then T cannot pass any one of the endpoints of line $\left\{u_{i}, v_{i}\right\}$, contradicting the hypothesis. Hence T passes all the points $u_{i}(i=1, \ldots, p)$ of G, i.e., G contains a closed spanning trail T. The above considerations and Theorem 1 lead to:

Theorem 2. Let G be a graph. The middle graph $M(G)$ of G is hamiltonian if and only if G contains a closed spanning trail.

Theerem 3. If a graph G is eulerian, then the middle graph $M(G)$ of G is culerian and hamiltonian.

Proof. It is evident that $M(G)$ is eulerian from the equalities (1) and (2). $M(G)$ is hamiltonian by Theorem 2.

Corollary 3.1. If G is eulerian, then $M^{k}(G), k \geqslant 1$, is eulerian and hamiltonian.

Theorem 4. If $M(G)$ is culerian, then G is eulerian and $M(G)$ is hamiltonian.
Proof. G is eulerian by (1), and hence $M(G)$ is hamiltonian by Theorem 3 .
The proof of the following Theorem 5 is due to the referee of this paper.

Theorem 5. Let G be a graph. The middle graph $M(G)$ of G contains a closed spanning trail if and only if G is connected and without points of degree $\leqslant 1$.

Proof. If G is disconnected, then clearly $M(G)$ is also disconnected. Accordingly, $M(G)$ cannot contain a spanning trail. If G has a point of degree $\leqslant 1$, then $M(G)$ hes also a point of degree $\leqslant 1$ from the equality (1). Accordingly, $M(G)$ cannot contain a closed trail. Therefore the necessity is established. Let us turn to the proof of sufficiency.

Let G be connected and without points of degree less than 2 and let T be a spanning tre: of G. By the very definitions, $M(T)$ is a subgraph of $M(G)$. Let us constract a closed almost-spanning trail of $M(T)$, where we define an almost-spanning trail as a trail which passes through all points of $M(T)$ except the pendant ones (which are also pendant in T, as obvious).

Fig. 2.

Fig. 3.
i
The construction is as follows: First take a path P in T linking two pendant vertices. p_{1} and p_{2}. Starting from a point in $M(P)$ adjacent to say p_{1} (which represents the pendant edge of $/$ "incident to p_{1}) follow the lines in $L(P)$ and return by those in $S(P)$. We obtain a trail as required corresponding to P. If $T \neq P$, then points of degree higher than 2 exist in P. Let w be such a point and $p_{3}\left(\neq p_{1}, p_{2}\right)$ a pendant vertex in a branch of T rooted at w. A path ${ }^{\prime \prime}\left(w, p_{3}\right)$ exists. The non-pendant points in $M\left(P^{\prime}\right)$ will be included in an extended trail obtained from the preceding one by taking, in an cbvious notation, $\left.x_{2}, x_{3}, L^{\prime \prime}\right), S\left(P^{\prime}\right), x_{3}, w, x_{1}$ instead of x_{2}, w, x_{1} (see Fig. 2, where not all lines are pictured).

If the degree of w is higher than 3 (as in the case shown in Fig. 2), then consider another pendant vertex, s:y p_{4}, and the path $P^{\prime \prime}\left(w, p_{4}\right)$ and insert now $x_{3}, x_{4}, L\left(P^{\prime \prime}\right), S\left(P^{\prime \prime}\right), x_{4}, w, x_{1}$ instead of x_{3}, w, x_{1}, and so on.

Repeat this constrtction as long as points of degree higher than 2 are to be considered. A closed almost-spanaing trail of $M(T)$ will be obtained.

Now let us add to T, successively, the edges in $E(G)-E(T)$. We successively extend the trail so that the points representing these edges in

Fig. 4.

Fig. 5.
$M(G)$ are included:
(a) If the added edge x_{q} links two non-pendant vertices $w^{\prime}, w^{\prime \prime}$ (Fig. 3) in the graph we have at this stage, then, in the trail $\ldots x_{i}, w^{\prime}, x_{j}, \ldots, x_{m}$, $w^{\prime \prime}, x_{n}, \ldots$, we insert $x_{m}, x_{q}, w^{\prime \prime}, x_{n}$ instead of $x_{m}, w^{\prime \prime}, x_{n}$.
(b) If x_{q} links a pendant vertex $w^{\prime \prime}$ to a non-pendant vertex w^{\prime} (Fig. 4), then, in the trail $\ldots x_{m}, \ldots, x_{i}, w^{\prime}, x_{j}, \ldots$, we set $x_{i}, x_{q}, x_{m}, w^{\prime \prime}, x_{q}, w^{\prime}, x_{i}$ instead of x_{i}, w^{\prime}, x_{j}.
(c) If x_{q} links two pendant vertices $w^{\prime}, w^{\prime \prime}$ (Fig. 5), then. in the trail $\ldots x_{m}, \ldots, x_{n}, \ldots$, we set $x_{n}, x_{q}, x_{m}, w^{\prime}, x_{q}, w^{\prime \prime}, x_{n}$ instead of x_{n}.
These additions of lines do not use already used lines. Moreover, all points will be introduced in the trail.

This completes the proof of the theorem.
Corollary 5.1. The graph $M^{k}(G), k \geqslant 2$, is hamiltonian if and only if G is connected and without points of degree $\leqslant 1$.

3. The connectivity of $M(G)$

The connectivity and the line-connectivity of $M(G)$ are simpler than those of $T(G), L(G)($ see $(1,3,4,7,8)$.

Theorem 6. If a graph G is n-line cornected, then the middle graph $M(G)$ of G is n-connected

Proof. The theorem is evident for $n=0$ or $G=K_{2}$. Therefore we assume that $n \geqslant 1$ and $G \neq \mathbb{K}_{2}$ in the following. It suffices to show that there exist at least n disjoint paths between any two distinct points u, v in $M(G)$ (see [5, Theorem 5.101).
(1) When $u \in G, v \in G$, there exist at least n line-disioint paths between u and v in G. If we subdivide all lines of all these paths, then they may be considered as n line-disjoint paths between u, v in $M(G)$. Suppose that some of them have a point w in common. Further let $u_{1}, v_{1}(\in L(G))$ be twe points on one of these paths and adjacent to w. Then the new path obtained by replacing subpath $u_{1} w i_{1}$ with line $\left(u_{1}, v_{1}\right)$ is a path between u, v in $M(G)$ which does not pass w. Let tis perform similar constructions on all other paths passing w. Repeating this process for all paths which have points in common, we obtain n disjoint paths between u, v in $M(G)$.
(ii) Let $u \in G, v \in L(G)$ and let $v^{\prime} . v^{\prime \prime} \in G$ be the end-points of the edge v in G. There are at least n line-disjoint paths in G between u and v^{\prime} and consequently, as shown in case (i), n point-disjoint paths in $M(G)$. Consider the n lines in G incident to v^{\prime}. say $\left(w_{1}, v^{\prime}\right), \ldots,\left(w_{n}, v^{\prime}\right)$, each one belonging to a distinct path. Let u_{1}, \ldots, u_{n} be the points in $L(G)$ corresponding to these lines (eventually $u_{j}=v$). We obtain n point-disjoint paths between u and v, by taking now, for each i, the subpath $w_{i} u_{i} v$ instead of the subpath $w_{i} u_{i} v^{\prime}$. If $u_{j}=v$, then take ($v^{\prime \prime}, v$) instead of the subpath $\imath^{\prime \prime} u_{j} v^{\prime}$.
(iii) When $u \in L(G), v \in L(G)$, there ar iwo distinct points u, v in $L(G)$. since $n \geqslant 1, G \neq K_{2}$. Therefore there exist n disjoint paths between u, v in $M(G)$ (see [3. Theorem 11).

Thus the proof of Theorem 6 is completed.
Corollary 6.1. If G is n-line connected, then $M^{k}(G)$ is n-connected for all $k \geqslant 1$.

Corollary 6.2. If G is n-comected, then $M^{k}(G)$ is n-connected for all $k \geqslant 1$.

Acknowledgement

We are very grateful to the referee for his suggestions in advancing the proofs of Theorems 2,5 and 6 and pcinting out some mistakes.

References

HI M Eeltzad, The connectivity of total graphs, J. Austral. Math. Soc. (1969) 175-181.
12 N. Butuad and G. Chartrand. Total graphs and traversability, Proc. Edinburgh Math. Soc. 15 $(1966) 117-120$.
[3] G. Chartrand and M. James Stewart. The connectivity of line graphs, Math. Ann. 182 (1969) 190-174.
[4] 7. Hamada. I. Nonaka and I. Yoshimura, On the connectivity of total graphs, Math. Ann. 196 (1972) 39-38.
[5] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
[6] F. Herary and C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) $701-709$.
|7| J.M.S. Simoes-Pereira. Connectivity. line-connectivity and J-connection of the total graphs Math. Ann. 196 (1972) 48-57.
[8] T. Zamtiresct, On the line connectivity of line graphs, Math. Anr. $\mathbf{i 8 7}$ (1979) 305-309.

