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The object of the present paper is to give applications of a subordination theo-
rem due to Hallenbeck and Ruscheweyh [Proc. Amer. Math. Soc. 52 (1975),
Theorem 1]. Our results have some interesting corollaries and examples as special
cases.  © 1994 Academic Press, Inc.

{. INTRODUCTION

Let A(n) denote the class of functions of the form

f@=z+ 2 az*z mMEN={,23 .1 (1.1

k=n+1

which are analytic in the open unit disk U = {z: |z| < 1}. For analytic
functions g(z) and h(z) with g(0) = h(0), g(z) is said to be subordinate to
h(z) if there exists an analytic function w(z) so that w(0) = 0, [w(z)] < 1
(z € U) and g(z) = h(w(z)). We denote this subordination by

2(z) * h(z). (1.2)
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If h(z) is univalent in U, then the subordination (1.2) is equivalent to
2(0) = A(0) and g(U) C A(U) (cf. Duren [1]).
With this subordination, Hallenbeck and Ruscheweyh {2] have shown

LEMMA 1. Let F(z) be convex univalent in U, F(0) = 1. Let f(z) be
analyticin U, f(0) =1, f'(0) = - -+ = f=)0) = 0, and let f(z) x F(z)in U.
Then for all y # 0, Re(y) = 0,

v [ ot di sy [ omEGn) i, (1.3)

In this paper, we give some interesting results, applying the above
lemma by Hallenbeck and Ruscheweyh {2].

2. APPLICATIONS OF A SUBORDINATION THEOREM

An application of Lemma 1 leads us to

THEOREM 1. Let p(2) be analytic in U with p(0) = 1, p'(Q) = --- =
prv0) = 0. If

Re{p(z) + azp' (2} >B (z€ U), 2.1

then

1
Re{p@} >+ (1 - B) {2 fo' TT prem P ~ 1} z € U), 2.2

where o # 0, Re(a) =2 0, and B < 1.
Proof. Letting

Foy=8+(1-p8) (2.3)

| 4
i1 +z
and

f@) = p@) + azp'(z) (2.4)

in Lemma I, we see that F(z) is convex univalent in U, F(0) = 1, and that
f(z) is analytic in U, f(0) = 1, f'(0) = --- = f"=(0) = 0. Note that

p(2) = é 7 Ve ju Ve-lf(e) dt. 2.5)
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Therefore, using Lemma 1, we have that if f(z) < F(z), then

1

l Zhin
p() % —zVan [ e Fn) i, 2.6)

Since

1 Zhin
— o—llan ea—1 n
2 jo t F(tm) dt

1 e [ e ( _ 1 - ”)
=~z fo ‘ B+ =B ) dr

——ZB._I —1lan 2 la-1 u —llan @ t”a—]
== 2 fo t dr + - z fo dt (2.7)

1 + ¢
_ _ 2(1 __B) 1 ul/a—l
=281+ o1+ zu” du
! 1
=28 1421 B) |, 75 do.

we conclude that

1 1

p(2) % qz) =28 — 1+ 2(1 = B) ]0 T e (2.8)

This implies that if p(z) satisfies the inequality (2.1), then
Re{p(U)} > Re{q(U)}. (2.9)

Now, it is easy to see that

0

Refa(o)} = Re {28 = 1+ 201 = ) [} 7 do
:ﬁ+(1—3){2f;R€(l—+—lzpj,~n)dp—l}
§B+(]—B){2f;1—+—l|;a—n|dp—l}

=B+(1—B){2j0'1—+;—nmg,dp—1}.

(2.10)

This completes the assertion of Theorem 1.
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Letting Re(a) = 1/n in Theorem 1, we have

COROLLARY |. Let p(z) be analytic in U with p(0) =1, p'(Q) = --+ =
prI0) = 0. If

Re{p(z) + azp’(2)} > B (z € U), Q.10
then
Re{p(2)} >28 -1 +2(1 - Blog2 (z € V), (2.12)

where Re(a) = 1/nand B < 1.
Making p(z) = f'(z) for f(z) € A(n) in Theorem 1, we have
ExamMpLE 1. If f(z) € A(n) satisfies

Re{f'(z) + azf"(&}} > B (z € U). (2.13)

then

1
Re{f'(Z)} >+ (1 — B) {2 fl wd[) - 1} (z € U), 2.14)

0
where o # 0, Re(a) Z 0, and 8 < 1.
Further, taking p(z) = f(z)/z for f(z}) € A(n) in Theorem |, we have
ExaMPLE 2. If f(z) € A(n) satisfies

Re {(1 - a)f-(zz2

+ af’(z)} >B  (ze U), (2.15)

then

Re {[(EQ} >g+ (1 - ) {2 f;mdp - 1} ZE U), (2.16)

where o # 0, Re(a) Z 0, and 8 < 1.

Next, we derive

THEOREM 2. Let p(2) be analytic in U with p(0) = 1, p’(0) = -+ =
pr0) = 0. If

Re{p(@) + azp’@}>B (zE V), (2.17)
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then

! 1
larg(p(2) — B)| = I\gjx arg (2 jﬂ TT 2o dp — 1)' (z € U),

(2.18)
where a # 0, Re(a) 2 0, and 8 < 1.
Proof. In view of Theorem 1, we see that (2.8) implies
p(2) — B ! | _
=5 *? 01+Zpandp 1. (2.19)

It follows from (2.19) that

ors (22| = v

1 1
arg (2 fomdp_ 1), (z € U),

which is equivalent to (2.18).
Letting Re(a) = 1/n in Theorem 2, we have

COROLLARY 2. Let p(z) be analyticin U with p(0) =1, p'(0) = -+ =
pr 0y = 0. If

Re{p(z) + azp' (@} > B (z € V), (2.20)
then
jarg(p(z) ~ B <3 €U, 2.21)

where Re(a) = 1/n and B > 1.
Proof. Note that

1 1 1 1
Re{fo 1 +zp“"dp};Re{.!01+zpdp}

>f' L 4 2.22
0]+pP (2.22)

=log2

for Re(a) = 1/n, so that

1 1
Re{Zjomdp— 1}>210g2—]>0 ZEU). 2.23)
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This implies that

arg(zj'—i—-dp—l)[<3 (z € U) 2.24)
o1+ zpon 2 ) ’
Taking p(z) = f’(z) for f(z) € A(n} in Corollary 2, we have
ExaMpLE 3. If f(z) € A(n) satisfies

Re{f'(2) + azf")} > B  (z € U), (2.25)
then
larg(f'(z) ~ B)| < % (z € U, (2.26)

where Re(a) = l/nand 8 < 1.
Further, letting p(z) = f(z)/z for f(z) € A(n) in Corollary 2, we have
ExAMPLE 4. If f(z) € A(n) satisfies

Re {(1 - a) ’i(f—) + af’(z)} >8  (z€U), (2.27)
then
arg (ﬂf—) - B)‘ < g z € U), (2.28)

where Re(a) = 1/n and 8 < 1.

Finally, we derive

THEOREM 3. Ler p(z) be analytic in U with p(0) = 1, p’(0) = -+« =
pr By = 0. If

Re{p@ + azp'(2)} < B (zE ), (2.29)

then

Re{p@} <8+ (1 - B) {2 /. n—;}'ﬁm dp - 1} Z€EU), (230

where a # 0, Re(a) 2 0, and 8 > 1.
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Proof. Note that the condition (2.29) is equivalent to

1 -2z
1+ 2z

p@)+azp (=B + (1 -p) (2.31)

Therefore, proving the same way as in the proof of Theorem I, we have
(2.30).

Making Re(a) = 1/n in Theorem 3, we have

COROLLARY 3. Let p(2) be analytic in U with p(0) =1, p'(0) = -+ =
pr0) = 0. If

Re{p(z) + azp'(2)} < B (z € U), (2.32)

then

Re{p(x)}<28-1+2(1-B8)log2 (z€ ), (2.33)

where Re(a) = l/nand B > 1.
If we put p(z) = f'(z) for f(z) € A(n) in Theorem 3, then we have
ExaMpLE 5. If f(z) € A(n) satisfies

Re{f'(2) + azf"@}<B (€ U), (2.34)

then

Re{f' ()} < B+ (1 -pB) {2 jol 'i“:_—‘l);mdp - 1} (z e U), (.35

where a@ # 0, Re(a) =2 0, and 8 > 1.
Letting p(z) = f(z)/z for f(z) € A(n) in Theorem 3, we have
ExaMPLE 6. If f(z) € A(n) satisfies

Re {(l - a) ﬂzi) + af’(z)} <pB (z e U), (2.36)

then

Re {J:(EQ} <B+(-4) {2 f;ﬁmdp - l} ZEU), (2.37)

where o + 0, Re(a) = 0, and 8 > 1.
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