
Journal of Computational and Applied Mathematics 161 (2003) 203–216
www.elsevier.com/locate/cam

Computing a matrix function for exponential integrators�

Ya Yan Lu∗

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Received 14 February 2003

Abstract

An e*cient numerical method is developed for evaluating ’(A), where A is a symmetric matrix and ’ is
the function de,ned by ’(x)=(ex−1)=x=1+x=2+x2=6+ · · · . This matrix function is useful in the so-called
exponential integrators for di1erential equations. In particular, it is related to the exact solution of the ODE
system dy=dt=Ay+b, where A and b are t-independent. Our method avoids the eigenvalue decomposition of
the matrix A and it requires about 10n3=3 operations for a general symmetric n× n matrix. When the matrix
is tridiagonal, the required number of operations is only O(n2) and it can be further reduced to O(n) if only
a column of the matrix function is needed. These e*cient schemes for tridiagonal matrices are particularly
useful when the Lanczos method is used to calculate the product of this matrix function (for a large symmetric
matrix) with a given vector.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Matrix function; Exponential integrator; Chebyshev rational approximation; Lanczos method

1. Introduction

The function ’ de,ned by

’(x) = 1 +
x
2

+
x2

3!
+
x3

4!
+ · · · (1)

has been found useful in the so-called exponential integrators [8] for solving di1erential equations.
Consider the following initial value problem of a linear system of ODEs:

dy
dt

= Ay + b for t ¿ 0; (2)

y(0) = y0: (3)

� This research was partially supported by the CityU research Grant #7001229.
∗ Tel.: +85227887436; fax: +85227887446.
E-mail address: mayylu@math.cityu.edu.hk (Y.Y. Lu).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.08.006

mailto:mayylu@math.cityu.edu.hk

204 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

When the square matrix A and the column vector b are independent of t, the exact solution of (2)
and (3) is well known:

y(t) = −A−1b+ etA(y0 + A−1b) (4)

= etAy0 + t’(tA)b (5)

= y0 + t’(tA)(b+ Ay0): (6)

When the inhomogeneous term b is zero, the formulae are simply y(t)=etAy0. For a nonzero vector
b, formula (6) is convenient to use and it is valid even when A is singular. Therefore, it is desirable
to develop an e*cient numerical method for evaluating the matrix function ’(tA), or the product of
’(tA) with a given vector.

For the more general case where A and b are t-dependent, a simple numerical scheme can be
obtained if we replace A and b in each step by their values at the midpoint and use the exact
solution of the approximate equation as the numerical solution. This gives rise to the following
midpoint exponential method:

y1 = y0 + h’(hA1=2)(b1=2 + A1=2y0); (7)

where h=t1−t0 is the step size (t0=0 here), A1=2=A(t1=2) and b1=2=b(t1=2) for t1=2=t0+h=2, and y1 is
the numerical solution at t1, namely, y1 ≈ y(t1). If A and b are t-independent on the interval [t0; t1],
y1 given by (7) reproduces the exact solution at t1. However, for the general variable coe*cient
case, (7) is only a second-order method, same as, for example, the implicit midpoint method

y1 − y0

h
= A1=2

y0 + y1

2
+ b1=2: (8)

Nevertheless, the midpoint exponential method (7) can still be useful. For example, for highly
oscillatory problems, A and b often vary with t slowly, compared with the solution. In this case,
we expect that (7) allows a larger step size h than (8). This fact has been analyzed in [6]. In fact,
exponential integrators for the more general nonlinear equation y′ =f(y) have been developed and
proved to be useful in [8]. A key operation in these methods is the multiplication of ’(hA) with a
given vector in each step, where A is the Jacobian matrix of f evaluated on the numerical solution
at the beginning of the step and h is the step size.

Motivated by its application in exponential integrators, we develop an e*cient numerical algorithm
for calculating ’(A) in this paper. The scalar h appeared in (7) or other exponential methods
[8] has been dropped for simplicity. The matrix A is assumed to be real symmetric (or complex
Hermitian). For a general n × n symmetric matrix A, our method requires 10

3 n
3 + O(n2) Moating

point operations. For a symmetric tridiagonal matrix, the required number of operations is O(n2).
The standard procedure for computing a function of a symmetric matrix is to use the eigenvalue
decomposition. This would require at least 5n3 operations, if Cuppen’s divide and conquer method [2]
is used, and more if the standard QR method is used instead. Furthermore, for a symmetric tridiagonal
matrix, the method based on the eigenvalue decomposition still requires O(n3) operations. Another
approach for calculating ’(A) is to combine a PadQe approximation with a scaling and repeated
doubling, similar to the well-known method for matrix exponential [12]. This method was developed
in [8] based on ’(2x)=(ex+1)’(x)=2 and e2x=exex. However, the accuracy of this method depends
on the norm of A. When A has a large norm, this method becomes expensive and not as accurate.

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 205

On the other hand, the method developed in this paper guarantees a relative accuracy (say, in matrix
2-norm) bounded by a small multiple of the machine epsilon.

No doubt, when A is very large, evaluating ’(A) is impractical, since our method still requires
O(n3) operations. In practice, what is really needed in (7) and other exponential integrators is ’(hA)v
for a given vector v. In this case, the Krylov subspace method [4,7,3] can be used. For a symmetric
matrix A, the Lanczos method is used for a tridiagonal reduction, then ’(hA)v is approximated by

’(hA)v ≈ ‖v‖Vm’(hTm)e(m)
1 ; (9)

where Vm is the matrix of the ,rst m Lanczos vectors with v=‖v‖ as its ,rst column, Tm is an
m × m tridiagonal matrix, e(m)

1 is the ,rst column of the m × m identity matrix. A convergence
criterion is needed to determine the value of m that gives a su*ciently accurate approximation. This
can be based on the (m; 1) entry of ’(hTm) [8]. However, if we use the eigenvalue decomposition
to calculate the (m; 1) entry of ’(hTm) for m = 1; 2; : : : ; m∗ (assuming a satisfactory approximation
is obtained for m∗), the total number of operations needed would be O(m4∗), since the eigenvalue
decomposition of Tm requires O(m3) operations. This is a signi,cant computation e1ort that can
slow down the overall Lanczos algorithm. In this paper, we demonstrate that the (m; 1) entry of
’(hTm) can be calculated in O(m) operations. This gives rise to the total of O(m2∗) operations for
the convergence test.

In Section 2, the details of our method are presented. An analysis for the error for computing
’(A) by our method is provided in Section 3. Numerical examples are given in Section 4. The paper
is completed with some remarks in Section 5.

2. The algorithm

For a symmetric matrix A, our method starts with the tridiagonal reduction A=QTQT, where T is
symmetric tridiagonal and Q is orthogonal. This is the standard ,rst step for computing the eigenvalue
decomposition of a symmetric matrix. For a number of matrix functions, e*cient numerical methods
[9–11] have been developed based on f(A) =Qf(T)QT and rational approximations to f(T). This
is in contrast to the standard approach where the eigenvalue decomposition of A (based on that of
T) is computed ,rst, then evaluate f(A) by f(A) = Vf(�)V T, where � is the diagonal matrix of
the eigenvalues and V is the orthogonal matrix of the eigenvectors.

For the square root and the logarithm of a symmetric positive de,nite matrix, the methods devel-
oped in [9,10] are based on PadQe approximants for a scaled tridiagonal matrix (1=�)T . The scaling
parameter � is chosen to minimize the e1ort to approximate

√
T or log(T) within a given error

tolerance. For the exponential of a symmetric matrix, the method developed in [11] ,nds eT in
O(n2) operations, leading to the total of 10

3 n
3 + O(n2) operations for computing eA. For the given

tridiagonal matrix T , this method ,rst calculates the largest eigenvalues �1 in O(n) operations (for
example, by the bisection method), then approximates eT by a Chebyshev rational approximation of
eT−�1I , since eT = e�1eT−�1I . More precisely, let Rp be the rational function that gives the smallest
maximum error for approximating ex on (−∞; 0], among all rational functions with the degrees of
the denominator and the numerator less than or equal to p, we approximate eT−�1I by Rp(T − �1I).
For the standard double precision (64-bit Moating point numbers), it is su*cient to take p= 14. The

206 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

function Rp is given as a sum of prime fractions

Rp(x) = �(p)
0 +

p∑
j=1

�(p)
j

x − �(p)
j

: (10)

The matrix Rp(T − �1I) is then e*ciently evaluated through

Rp(T − �1I) = �(p)
0 I +

p∑
j=1

�(p)
j [T − (�1 + �(p)

j)I]−1: (11)

Similarly, for the function ’ considered in this paper, the Chebyshev rational approximation on
(−∞; 0] is useful. Let R̃q be the rational function of degree q (for polynomials in the denominator
and the numerator) that minimizes the maximum error on (−∞; 0], we write R̃q in its prime fraction
expansion

R̃q(x) = �̃(q)
0 +

q∑
j=1

�̃(q)
j

x − �̃(q)
j

: (12)

For a negative semi-de,nite matrix T , we can use the following approximation:

’(T) ≈ S(1)
q (T) = �̃(q)

0 I +
q∑
j=1

�̃(q)
j [T − �̃(q)

j I]
−1: (13)

Let �̃q = maxx60|’(x) − R̃q(x)|, we immediately have a bound on the absolute error in the matrix
2-norm

‖’(T) − S(1)
q ‖26 �̃q:

However, if the largest eigenvalue �1 is far away from zero (and negative), we could have poor
relative accuracy, since ‖’(T)‖2 = ’(�1) could be quite small. For this purpose, we propose to
use (13) only when −16 �16 0. If �1¡− 1, we derive an approximation of ’(T) from ’(T) =
T−1(eT−I) and the Chebyshev rational approximation of eT . More precisely, from the approximation
of eT by e�1Rp(T − �1I) in (11), we have

’(T) ≈ S(2)
p (T) = T−1


(e�1�(p)

0 − 1)I + e�1
p∑
j=1

�(p)
j [T − (�1 + �(p)

j)I]−1


 : (14)

The above two approximations (S(1)
q and S(2)

p) to ’(T) should not be used if the largest eigen-
value is positive. Unlike the exponential function, we can not simply shift the matrix by −�1I and
calculate ’(T − �1I), since ’(T) does not have a simple relationship with ’(T − �1I). In principle,
once the largest eigenvalue of T is calculated, we could proceed to calculate a Chebyshev rational
approximation to ’(x) on (−∞; �1] and use it to approximate ’(T). This is not practical, because
the Chebyshev approximation is not easy to calculate. Fortunately, a di1erent approximation to ’(x)
can be derived from the Chebyshev rational approximation of ex. Let

B=

(
x 1

0 0

)
;

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 207

it is easy to see that

eB =

(
ex ’(x)

0 1

)
:

Therefore,

eB = e�1eB−�1I ≈ e�1


�(p)

0 I +
p∑
j=1

�(p)
j [B− (�1 + �(p)

j)I]−1


 :

The (1,2) entry of the matrix [B− (�1 + �(p)
j)I]−1 is (x − �1 − �(p)

j)−1(�1 + �(p)
j)−1, therefore,

’(x) ≈ e�1
p∑
j=1

�(p)
j

�1 + �(p)
j

1

x − �1 − �(p)
j

:

This leads to the following approximation:

’(T) ≈ S(3)
p (T) = e�1

p∑
j=1

�(p)
j

�1 + �(p)
j

[T − (�1 + �(p)
j)I]−1: (15)

Therefore, we ,rst calculate the largest eigenvalue �1 in O(n) operations and then approximate
’(T) by (14), (13) or (15) for �1¡ − 1, −16 �16 0 or �1¿ 0, respectively. In our numerical
implementation for double precision (64-bit) Moating point arithmetics, we have chosen p= 14 for
(14), q= 14 for (13) and p= 16 for (15). The corresponding maximum errors are

�14 ≈ 1:83 × 10−14; �16 ≈ 2:12 × 10−16; �̃14 ≈ 6:89 × 10−16:

The rational approximation coe*cients (that is, {�(p)
j ; �

(p)
j } for p=14, 16 and {�̃(q)

j ; �̃
(q)
j } for q=14)

are calculated in [5] and listed in the appendix. Our method is summarized in the following algorithm.

Algorithm 1. Let A be a given symmetric matrix, the matrix function ’(A) is calculated in the
following steps using the coe0cients �(p)

j , �(p)
j , �̃(q)

j and �̃(q)
j given in the appendix.

1. Calculate a symmetric tridiagonal matrix T and an orthogonal matrix Q, such that A=QTQT;
2. Calculate the largest eigenvalue of T , say �1;
3. If �1¡ 0, choose p= 14 and evaluate ’(T) by

’(T) ≈ T−1


(e�1�(p)

0 − 1)I + e�1
p∑
j=1

�(p)
j [T − (�1 + �(p)

j)I]−1


 ;

if −16 �16 0, choose q= 14 and evaluate ’(T) by

’(T) ≈ �̃(q)
0 I +

q∑
j=1

�̃(q)
j [T − �̃(q)

j I]
−1;

208 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

if �1¿ 0, choose p= 16 and evaluate ’(T) by

’(T) ≈ e�1
p∑
j=1

�(p)
j

�1 + �(p)
j

[T − (�1 + �(p)
j)I]−1;

4. Calculate ’(A) by ’(A) = Q’(T)QT.

We notice that the ,rst step is a standard procedure for computing eigenvalues of a symmetric
matrix [1]. For a general dense n×n symmetric matrix, this tridiagonal reduction step requires about
4
3n

3 operations with Q given implicitly as a product of Householder reMections. In the second step,
the largest eigenvalue of T can be calculated in O(n) operations by, for example, the bisection
method [1]. The required number of operations for the third step is clearly O(n2). The last step
requires about 2n3 operations (using the implicitly given matrix Q), the details can be found in [9].
Therefore, the total required number of operations for computing ’(A) is 10n3=3 + O(n2). If A is
a symmetric tridiagonal matrix itself, then the ,rst and last steps are not needed and the algorithm
requires only O(n2) operations.

If only the matrix vector product ’(T)b is needed for a given vector b, the number of operations
can be reduced to O(n), because the inverse matrices in the third step are reduced to solutions
of linear systems with tridiagonal coe*cient matrices. This is useful in the Lanczos method that
,nds an approximation for ’(hA)v, where A is a large symmetric (possibly sparse) matrix, h is
a scalar and v is a given vector. As given in (9), the ,rst column of ’(hTm) is required, where
Tm is a m × m symmetric tridiagonal matrix. Since m�n, this step is usually negligible in the
whole Lanczos process. However, for the convergence test in the Lanczos method, it is necessary
to calculate the (m; 1) entry of ’(hTm) for m= 1; 2; : : : ; m∗. With our algorithm, this can be done in
O(m2∗) operations. If the standard eigenvalue decomposition approach is used for this purpose, O(m4∗)
operations are required. Although m∗ is certainly small compared with n, the O(m4∗) operations can
not be ignored. If A is a typical sparse matrix, the matrix vector multiplication involving A may only
require O(n) operations, leading to the total of O(nm∗) operations for the Lanczos method (with m∗
steps). Therefore, the O(m4∗) convergence test can be a signi,cant factor in the overall performance
of the Lanczos method.

3. Error bounds

The Chebyshev rational approximations of ex and ’(x) on the interval (−∞; 0] are characterized
by their respective maximum errors

�p = max
x60

|ex − Rp(x)|; �̃q = max
x60

|’(x) − R̃q(x)| (16)

for Rp and R̃q de,ned in (10) and (12), respectively. For a given symmetric tridiagonal matrix T ,
if its largest eigenvalue �1 is negative or zero, we show that our approximate formulas always give
a small relative accuracy that is bounded by a small multiple of �p or �̃q. If �1¡− 1, we have

’(x) ≈ S(2)
p (x) =

1
x


e�1�(p)

0 − 1 +
p∑
j=1

e�1�(p)
j

x − �1 − �(p)
j


 :

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 209

For x6 �1, we have

|’(x) − S(2)
p (x)| =

∣∣∣∣1x (e�1ex−�1 − 1) − S(2)
p (x)

∣∣∣∣=
e�1

|x| |e
x−�1 − Rp(x − �1)|6 e�1�p

|x| :

Therefore,

|’(x) − S(2)
p (x)|6 e�1

1 − e�1
�p|’(�1)|¡ 1

e − 1
�p|’(�1)|:

For the matrix 2-norm, we have ‖’(T)‖2 = ’(�1) and

‖’(T) − S(2)
p (T)‖2 = max

16k6n
|’(�k) − S(2)

p (�k)|¡ 1
e − 1

�p‖’(T)‖2;

where �k for k = 1; 2; : : : ; n are the eigenvalues of T .
If −16 �6 0, we approximate ’(T) directly by its Chebyshev rational approximation R̃q(T). For
x6 �1, we have

|’(x) − R̃q(x)|6 �̃q6 1
’(−1)

�̃q’(�1) =
e

e − 1
�̃q’(�1):

This leads to

‖’(T) − R̃q(T)‖26
e

e − 1
�̃q‖’(T)‖2:

When the largest eigenvalue �1 is positive, our approximation to ’(T) is based on

’(x) ≈ S3
p(x) = e�1

p∑
j=1

�(p)
j

�1 + �(p)
j

1

x − �1 − �(p)
j

for x6 �1:

The error of this approximation is directly related to the error of the Chebyshev rational approxima-
tion of ex:

Ep(x) = ex − Rp(x)
for Rp(x) given in (10). We ,rst establish that if x �= 0,

’(x) − S(3)
p (x) = e�1

Ep(x − �1) − Ep(−�1)
x

(17)

and

’(0) − S(3)
p (0) = e�1E′p(−�1): (18)

In fact, if x �= 0, we have

’(x) =
ex − 1
x

=
e�1

x
(ex−�1 − e−�1) =

e�1

x
[Rp(x − �1) + Ep(x − �1) − Rp(−�1) − Ep(−�1)]:

It is easy to see that

e�1

x
[Rp(x − �1) − Rp(−�1)] =

e�1

x

p∑
j=1

�(p)
j

(
1

x − �1 − �(p)
j

+
1

�1 + �(p)
j

)
= S(3)

p :

210 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
x 10

-12

λ
1
1/4

ρ 14
(λ

1)

0 1 2 3 4 5 6 7 8
0

1

2

3
x 10

-14

λ
1
1/4

ρ 16
(λ

1)

Fig. 1. The function $p(�1) for p= 14 and 16. The horizontal axis is �1=4
1 .

This immediately leads to (17). For x = 0, result (18) can be directly veri,ed. If we introduce the
following function:

$p(�1) =
e�1

’(�1)
max
x6�1

∣∣∣∣Ep(x − �1) − Ep(−�1)
x

∣∣∣∣
(with E′p(−�1) replacing the divided di1erence above when x = 0), we have

|’(x) − S(3)
p (x)|6 $p(�1)’(�1) for x6 �1:

This leads to

‖’(T) − S(3)
p (T)‖26 $p(�1)‖’(T)‖:

In Fig. 1, the function $p for p = 14 and 16 is shown. It seems that at least for the two values
of p in Fig. 1, $p(�1) (for �1¿ 0) is bounded by $p(0). Notice that the horizontal axis is actually
�1=4

1 . If $p(�1) is plotted against �1 directly, we will only see a sharp decrease near �1 = 0. In order
to evaluate $p(�1), it is necessary to ,nd the maximum of the function |x−1(Ep(x−�1)−Ep(−�1))|
for all x in the semi-in,nite interval (−∞; �1]. Fortunately, the interval for x can be reduced. In
fact, from the theory of Chebyshev rational approximation, we know that the function Ep(x) has 2p
critical points on the negative real axis. Let these critical points be x1; x2; : : : ; x2p, satisfying

0 = x0¿x1¿x2¿ · · ·¿x2p¿x2p+1 = ∞;

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 211

we have

Exj = (−1)j�p for j = 0; 1; 2; : : : ; 2p+ 1:

Now, if −�1 is close to xm and Ep(−�1) has the same sign as Ep(−�1), then

max
x6�1

|x−1(Ep(x − �1) − Ep(−�1))| = max
xm+16x6xm−1

|x−1(Ep(x − �1) − Ep(−�1))|: (19)

Of course, the above is only for the most general case. If m=0, or 2p+1, we should replace xm−1 by
x0, or xm+1 by x2p+1, respectively. Furthermore, if Ep(−�1) = 0 and −�1 ∈ (xm+1; xm), we only need
to search the maximum in [xm+1; xm]. To understand (19), we notice that (Ep(x− �1) − Ep(−�1))=x
is the slope of the line segment connecting the two points on the Ep function at −�1 and x − �1.
If x is outside the interval [xm+1; xm−1], it simply can not give a larger slope (in absolute value).
Of course, the maximum on the interval must equal to E′p(%) for some %∈ [xm+1; xm−1]. On the
other hand, the function $p(�1) has the additional factor of e�1=’(�1) which is asymptotic to �1 for
large �1. However, this increasing factor in $p is balanced by the general decreasing trend of the
maximum in (19) (as �1 increases). The gaps between xm+1 and xm increases rapidly if m increases
and the corresponding derivative E′p(%) (% depends on �1) generally decreases as �1 increases. This
explains that the function $p(�1) is still uniformly bounded for all �1¿ 0.

From the results in this section, we conclude that we can reach a relative accuracy around the
machine epsilon (for standard double precision) for our matrix approximation of ’(T). However,
we obtain the same bounds for the corresponding approximation of ’(A) in the matrix 2-norm. For
example, if �1¿ 0, we have

‖’(A) − QS(3)
p (T)QT‖2 = ‖’(T) − S(3)

p (T)‖26 $p(�1)‖’(T)‖2 = $p(�1)‖’(A)‖2:

4. Numerical examples

We have implemented our algorithm in double precision based on p= 14 in (13), q= 14 in (13)
and p=16 in (15). To access the accuracy of our method, we compare our numerical solutions with
the solutions obtained from a quadruple precision routine based on the eigenvalue decomposition.
The quadruple precision program for ’(A) relies on a simple modi,cation of the EISPACK routines
TRED2, IMTQL2 and PYTHAG for the symmetric matrix eigenvalue problem. The accuracy of the
modi,ed programs is independently veri,ed by a multi-precision calculation in MAPLE. With the
quadruple precision solution as the “exact solution”, we have calculated the following relative errors
in various matrix norms:

ef =
‖’(A) − ’∗(A)‖f

‖’(A)‖f ; e1 =
‖’(A) − ’∗(A)‖1

‖’(A)‖1
; e2 =

‖’(A) − ’∗(A)‖2

‖’(A)‖2
;

where ’∗(A) is the numerical solution based on our new method. We point out that the numerical
solutions from a double precision eigenvalue decomposition routine cannot be used as “exact solu-
tions” for calculating the errors of our solutions, since the errors are on the same order of magnitude.
On the other hand, this double precision eigenvalue decomposition program is used for comparison
of execution time, to verify the theoretical claim that our method is more e*cient.

212 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

-14

µ

Fig. 2. Relative errors for computing ’(A) = ’(A0 − �I) in matrix 2-norm (+), Frobenius norm (o) and matrix 1-norm
(∗). A0 is the 100 × 100 matrix given in (20).

Example 1. The (i; j) entry of the n× n matrix A0 is

aij =
1

2 + (i − j)2 : (20)

Since di1erent approximations are used when the largest eigenvalue is in di1erent intervals, we
let A=A0 − �I and calculate the relative errors for n= 100 and various values of �. The results are
shown in Fig. 2.

Example 2. The n × n matrix A0 is obtained from a second-order ,nite di1erence discretization of
the negative Laplacian on an unit square with Dirichlet boundary conditions. The (i; j) entry of A0

is given by

aij =




4 if i = j;

−1 if |i − j| = p;

−1 if |i − j| = 1 and (i + j) mod (2p) �= 1;

0 otherwise;

(21)

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 213

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

2

3

4

5
x 10

-14

µ

Fig. 3. Relative errors for computing ’(A) = ’(A0 − �I) in matrix 2-norm (+), Frobenius norm (o) and matrix 1-norm
(∗). A0 is the 100 × 100 matrix given in (21).

where n=p2. For a number of values of �, we let A=A0−�I and calculate the matrix function ’(A).
The relative errors in various matrix norms are given in Fig. 3. These results are very satisfactory.
Our numerical solutions are expected to have 14 correct digits.

Next, we study the e*ciency of our method. For this purpose, we compare the execution time
required by our new method and the standard method based on the eigenvalue decomposition. The
latter is implemented using the LAPACK [1] routine for symmetric matrix eigenvalue problems
based on Cuppen’s the divide-and-conquer method [2]. All the programs are in double precision and
compiled with the same option fast-lsunperf on a SUN Ultra 60 workstation with the compiler
f77 (version 5.0) from SUN Microsystems. Notice that we do not compile the LAPACK (and the
BLAS) routines, since they are optimized and included in the SUN performance library. We have
taken the matrix A0 in Example 1 for various values of n. The required execution time (in seconds)
are listed in Table 1. Three di1erent values of � are used. For �= 0, 3 and 5, the largest eigenvalue
of A0 −�I (for all n listed) lies in the interval (0;∞), (−1; 0) and (−∞; 0), respectively. Therefore,
the three columns of Tn correspond to three di1erent rational approximations. For the eigenvalue
decomposition method, only the case �=0 is listed, since there is little di1erence for other values of
�. We have also implemented the eigenvalue method based on the QR algorithm [1] for symmetric
matrix eigenvalue problems, the required execution time is longer. Our method has a clear advantage
for all values of n in the table (from n=100 to 500). These results are consistent with the theoretical
complexity of 10

3 n
3 + O(n2).

214 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

Table 1
Time (in seconds) required for computing ’(A) by the method in this paper Tn and the standard eigenvalue decomposition
method Teig, where A= A0 − �I as in Example 1

n Tn; � = 0 Tn; � = 3 Tn; � = 5 Teig; � = 0

100 0.065 0.053 0.060 0.068
150 0.164 0.152 0.153 0.233
200 0.321 0.300 0.300 0.603
250 0.574 0.610 0.537 1.11
300 0.973 0.966 0.885 1.85
350 1.45 1.48 1.37 2.43
400 2.37 2.37 2.14 3.73
450 3.17 3.19 3.07 5.24
500 4.66 4.46 4.47 7.20

5. Conclusion

We have developed an e*cient numerical method for computing ’(A) for a symmetric matrix A.
Similar to our methods for matrix exponential [11], matrix square root [9] and matrix logarithm [10],
it relies on the orthogonal reduction of the matrix A to a tridiagonal matrix T . The matrix function
’(T) is then calculated by three rational approximations depending on the largest eigenvalue of
A (or T). These rational approximations are given in the prime fraction form, so that ’(T) can
be easily evaluated. The method requires about 10=3 n3 operations and it is more e*cient than the
standard method based on the eigenvalue decomposition. The accuracy and e*ciency of our methods
are demonstrated by numerical examples.

It is worthwhile to point out that if we only need to calculate the ’ function of a symmetric
tridiagonal matrix, the required number of operations is O(n2). Furthermore, if only one column of
that matrix function is needed, the required number of operations is further reduced to O(n). This
feature is useful in the Lanczos method for evaluating ’(A)v, where A is large (possibly sparse)
and symmetric, v is a given vector. While the Lanczos method approximates the vector ’(A)v by a
linear combination of ,rst m Lanczos vectors, the number m is unknown and a convergence test that
determines m is needed. This is reduced to computing the (m; 1) entry of ’(Tm) for various values of
m. Our O(m) method signi,cantly speed up this process, since the standard method requires O(m3)
operations. Similarly, if the Lanczos method is used to calculate eAv, our method in [11] can be
used to speed up the convergence test.

Appendix

For an even integer p, the Chebyshev rational approximation of the type [p=p] for ex on the interval
(−∞; 0] can be written as

Rp(x) = �(p)
0 +

p∑
j=1

�(p)
j

x − �(p)
j

= �(p)
0 + 2 Re

p=2∑
j=1

�(p)
j

x − �(p)
j

Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216 215

Table 2
Prime fraction coe*cients of the [14=14] and [16=16] Chebyshev rational approximations of ex for x6 0

Real part Imaginary part

�(14)
0 0:18321743782470014452E − 13
�(14)

1 −0:27875161940069948877E + 02 −0:10214733999018530056E + 03
�(14)

2 0:46933274488692083907E + 02 0:45643649768622350551E + 02
�(14)

3 −0:23498232090999260508E + 02 −0:58083591296613695955E + 01
�(14)

4 0:48071120988101914274E + 01 −0:13209793837461011947E + 01
�(14)

5 −0:37636003877978724711E + 00 0:33518347029383815648E + 00
�(14)

6 0:94390253106412059435E − 02 −0:17184791958420579140E − 01
�(14)

7 −0:71542880635038012562E − 04 0:14361043349477292252E − 03
� (14)

1 0:56231425727425832215E + 01 0:11940690463436614062E + 01
� (14)

2 0:50893450605771116159E + 01 0:35888240290260982584E + 01
� (14)

3 0:39933697105748160696E + 01 0:60048316422335547350E + 01
� (14)

4 0:22697838292270027481E + 01 0:84617379730382146007E + 01
� (14)

5 −0:20875863825471482874E + 00 0:10991260561898794116E + 02
� (14)

6 −0:37032750494286560601E + 01 0:13656371871480423129E + 02
� (14)

7 −0:88977731864749491206E + 01 0:16630982619899044992E + 02

�(16)
0 0:21248537104952237488E − 15
�(16)

1 −0:64500878025539644564E + 02 −0:22459440762652096092E + 03
�(16)

2 0:11339775178483930464E + 03 0:10194721704215856386E + 03
�(16)

3 −0:62518392463207919933E + 02 −0:11190391094283228881E + 02
�(16)

4 0:15059585270023467196E + 02 −0:57514052776421820767E + 01
�(16)

5 −0:14793007113558000013E + 01 0:17686588323782937902E + 01
�(16)

6 0:41023136835410020949E − 01 −0:15743466173455468195E + 00
�(16)

7 0:21151742182466031443E − 03 0:43892969647380673895E − 02
�(16)

8 −0:50901521865224928712E − 06 −0:24220017652852287986E − 04
� (16)

1 0:64161776990994341857E + 01 0:11941223933701386699E + 01
� (16)

2 0:59481522689511774823E + 01 0:35874573620183223162E + 01
� (16)

3 0:49931747377179964192E + 01 0:59968817136039421951E + 01
� (16)

4 0:35091036084149180718E + 01 0:84361989858843750942E + 01
� (16)

5 0:14193758971856659905E + 01 0:10925363484496722585E + 02
� (16)

6 −0:14139284624888862117E + 01 0:13497725698892745388E + 02
� (16)

7 −0:52649713434426468908E + 01 0:16220221473167927305E + 02
� (16)

8 −0:10843917078696988026E + 02 0:19277446167181652284E + 02

since the coe*cients {�(p)
j ; �

(p)
j } appear as complex conjugate pairs. For p = 14 and 16, these

coe*cients are calculated in [5] and listed in Table 2. The set of coe*cients for p=14 listed in [4]
are not correct. Similarly, for an even integer q, we write the [q=q] Chebyshev rational approximation
of ’(x) on (−∞; 0] as

R̃q(x) = �̃(q)
0 +

q∑
j=1

�̃(q)
j

x − �̃(q)
j

= �̃(q)
0 + 2 Re

q=2∑
j=1

�̃(q)
j

x − �̃(q)
j

:

216 Y.Y. Lu / Journal of Computational and Applied Mathematics 161 (2003) 203–216

Table 3
Prime fraction coe*cients of the [14=14] Chebyshev rational approximation of ’(x) for x6 0

Real part Imaginary part

�̃(14)
0 0:68944296265527394984E − 15
�̃(14)

1 −0:16598679663720768703E + 02 −0:39025784287223383670E + 02
�̃(14)

2 0:22963504666229092280E + 02 0:90186818220061090091E + 01
�̃(14)

3 −0:75350149609204679786E + 01 0:30951732326685966968E + 01
�̃(14)

4 0:65440260116974146874E + 00 −0:12832270822767467541E + 01
�̃(14)

5 0:17992885377582909731E − 01 0:12021513848300774960E + 00
�̃(14)

6 −0:22224782352681356103E − 02 −0:31546051373084948534E − 02
�̃(14)

7 0:16950103692838164789E − 04 0:18407950619535128862E − 04
�̃ (14)

1 0:65586170606958520061E + 01 0:12541312162940416924E + 01
�̃ (14)

2 0:60329668674314355458E + 01 0:37686693138308950662E + 01
�̃ (14)

3 0:49527072954283340179E + 01 0:63037280204340004157E + 01
�̃ (14)

4 0:32515207076218489674E + 01 0:88794008802441251574E + 01
�̃ (14)

5 0:80133602893611439276E + 00 0:11529259279403978988E + 02
�̃ (14)

6 −0:26587124072174283827E + 01 0:14320672417208411550E + 02
�̃ (14)

7 −0:78095944003956373966E + 01 0:17439142275890278426E + 02

The coe*cients for q= 14 are computed in [5] are listed in Table 3.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 1992.

[2] J.J.M. Cuppen, A divide and conquer method for the symmetric eigenproblem, Numer. Math. 36 (1981) 177–195.
[3] V.L. Druskin, L.A. Knizhnerman, Krylov subspace approximations of eigenpairs and matrix functions in exact and

computer arithmetic, Numer. Linear Algebra Appl. 2 (1995) 205–217.
[4] G. Gallopoulos, Y. Saad, E*cient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci.

Statist. Comput. 13 (1992) 1236–1264.
[5] P.L. Ho, Best rational approximation of the exponential and other functions, Undergraduate Final Year Project,

Department of Mathematics, City University of Hong Kong, 1999.
[6] M. Hochbruck, C. Lubich, Exponential integrators for quantum-classical molecular dynamics, BIT 39 (4) (1999)

620–645.
[7] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM

J. Numer. Anal. 34 (5) (1997) 1911–1925.
[8] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of di1erential equations, SIAM J.

Sci. Comput. 19 (5) (1998) 1552–1574.
[9] Y.Y. Lu, A PadQe approximation method for square roots of symmetric positive de,nite matrices, SIAM J. Matrix

Anal. Appl. 19 (3) (1998) 833–845.
[10] Y.Y. Lu, Computing the logarithm of a symmetric positive de,nite matrix, Appl. Numer. Math. 26 (4) (1998)

483–496.
[11] Y.Y. Lu, Exponentials of symmetric matrices through tridiagonal reductions, Linear Algebra Appl. 279 (1998)

317–324.
[12] C.B. Moler, C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978)

801–836.

	Computing a matrix function for exponential integrators
	Introduction
	The algorithm
	Error bounds
	Numerical examples
	Conclusion
	Appendix
	References

