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Let E be an elliptic curve of rank zero defined over Q and �

an odd prime number. For E of prime conductor N , in Quattrini
(2006) [Qua06], we remarked that when � | |E(Q)Tor|, there is
a congruence modulo � among a modular form of weight 3/2
corresponding to E and an Eisenstein series. In this work we relate
this congruence in weight 3/2, to a well-known one occurring
in weight 2, which arises when E(Q) has an � torsion point.
For N prime, we prove that this last congruence can be lifted
to one involving eigenvectors of Brandt matrices B p(N) in the
quaternion algebra ramified at N and infinity. From this follows
the congruence in weight 3/2. For N square free we conjecture on
the coefficients of a weight 3/2 Cohen–Eisenstein series of level N ,
which we expect to be congruent to the weight 3/2 modular form
corresponding to E .

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let E/Q be an elliptic curve of square-free conductor N and analytic rank zero. For −d a fun-
damental discriminant, d > 0, consider the −d quadratic twist of E . We will denote it by Ed and
|Шd| will denote the analytic order of its Tate–Shafarevich group as predicted from the Birch and
Swinnerton-Dyer conjecture, including the value 0 if the elliptic curve has analytic rank greater than
zero.

Let � be an odd prime number, dividing the order of the group of torsion points of the elliptic
curve E , thus � will be 3, 5 or 7.

In [Qua06] we described a series of numerical examples on the distribution of the analytic orders
of the Tate–Shafarevich groups associated to imaginary quadratic twists of a fixed elliptic curve of
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prime conductor N . We observed that when E has a rational �-torsion point, then, among its negative
quadratic twists there is a bigger proportion of them which have the analytic order of Ш divisible
by �. That something different occurred in this situation had been already noticed in [CKRS], though
not giving an explanation for this phenomena.

It is worth pointing out that something similar occurs with number fields. In [Mal08] G. Malle
gives numerical evidence indicating that the Cohen–Lenstra–Martinet heuristics for class groups of
number fields seem not to be applicable to the p-part of the class group when the base field or some
intermediate field contains pth roots of unity.

There are several results concerning the � divisibility of the order of Ш among quadratic twists
of an elliptic curve having a point of prime order �. In [Won99] Wong proves, using results of Frey
[Fre88], that there are infinitely many negative fundamental discriminants −d, d > 0, such that the
(−d)-quadratic twist of the elliptic curve X0(11) has analytic rank zero and Шd has an element of
order 5. Ono in [Ono01] obtains a more general result, combining ideas of Wong, Frey and himself,
for elliptic curves whose torsion subgroup is Z/�Z and satisfy several technical conditions at �. James
in [Jam99] also has results on the 3 divisibility of the order of Ш among negative quadratic twists
of an elliptic curve with a point of order 3, and relates this to the divisibility by 3 of class numbers
of negative quadratic fields. These works are based on results of Frey regarding the Selmer groups of
quadratic twists of elliptic curves having a rational point of odd prime order.

In this work we focus on congruences among modular forms that occur when the elliptic curve E
has a rational point of odd prime order �.

We showed in [Qua06] that, in the three strong Weil elliptic curves of prime conductor with a
torsion point of odd prime order �, there is a congruence, modulo �, among modular forms of weight
3/2. One of these forms is associated to central values of L-series corresponding to the twists of E ,
and the other one is an Eisenstein series whose coefficients are known to be related to class numbers
of imaginary quadratic fields.

These are the elliptic curves 11A1, 19A1 and 37B1, following Cremona’s tables [Cre97]. The first
one has a 5-torsion point, and the other two, a point of order 3. We will denote by f N the newform
associated to the elliptic curve of conductor N , and by gN the weight 3/2 newform under Shimura
correspondence to f N , lying in Kohnen subspace, as constructed in [Gro87]. By HN we will mean the
Eisenstein series of weight 3/2 and level 4N .

We have the following congruences:

g11 ≡ 3H11(5); g19 ≡ H19(3); g37 ≡ H37(3)

where, in each case, the modulus � of the congruence is an odd prime dividing the order of the group
of torsion points of the strong Weil curve of conductor N .

From a congruence as above we have that the proportion of Ш values divisible by � in the family
of imaginary quadratic twists of E , with (−d

N ) �= 1, is the same as the proportion of class numbers of

imaginary quadratic fields Q(
√−d) divisible by �, with (−d

N ) �= 1.
Further, if we assume the Cohen–Lenstra heuristics on the probability of class numbers being

divisible by a prime, and assume that this probability is valid when restricted to discriminants −d
with (−d

N ) �= 1, then this proportion is equal to

P (�) = 1 −
∏
i�0

(
1 − 1

�i

)
= 1

�
+ 1

�2
− 1

�3
− 1

�7
· · · .

The goal of this work is to analyze the situation for square-free conductors and prove, when possi-
ble, that the before mentioned congruence of modular forms in weight 3/2 comes from a well-known
congruence arising in weight 2, under the presence of an �-torsion point.

For elliptic curves E of prime conductor N , it is a known fact that when E has a point of prime
order �, the weight 2 newform f attached to E is congruent modulo � to the normalized Eisenstein
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series e2 in M2(N). By this we mean that the coefficients, and thus the eigenvalues of the Hecke
operators acting on M2(N), are equivalent modulo the prime �.

The existing congruence in weight 3/2, among a newform g under Shimura correspondence to f ,
and an Eisenstein series H3/2 corresponding to e2, should be a reflection of the situation occurring in
weight 2.

The procedure used for constructing the modular form g , corresponding to f and involved in
Waldspurger formula (see [Wal81]), uses Brandt matrices in certain quaternion algebra. It is a well-
known fact (see, for example, [Piz80]) that to an order O of level N , in a definite quaternion algebra
B defined over Q and ramified at some specific primes, one can attach certain theta series which
turn out to be modular forms of weight 2 and level N . Each newform of level N is represented in this
space of theta series. The Brandt matrices of level N and prime degree p, {B p}, act on this space as
the Hecke operators {T p} act on M2(N) and, to a newform f = ∑

anqn , corresponds a dimension one
eigenspace of the Brandt matrices in the following way: if T p f = ap f , then there is a dimension one
eigenspace 〈v〉, v ∈ Qκ such that B p vt = ap vt , for every prime p. Here κ is the number of left-ideal
classes for O and the Brandt matrices lie in Qκ×κ .

Suppose we have in M2(N) a congruence f ≡ e2 mod � among a normalized modular form f
and a normalized Eisenstein series e2. Then f and e2 are represented in some quaternion algebra
B and to each of them corresponds a one-dimensional eigenspace of the Brandt matrices B p whose
eigenvalues are equivalent modulo the prime �.

If we can assert that the reduced Brandt matrices {B p} modulo � have a one-dimensional
eigenspace associated to the eigenvalues {ap} then, by construction, the modular form g of weight
3/2 that corresponds to f , and whose coefficients are related to the central values of the L-series
of the twists of E , is congruent modulo � to a scalar multiple in F×

� of the Cohen–Eisenstein series
H3/2 of level N , associated to e2. This happens, at least, for N prime. Our interest in this concerns the
orders of Ш-groups of twists of elliptic curves. Assuming the Birch and Swinnerton-Dyer conjecture,
we have that the square of the d-coefficient of the modular form g is, essentially, the order of Шd
divided by a power of 2. The congruence above permits us to assert that |Шd| is divisible by the
prime � if, and only if, the class number of Q(

√−d) is divisible by �.
For composite levels, the situation is more difficult, as the space of Eisenstein series is no longer

one-dimensional. However, the situation should be as in the prime case. For square-free level N , the
newform f is congruent modulo � to a specific weight 2 Eisenstein series, when E has an � torsion
point. This should be reflected in a congruence in weight 3/2. Though we cannot prove a congruence
among eigenvectors of Brandt matrices, we give numerical examples in Section 3.7 and conjecture on
the coefficients of the weight 3/2 Cohen–Eisenstein series that corresponds to the weight 2 Eisenstein
series just mentioned.

2. General construction

In this section we give an outline of the general constructions we need. The results are known but
for the sake of self-containness we include a summary.

E will be an elliptic curve of analytic rank zero and square-free conductor N . The sign of the
functional equation for the L-series of E must be +1 or, equivalently, the sign of the Atkin–Lehner
W N is −1. As the sign of W N equals the product of the signs of the Atkin–Lehner at each prime
p | N , we have that there is an odd number of primes p | N for which W p = −1.

Along this section we will write N = DM , where D is the product of those primes p | N such that
the Atkin–Lehner involution W p acting on f N has sign −1, while M is the product of those acting on
f N with sign +1.

We will work in the quaternion algebra B ramified exactly at those finite primes p | D . Note that,
as this number of primes is odd, B is also ramified at infinity and the norm form in B is positive
definite.

We consider the family of negative quadratic twists Ed of E , for those d > 0 such that −d is a
fundamental discriminant and (−d

p ) sgn W p �= −1 for every p | N . Let f N = ∑
anqn be the weight 2

and level N modular form associated to E , then f N ⊗ ε−d is the modular form associated to the −d
twist of E .
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2.1. How to construct weight 3/2 modular forms.

In [Gro87] B. Gross states a special case of the Waldspurger’s [Wal81] formula concerning the
twists of a modular form f of weight 2 and conductor N prime. This formula relates the product
L( f ,1)L( f ⊗ ε−d,1) to the squared d-coefficient of a weight 3/2 modular form g , under Shimura
correspondence to f . This relation together with the Birch and Swinnerton-Dyer conjecture give us
the order of Шd as the square of the d-coefficient of a modular form times a rational square. For
examples calculated with N prime, this rational square was a power of 2. We will come back on this
later.

Given f N of weight 2 and prime level N , in [Gro87] we have an explicit procedure for constructing
the modular form gN of weight 3/2 involved in the Waldspurger formula.

In [BS90], Bocherer and Schulze-Pillot generalized Gross’ construction for square-free level N . We
give a very brief outline here which goes, roughly, as in the prime case.

Consider a definite quaternion algebra B ramified at some set of primes {p1, . . . , pr} and split at
all other primes. Put D = p1 · · · pr and let N = DM be any square-free integer.

Take an order O of level N , I1, . . . , Iκ representatives of left-ideal classes for O, and R1, . . . , Rκ

the respective right orders (of level N) of each ideal Ii .
For each Ri take the rank-three lattice Li = Z+ 2Ri and S0

i the elements of trace zero in Li . Define
gi to be the theta series

gi = 1

2

∑
b∈S0

i

qN(b)

where N is the norm form and q = e2π iτ .
The forms gi are in the Kohnen subspace M3/2(N) which are those modular forms of weight 3/2

on Γ0(4N) whose Fourier coefficient an is zero unless −n ≡ 0,1 mod 4.
Let wi be the number of units in R×

i /{±1}.
To each modular form f N in M2(N), with coefficients in Z, which is a newform and thus an

eigenfunction for all Hecke operators, with T p f = ap f corresponds a one-dimensional eigenspace
〈v = (v1, . . . , vκ )〉, of the Brandt matrices {B p} in B corresponding to O, such that

B p vt = ap vt .

This last equality valid, in principle, for p � N , is also true for every p, as we will see in Section 3.3.
We can always take v with integer and relatively prime coordinates.
Then

gN =
κ∑

i=1

vi

wi
gi

is in M3/2(N) and corresponds to f N under Shimura map.
The form gN is trivially zero unless we have

sgn W p =
{−1 for p | D,

1 for p | M

where sgn W p denotes the sign of W p acting on f N (see [BS90] for details).
This lift from modular forms of weight 2 to modular forms of weight 3/2 is also valid for Eisenstein

series. Thus take
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HN =
κ∑

i=1

1

wi
gi,

this is a weight 3/2 Eisenstein series corresponding to the eigenvector u = (1, . . . ,1) (κ ones), and
thus to an Eisenstein series of weight 2. If w = ∏

wi , then w HN ∈ M3/2(N).

2.2. Waldspurger’s formula

A similar special case of Waldspurger’s formula to that described in [Gro87] is valid for square-free
levels, as shown in [BS90].

Let f N ∈ S2(N) be a normalized newform of square-free level N , with sign +1 in the functional
equation for L( f N , s). Let −d be a fundamental discriminant and f N ⊗ εd the (−d)-quadratic twist
of f N .

Let gN = ∑
mdqd be the weight 3/2 modular form corresponding to f N as constructed above, in

the definite quaternion algebra B ramified at those primes p | D , and v = (v1, . . . , vκ ) the eigenvector
of the Brandt matrices in B corresponding to f N .

We have

∏
p| N

gcd(N,d)

(
1 +

(−d

p

)
sgn W p

)
L( f N ,1)L( fN ⊗ εd,1) = 2r ( f N , f N)m2

d√
d

∑ v2
i

wi

(1)

where r is the number of prime divisors of N and ( f N , f N ) is the Petterson inner product.
Note that the left-hand side is zero unless (−d

p ) sgn W p �= −1 for every prime p | N .

This means that md is zero unless for every p | N , (−d
p ) coincides with the sign of W p , or, it is

zero. Thus we will only get a proportion of the twists of f N by this construction, unless N is prime
in which case we get all them.

3. Eisenstein series

We give an Eisenstein series congruent to the weight 2 modular form f corresponding to E , when
this last has an � torsion point. Recall we are assuming � is prime and � > 2.

We know that M2(N) = S2(N) ⊕ E2(N), but for non-prime N the space of Eisenstein series is not
one-dimensional. Thus, we would like to have:

• An Eisenstein series e2 = ∑
cnqn such that for every prime p (and thus for every n), ap ≡

cp mod �.
• The eigenvectors of the Brandt matrices corresponding f N and e2 to be linearly dependent mod-

ulo �.
• The relation among the coefficients of the corresponding weight 3/2 Eisenstein series HN and

the class numbers of imaginary quadratic number fields.

In this section we focus on the first item and show this Eisenstein series is represented in the
quaternion algebra B ramified at exactly those primes p | N for which the Atkin–Lehner involution
W p has sign equal to −1.

3.1. The row sums of Brandt matrices

Here, as before, B is a definite quaternion algebra ramified at finite primes p | D , O an order of
level N = DM and Bn the corresponding Brandt matrices.
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The zeta function of O is the sum

ζO =
∑ 1

N(I)2s

where the sum extends over all integral O-left ideals I .
Eichler in [Eic72, §6] proves that the row sums of the Brandt matrices Bn equals the n-coefficient

of the zeta function of O. That is, if

ζO =
∞∑

n=1

b(n)

n2s

then b(n) is the sum of (any) row in the matrix Bn .
The zeta function can be expressed as an Euler product [Eic72, II §2] with local factor at a prime

p given as follows:

ζp(s) = (
1 − p−2s)−1(

1 − p1−2s)−1
for p � DM,

ζp(s) = (
1 − p−2s)−1

for p | D,

ζp(s) = (
1 + p1−2s)(1 − p−2s)−1(

1 − p1−2s)−1
for p | M,

which, if we put:{
αp = 1, dp = 0 if p | D,

αp = p + 1, dp = −p if p � D,

{
βp = 1, hp = 0 if p | DM,

βp = p + 1, hp = −p if p � DM,

we can re-write as

ζO(s) =
∏

p

ζp(s) = 2
∏

p

(
1 − αp p−2s − dp p−4s)−1 −

∏
p

(
1 − βp p−2s − hp p−4s)−1

= 2
∑
n�1

μ(n)

n2s
−

∑
n�1

ν(n)

n2s
=

∑
n�1

b(n)

n2s

where μ(1) = ν(1) = 1 and for each k (k � 1, or k � 2, as corresponds), the following recursion
formulas hold: {

μ
(

pk) = 1 for p | D,

μ(p) = p + 1;μ(
pk) = μ(p)μ

(
pk−1) − pμ

(
pk−2) for p � D,{

ν
(

pk) = 1 for p | DM,

ν(p) = p + 1;ν(
pk) = ν(p)ν

(
pk−1) − pν

(
pk−2) for p � DM.

Thus b(n) = 2μ(n) − ν(n) satisfies

b(1) = 1; b(p) =
{1 for p | D,

2p + 1 for p | M,

p + 1 for p � DM
(2)
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with

b
(

pk) =
⎧⎨⎩

1 for p | D,

2μ(pk) − 1 for p | M,

b(p)b(pk−1) − pb(pk−2) for p � DM.

(3)

Note that, as the row sums of the Brandt matrices Bn is a constant b(n), the vector u = (1,1, . . . ,1)

(κ ones) is an eigenvector of the Brandt matrices of level N . We have Bnut = b(n)ut , for all n ∈ N∪{0}.
If we take, in the Brandt matrix series Θ = (θi j) = ∑

Bnqn , the sum of any row∑
j

θi j(τ )

this is an Eisenstein series whose q-expansion is given by

e2(z) = b(0) +
∑
n�1

b(n)qn.

The zero-coefficient is (see [Eic72, p. 95] for details)

b(0) =
n∑

i=1

1

2wi
= 1

24

∏
p|D

(p − 1)
∏
q|M

(q + 1). (4)

The series e2(z) is a modular form of weight 2 and level N , as it is a linear combination of theta
series that are modular forms of weight 2 and level N .

Though this is a known result, we summarize it in the following

Proposition 3.1. Let N = DM be a square-free integer as before and B the quaternion algebra ramified at
exactly those primes p | D and at infinity. Let b(n) be the row sum of the Brandt matrix Bn, associated to an
order of level N in B. Then e2 = b(0)+∑

n�1 b(n)qn is a weight 2, level N, Eisenstein series. If we associate to

it the vector u = (1, . . . ,1) (κ ones), we have Bnut = b(n)ut .

Note that for N prime, we get the series

e2(z) = N − 1

24
+

∑
n�1

σ(n)Nqn = E2(z) − N E2(Nz)

where E2 is the non-holomorphic Eisenstein series of weight 2 and level 1. Recall that σ(n)N denotes
the sum of the divisors of n which are prime to N .

The space of Eisenstein series in M2(N), for N prime, is one-dimensional, and it is thus generated
by e2(z).

3.2. A (known) congruence among two weight two modular forms

Let E/Q be an elliptic curve of conductor N , with an � torsion point P defined over Q, where � > 2
is prime. Let f = ∑

n�1 anqn be the normalized modular form of weight 2 and level N associated to E .
It is a known fact (see, for example, [Ser68]) that for any prime p of good reduction, that is, for

any p � N (including the prime � if necessary), we have a congruence:

ap ≡ 1 + p mod �.
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For a prime p of bad reduction we have:

ap = − sgn W p

where W p is the Atkin–Lehner involution at the prime p.
Note that this gives, following the notation of the previous section:

– b(p) ≡ ap mod � for any � � DM .
– b(p) = 1 = ap . In particular, b(p) ≡ ap mod � for any p | D .

For primes p | M we have

– 2p + 1 = b(p) ≡ ap = −1 mod � if and only if � | 2(p + 1).

As the group of nonsingular points Ẽ p has order p + 1 and a point of order �, this last congruence
also holds. In fact, the �-torsion point P reduces to a nonsingular point in the reduced curve Ẽ p and
the group of nonsingular points in Ẽ p has order

p − 1 if ap = 1, that is, E has split multiplicative reduction at p,

p + 1 if ap = −1, that is, E has non-split multiplicative reduction at p. (5)

Thus � must divide p + 1 if ap = −1 or, equivalently, sgn W p = 1, and � must divide p − 1 if ap = 1
or sgn W p = −1.

Note that this also shows that � divides each factor in the numerator of (4).
From the recursion formulas for an and b(n) it follows that an ≡ b(n) modulo � for every n. As the

coefficients an and b(n) are multiplicative, it is enough to check this for n equal to a prime power.
Further, for any prime p � DM the recursion formulas for apk and b(pk) are the same, and there is

nothing to check. For p | D , apk = b(pk) = 1. Thus we only need to see that b(qk) ≡ aqk modulo �, for
primes q | M .

Here u(q) = q + 1 ≡ 0 mod �, u(1) = 1 and −q ≡ 1 mod �, and the recursion formula for u(qk) =
u(q)u(qk−1) − qu(qk−2) give

u
(
qk)≡

�

{
1 if k is even,

0 if k is odd.

This gives

b
(
qk) = 2u

(
qk) − 1≡

�

{
1 if k is even,

−1 if k is odd,

which is the same as aqk = (−1)k . This gives b(n) ≡ an mod � for every n ∈ N.
Further, the zero-coefficient b(0) is divisible by the prime �. Thus we have the following

Proposition 3.2. Let E/Q be an elliptic curve of square-free conductor N = DM and analytic rank zero. As-
sume E has a torsion point defined over Q, of odd prime order �. Let f = ∑

n�1 anqn be the weight 2, level
N newform associated to E and e2(z) the weight 2 Eisenstein series for Γ0(N), represented in the quaternion
algebra B, ramified at the primes p | D and whose coefficients are the row sums of the Brandt matrices of
level N. Then

f ≡ e2 mod �.
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Note that, as the elliptic curve E has analytic rank zero, and thus the sign of its functional equation
is +1, if N is prime, this sign is ε = −εN and thus aN = 1. Then we have, for each prime p, ap ≡
σ(p)N mod �, which gives for each index n � 1 the congruence

an ≡ σ(n)N mod �.

3.3. A congruence among eigenvectors of Brandt matrices

We know that the Brandt matrices B p for p prime to the level, act as the Hecke operators T p on
the space of newforms. We know further, that to a newform f corresponds an eigenvector v such
that, for (p, N) = 1,

B p v = ap v.

In fact we have that this equality holds for every prime p, as we will now show.
Take the Brandt matrix series

Θ(z) =
∞∑

m=0

Bmqn.

Recall this is a κ × κ matrix whose entries are theta series θi j .

Θv =
( ∑

m�0

Bmqm
)

v.

We have

T p(Θv) =
( ∑

m�0

B p Bmqm
)

v =
∑
m�0

Bm(B p v)qm = ap

( ∑
m�0

Bmqm
)

v = ap(Θv).

Thus
∑

j θi j v j if it is non-zero, it is an eigenfunction for all the Hecke operators T p with eigen-
value ap ; at least for p prime to the level N .

We know that there is a basis of S2(N) whose elements are eigenforms for all the Tn with
(n, N) = 1. The multiplicity one statement says that, restricting our attention to newforms, to each
set of eigenvalues {an} for n prime to the level, corresponds a one-dimensional eigenspace 〈 f 〉. As the
operators T p commute for all p, f will be an eigenfunction for all T p and it is determined by the
Fourier coefficients ap with (p, N) = 1.

This means that
∑

j θi j v j = λi f , for some λi . Further, we have: λi is the coefficient of q in the
Fourier expansion of

θi j v j =
∑

m

(∑
j

θi j(m)v j

)
qm

which is
∑

j θi j(1)v j = vi as B1 is the identity matrix.
Consider a prime p | N , and some index i, such that vi �= 0. Thus vi f = ∑

j θi j v j and the Hecke
operator T p acts on vi f as
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T p

(∑
j

θi j v j

)
=

∑
j

T pθi j v j =
∑

j

T p

(∑
m

θi j(m)qm
)

v j =
∑

j

∑
m

θi j(pm)v jq
m,

ap vi f =
∑

m

(∑
j

θi j(pm)v j

)
qm.

Comparing coefficients for m = 1,

ap vi =
∑

j

θi j(p)v j

which means that

ap v = B p v.

This shows that the coefficients {ap} are the eigenvalues of v , for every prime p, and thus for ev-
ery n. Then the congruence in Proposition 3.2 shows up in the quaternion algebra B as a congruence
among eigenvalues, as we state in the following

Proposition 3.3. Let E be an elliptic curve of conductor N = DM as above, having a rational �-torsion point,
� odd. Let e2 = ∑

b(n)qn with b(n) as in (2), (3), (4) of 3.1, and let f be the modular form of level N, corre-
sponding to E. Let v be the eigenvector of the Brandt matrices, corresponding to f , and u the one corresponding
to e2 . Then, for every n, the respective eigenvalues, of the Brandt matrices Bn, of v and u, are congruent mod-
ulo �.

What can we say about the eigenvectors v and u modulo �?
Suppose we can prove λv ≡ u mod �, for some λ ∈ F×

� . This would mean that we will have the
same relation modulo � among respective modular forms of weight 3/2.

For prime conductors N we can prove more: the Brandt matrices reduced modulo � have a one-
dimensional eigenspace for the reduced eigenvalues b(p).

As for elliptic curves of non-prime conductors we have calculated several examples with N = pM ,
such that W p acts on E with −1 sign, and Wq with sign +1 for every other prime q | M . This means
that we work in a quaternion algebra ramified at exactly one finite prime.

In the examples calculated we obtained that the eigenspace of the Brandt matrices associated to
the eigenvalues {b(p)}, reduced modulo �, is of dimension one. We do not know if this represents the
general situation or not. See Section 3.7.

3.4. N prime: multiplicity one

Recall that for prime conductor N , e2 = N−1
24 + ∑

n�1 σ(n)Nqn .
We are going to see that if we consider the reduced Brandt matrices modulo the prime �, there is

a dimension one eigenspace for the system of eigenvalues σ(n)N mod �.
We will need some results on the Eisenstein ideal, as well as modular forms over rings which can

be found in the work of Mazur [Maz77, Chapter II, §5, §9].
Consider the weight 2 Eisenstein series for Γ0(N)

e2(z) = N − 1

24
+

∑
n�1

σ(n)Nqn.
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Remove the constant term and consider the formal power series

δ =
∑
n�1

σ(n)Nqn.

By the work of Mazur [Maz77, Chapter II, §5], δ is a modular form modulo an integer m if and only
if m divides N−1

2 and it is a cusp form if m divides the exact numerator, η, of N−1
12 .

Note that, if f ≡ e2 mod �, for a prime � and a cusp form f , then δ is clearly a cusp form modulo
� and thus � divides η.

Let R denote the ring Z or Z/mZ, and M(R), S(R) the space or modular forms and cusp forms, of
weight 2 and level N , with coefficients in R (as described in [Maz77]). If f ∈ S(R) is an eigenvector
for all T p , p �= N and for T N then L( f , s) has an Euler product and f is determined, up to a scalar, by
the eigenvalues.

By the Hecke algebra T we shall mean the algebra generated by T p for p � N and T N .
Let M ⊂ T be a maximal ideal with residue field k of characteristic p. Denote S(Fp)[M] the

kernel of the ideal M in S(Fp). This may be viewed as a k-vector space.

Proposition 3.4. S(Fp)[M] is of dimension one over k.

The Eisenstein ideal I ⊂ T is the ideal generated by the elements 1 + p − T p and 1 − T N . Thus
any element in S(R)[I] is an eigenvector for the operators T p (p �= N) and T N , with eigenvalues
cp = 1 + p (p �= N) and cN = 1.

In R[[q]] the generating eigenvector for these cp eigenvalues is the power series δ. Thus the q-
expansion of any element in the R-module S(R)[I] is a scalar multiple of δ.

Proposition 3.5 (Mazur).

(1) Let m be any integer divisible by η = the exact numerator of N−1
12 . Then S(Z/mZ)[I] is a cyclic group of

order η, generated by m
η δ.

(2) T/I = Z/ηZ; the Eisenstein ideal I contains the integer η.

For details on this see [Maz77, §9].
A prime ideal M in the support of the Eisenstein ideal is called an Eisenstein prime. The Eisenstein

primes M are in one-to-one correspondence with the primes p | η. For p | η the Eisenstein prime
corresponding to p is given by M = (I, p). Then T/M = Fp and M is a maximal ideal and it is the
unique Eisenstein prime whose residue field is of characteristic p.

Let X denote the free Z module of divisors supported on the set of singular points of the curve
X0(N) in characteristic N . This set is in bijection with the set of isomorphism classes of supersingular
elliptic curves in FN . Brandt matrices of prime level N are related to isogenies between them.

The Hecke algebra T acts on the module X . Let M be an Eisenstein prime of residue characteris-
tic �. Recall that T/M  F� , thus the set of points in X /�X annihilated by the Eisenstein prime M
is a vector space over F� .

In a form closer to our present setting, we can think the module X as the Z-module generated
by the ideal classes I1, . . . , Iκ of a maximal order O in the quaternion algebra B ramified at N and
at ∞. We will denote this Z-module by X (O). The action of the Hecke algebra T on X corresponds
to the action of the Brandt matrices in X (O) as follows:

Let x = ∑κ
i=1 mi Ii , then Bn acts by multiplication: if (s1, . . . , sκ )t = Bn(m1, . . . ,mκ )t , then Bn.x =∑κ

i=1 si Ii .
To see that these two settings are parallel situations see, for example, [Eme02] and [PT07].
The eigenvectors u and v correspond to the elements X = ∑

Ii and Y = ∑
vi Ii in X (O), whose

eigenvalues are congruent modulo �. Let us denote by B the Z-algebra generated by the Brandt ma-
trices. Consider the maximal Eisenstein prime M of B given by M = 〈B p − (p + 1) id, BN − id, �〉.
Then B/M = F� .
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Call ū, v̄ the reductions of u and v modulo �. Thus ū and v̄ correspond to the elements X̄ , Ȳ in
X (O)/�X (O) that are in the kernel of the action of M. Then X̄, Ȳ ∈ X (O)/�X (O)[M] which is a
B/M-module, and thus an F� vector space. If X (O)/�X (O)[M] is of dimension one over F� , then
X̄ = λȲ and thus u ≡ λv mod � for some λ ∈ F×

� .
Going back to the Z-module X and the Hecke algebra T we need to prove that X /�X [M] is of

dimension one over T/M.
In [Eme02] M. Emerton works on the spanning of spaces of modular forms by theta series and

gives a detailed analysis of the T-module X . In particular, it is shown that X /�X [M] and X /M are
of the same dimension over T/M and that X /M has dimension one over T/M. We refer the reader
to [Eme02, Lemma 4.1 and the proof of Theorem 4.2].

This proves the following

Theorem 3.6. Let B be the quaternion algebra ramified at the prime N and at infinity. Let {B p} be the Brandt
matrices of prime degree p and level N. Let � be a prime dividing the exact numerator η of N−1

12 and con-
sider the reduced Brandt matrices B p mod �. Then the eigenspace associated to the system of eigenvalues
{σ(p)N } mod � has dimension one.

3.5. A congruence among modular forms of weight 3/2

To the Eisenstein series e2 corresponds the weight 3/2 Eisenstein series HN , which is defined by

HN =
∑ 1

wi
gi .

If the eigenvectors v and u are proportional modulo �, that is, u ≡ λv mod �, then we automati-
cally have λgN ≡ HN mod �, provided that the number of units wi in the right orders Ri are prime
to �. For � = 5,7 there is nothing to do, as wi | 12.

Suppose � = 3. It is known that (see [Gro87, §1]) the product
∏κ

i=1 wi equals the exact denomina-
tor of N−1

12 . Recall that, as δ is a cusp form modulo � = 3, 3 divides the exact numerator of N−1
12 and

it cannot divide its exact denominator. Then we have,

3 �

κ∏
i=1

wi

and

λgN ≡ HN mod �
(
λ ∈ F×

�

)
.

For N prime we know the q-expansion of HN and how its coefficients are related to class numbers
of imaginary quadratic number fields: HN has Fourier expansion

HN = N − 1

24
+

∑
d>0

HN(d)qd

where

• HN (d) is zero unless −d ≡ 0,1(4) and (−d
N ) �= 1.

• For d > 0 such that (−d) is a fundamental discriminant, let K = Q(
√−d), let Od be the ring of

integers in K , h(d) its class number and u(Od) one half the order of the units in K (this is 1,
except for d = 3,4).
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HN(d) =
{ h(d)

u(Od)
if N is inert in K ,

1
2

h(d)
u(Od)

if N is ramified in K .

Thus HN (d) is the class number h(d) or 1
2 h(d) except for, at most, 2 values of d.

For w = ∏κ
i=1 wi , we have that w HN (d) is integral.

From the examples calculated for non-prime conductors N (see 3.7 below) we expect the following
formula for HN (d) to be true.

Conjecture 3.7. Let B be a definite quaternion algebra ramified at exactly one finite prime p, and let N = pM
be a square-free integer. Denote by HN the weight 3/2 Eisenstein series constructed in the quaternion algebra
B as explained in 2.1.

Let d ∈ N such that −d is a fundamental discriminant such that

(−d

p

)
�= 1 and

(−d

q

)
�= −1 for every q | M. (6)

Let h(d) be the class number in Q(
√−d), Od its ring of integers and u(Od) the number of units in Od.

Set r to be the number of (distinct) primes that divide N and s(d) the number of primes that divide N and
ramify in Q(

√−d). Then we conjecture the following formula holds

HN(d) = 2r−1

2s(d)

h(d)

u(Od)
. (7)

3.6. The order of analytic Ш

Recall that we want to analyze the distribution of Ш among negative quadratic twists of elliptic
curves E , with associated modular form f .

For the strong Weil curves of rank zero and prime conductor N , having an odd torsion point of
prime order �, we have that the order of Шd is the coefficient m2

d of the modular form g of weight
3/2 under Shimura correspondence to f , divided by a power of 2 (see [Qua06]). This amounts to the
curves 11A1, 19A1 and 37B1. Thus, we have the following

Proposition 3.8. Let E be one of the elliptic curves 11A1, 19A1 or 37B1. Consider the family {Ed}, of negative
quadratic twists of E, for −d a fundamental discriminant and (−d

N ) �= 1. Suppose E has a torsion point defined

over Q, of odd prime order �. Then, |Шd| is divisible by �, if and only if the class number h(d) of Q(
√−d) is

divisible by �.

As we said in the introduction, if we further assume the Cohen–Lenstra heuristics on the prob-
ability of class numbers being divisible by a prime, and assume that this probability is valid when
restricted to discriminants −d with (−d

N ) �= 1, then the probability of Ш being divisible by � among
negative quadratic twists of E is given by

P (�) = 1 −
∏
i�0

(
1 − 1

�i

)
= 1

�
+ 1

�2
− 1

�3
− 1

�7
· · · .

It is worth pointing out here that we also obtained a relation Шd = m2
d

2∗ , where 2∗ indicates some
(even) power of 2 for all examples calculated for elliptic curves of prime conductor in [Qua06]: 17A1,
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67A1, 73A1, 89B1, 109A1, 139A1 and 307A1, 307B1, 307C1, 307D1. This has been calculated nu-
merically replacing in Waldspurger’s formula (1) L( f N ⊗εd,1) by what it is expected by the Birch and
Swinnerton-Dyer conjecture. This gives a formula for |Шd| in terms of computable factors depend-
ing on d (which can be calculated with PARI-GP), and the coefficient m2

d of the weight 3/2 modular
form (recall we are including the possibility “|Шd| = 0” if Ed has analytic rank > 0). This has been
calculated for d � 106 in all cases mentioned above.

Also, we get the same formula for |Шd| for curves 14A1, 26A1 and 26B1. This has been calculated
for the smaller range d � 2000.

If for a particular elliptic curve E we can check that |Шd| = m2
d

2∗ , then we have the following result:

Proposition 3.9. Let E be an elliptic curve of analytic rank zero and square-free conductor N. Suppose the sign
of W p acting on f is −1 for exactly one prime p | N. Consider the family {Ed}, of negative quadratic twists
of E, satisfying the Kronecker conditions (6). Suppose E has a torsion point defined over Q, of odd prime order

� and that |Шd| = m2
d

2∗ . Then, assuming λu ≡ v mod � and (7), we have that |Шd| is divisible by �, if and only

if the class number h(d) of Q(
√−d) is divisible by �.

3.7. Examples

Our goal was to obtain a similar result to 3.8 for square-free levels, or at least, have some conjec-
ture on this. In this section we give some examples we have calculated to test multiplicity one mod
� and to conjecture on the coefficients of H N(d).

We will consider, an elliptic curve E of analytic rank zero and conductor N = pq, with p, q primes.
Suppose that sgn W p = −1 and sgn Wq = 1. Further, suppose that E has an �-torsion point defined
over Q.

We showed in 3.1 and 3.2 that there is an Eisenstein series e2 = ∑
cnqn such that for every

prime p (and thus for every n), ap ≡ cp mod �. Here f N = ∑
anqn is the modular form of the el-

liptic curve E .
In the examples we focused on the following two points:

• The eigenvectors of the Brandt matrices corresponding f N and e2 to be linearly dependent mod-
ulo �.

• The relation among the coefficients of the corresponding weight 3/2 Eisenstein series HN and
the class numbers of imaginary quadratic number fields.

We use the standard notation for elliptic curves: [a1,a2,a3,a4,a6] stands for y2 + a1xy + a3 y =
x3 + a2x2 + a4x + a6 and we name them as in Cremona’s tables.

For our calculations we used routines from A. Pacetti [Pac] for doing arithmetic over quaternion
algebras and from G. Tornaria [Tor04], both of which run under PARI-GP. The packages we use are
qalgmodforms and quadminim.

The procedure is very similar to that used in [Qua06], so we will not give all the details but,
briefly, state which routines we use.

• N = 14.
The elliptic curve E = (14A1) = [1,0,1,4,−6] has conductor N = 14 and a 3-torsion point.
The signs of the Atkin–Lehner at the primes p = 7 and p = 2 are, respectively, −1 and +1. These
can be calculated with the routine ellrootno of PARI-GP.
We work with an order O of level 14 in the quaternion algebra B ramified at the prime 7 and
at ∞: qsetprime(7) sets the quaternion algebra and qorderlevel(14) returns an order of
level 14 in B. There are 2 left-ideal classes for O, I1, I2 which are calculated with qidcl(O).
Thus we have two right orders R1 and R2, given by qrorder(Ii). The number of units in each
right order is calculated with qrepnum(Ri,1). We have that one half the units in each order Ri

are w1 = 2 and w2 = 1.
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With this we can calculate the weight 3/2 modular forms gi . We need the rank-three lattices S0
i .

Once we have a basis for a lattice, we calculate with 1
2qgram(S0

i ) the matrix Ai of the bilinear
form restricted to the lattice, in the basis given. The routine 1

2 qfminim3(Ai,b,0,3) returns
b + 1 coefficients of the form gi .
To calculate g we need the eigenvector v of the Brandt matrices. The first Fourier coefficients
for the modular form f attached to E are a2 = −1,a3 = −2,a5 = 0,a7 = 1, . . . . To calcu-
late the eigenvector of the Brandt matrices corresponding to f we need to intersect the ker-
nels of (B p − ap I), for primes p, until we get a space of dimension one. We calculate (say)
matker(Brandt(O,5)), as a5 = 0 and we get the already one-dimensional space 〈(−2,1)〉.
We put v = (−2,1), u = (1,1). Clearly v ≡ u mod 3 and thus the eigenvalues must be equivalent
modulo 3 as we proved in 3.2.
If we calculate the kernel of (B p − b(p)I) modulo 3 we find that it is of dimension one.
If g = ∑ vi

wi
gi and H14 = ∑ 1

wi
gi we will have

g ≡ H14 mod 3.

Recall that wi are prime to �.
We analyze the Fourier coefficients of the weight 3/2 Eisenstein series H14.
For this, we calculate the form

∑ 1
wi

gi and compare the coefficients with the class numbers of

imaginary quadratic fields Q(
√−d), these last can be calculated with PARI-GP. This has been done

for d � 1000.
Let Kd = Q(

√−d), let Od be its ring of integers, and h(d) its class number. Recall u(Od) = 1
except for d = 3,4 which have, respectively, 3 and 2 units. Recall that a prime p ∈ Z is inert,
splits or ramifies in Od if the Kronecker symbol (−d

p ) is, respectively, −1, 1, 0.

We have, for d such that −d is a fundamental discriminant and (−d
7 ) �= 1 and (−d

2 ) �= −1:

H14(d) =

⎧⎪⎪⎨⎪⎪⎩
2h(d) if 7 is inert and 2 splits in Od,

h(d)
u(Od)

if 7 is inert and 2 ramifies in Od,

h(d) if 7 is ramified and 2 splits in Od,
1
2 h(d) if 7 and 2 ramify in Od.

(8)

Note that, as u(Od) = 1 for every d �= 3,4 we will not detect numerically if we have to divide by
u(Od) unless 3 or 4 is in the class of congruences we are considering. Further, as neither 3 or 4
is a product of 2 distinct primes, we can equally write 1

2
h(d)

u(Od)
in the last row of (8).

• N = 26.
We have two elliptic curves of level 26 and analytic rank zero.

(26A) E = (26A1) = [1,0,1,−5,−8] with |Tor(E)| = 3.
We have sgn W13 = −1 and sgn W2 = +1. We work in the quaternion algebra ramified at infinity
and 13; and calculate the Brandt matrices for an order of level 26, and the eigenvector v cor-
responding to f26 (and to E). This gives the eigenvector v = (−2,1,1) which again is clear that
v ≡ u = (1,1,1) mod 3.
For the coefficients of the weight 3/2 Eisenstein series H26A , we obtain numerically, for d such
that −d is a fundamental discriminant and (−d

13 ) �= 1 and (−d
2 ) �= −1 exactly the same coefficients

as in (8) replacing 7 by 13.

(26B) E = (26B1)[1,−1,1,−3,3] with |Tor(E)| = 7; sgn W2 = −1 and sgn W13 = +1. We work
in the quaternion algebra ramified at ∞ and 2.
The eigenvector for E is v = (−4,3,3) which again is clear that v ≡ 3u mod 7.
As for the coefficients of H26B we can correct Eq. (8), in what concerns dividing by the units
in Od:
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H26B(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 h(d)
u(O K )

if 2 is inert and 13 splits in Od,

h(d)
u(O K )

if 2 is inert and 13 ramifies in Od,

h(d)
u(O K )

if 2 ramifies and 13 splits in Od,

1
2

h(d)
u(O K )

if 13 and 2 ramify in Od.

• N = 77.
E = (77B1) = [0,1,1,−49,600] with |Tor(E)| = 3; sgn W7 = −1 and sgn W11 = +1.
The eigenvector for E is v = (4,1,−2,1,−2,−2) and v ≡ u mod 3. And H77(d) is as in (7).

• N = 30 = 2.3.5.
E = (30A1) = [1,0,1,1,2] with |Tor(E)| = 6; sgn W3 = −1 and sgn W2 = sgn W5 = +1. Here N
is a product of three primes.
The eigenvector for E is v = (−1,−1,2,2). We have −v ≡ u mod 3.
For the coefficients of H30 recall that we will only consider (−d

3 ) �= 1 and (−d
p ) �= −1 for p = 2,5.

We obtain

H30(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

22 h(d)
u(O K )

if 3 is inert and 2, 5 split in Od,

2 h(d)
u(O K )

if exactly one of the primes 2, 3, 5 ramifies in Od,

h(d)
u(O K )

if exactly two of the primes 2, 3, 5 ramify in Od,

1
2

h(d)
u(O K )

if 2, 3 and 5 all ramify in Od.

• N = 58 = 2.29.
E = (58B1) = [1,1,1,5,9] with |Tor(E)| = 5; sgn W2 = −1. Then B is ramified at ∞ and 2.
Eigenvector for E: v = (−4,1,1), v ≡ u mod 5. As for the coefficients of H58(d) these are as
in (7).

• Some considerations.
In all the examples above, we have that the eigenspace of the Brandt matrices reduced modulo �

and associated to the eigenvalues of u is of dimension 1.
Some more examples (picked “at random”):
For 862D1 = [1,0,0,8,64] and 1293A1 = [0,1,1,−73,217], both with a 3-torsion point we still
have a relation v ≡ 2u mod 3 (we have not checked multiplicity one mod 3).
We want to observe that for curves 1006B1 = [1,−1,0,8,0] and 862C1 = [1,−1,1,6,−7] both
with a torsion point of order 2, that we do not have any relation such as v ≡ u mod 2.
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