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Abstract

Let qX1 be an integer, Q be a Borel subset of the Euclidean space Rq; m be a probability

measure on Q; and F be a class of real valued, m-integrable functions on Q: The complexity

problem of approximating
R

f dm using quasi-Monte Carlo methods is to estimate

EnðF; mÞ :¼ inf
x1 ;y;xnAQ

sup
fAF

Z
f dm� 1

n

Xn

k¼1

f ðxkÞ
�����

�����:
The problem is said to be tractable if there exist constants c; a; b independent of q (but

possibly dependent on m and F) such that EnðF; mÞpcqan�b: We explore different regions

(including manifolds), function classes, and measures for which this problem is tractable. Our

results include tractability theorems for integration with respect to non-tensor product

measures, and over unbounded and/or non-tensor product subsets, including the unit spheres

of Rq with respect to various norms. We discuss applications to approximation capabilities of

neural and radial basis function networks.
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1. Introduction

In many applications, one needs to approximate the multi-dimensional integralR
Q

f ðxÞ dmðxÞ where Q is a Borel subset of a Euclidean space Rq (where qX1 is an

integer), and m is a probability measure supported on Q: Such problems arise, for
example, in mathematical finance [15,16], statistical learning theory [20], and
approximation by neural and radial basis function networks [2,8–12]. The quasi-
Monte Carlo technique for this approximation is to choose appropriate points
x�1;y; x�n so that the average of the values f ðx�kÞ approximates this integral. An

important question in complexity theory is to estimate

EnðF; mÞ :¼ inf
x1;y;xnAQ

sup
fAF

Z
Q

f ðxÞ dmðxÞ � 1

n

Xn

k¼1

f ðxkÞ
�����

�����; ð1:1Þ

for a suitable class F of functions. The problem is said to be tractable if

EnðF; mÞpcqa

nb ð1:2Þ

for some constants c; a; b40; independent of q: However, the constants may depend
upon m and F:

In addition to EnðF; mÞ; it is often customary to study the normalized error,
defined by

#EnðF; mÞ ¼ EnðF; mÞ
supfAF j

R
f dmj: ð1:3Þ

The denominator in the above fraction may be thought of as an ‘‘initial cost’’ or the
‘‘cost of doing nothing’’, and the normalized error measures the improvement of the
quasi-Monte Carlo method over this initial cost. If F contains the function I; which

is identically equal to 1 on Q; then clearly, supfAFj
R

f dmjX1: If, in addition, each

function f in F satisfies jf ðxÞjp1 (xAQ), then

#EnðF; mÞ ¼ EnðF; mÞ: ð1:4Þ
In many results on this subject, the tractability problem is studied for functions

that can be represented in the form x-sðFðx; �ÞÞ; where F is a fixed kernel function
(e.g., the reproducing kernel in a reproducing kernel Hilbert space), and s varies over
a suitable class of functionals. Novak and Woźniakowski have given two interesting
surveys of this topic in [13,14].

Next, we note an interesting connection between the tractability problem for
multivariate integration and approximation theory. Suppose that F is the unit ball
of some normed linear function space X ; on which point evaluations as well as the

functional m�; given by f/
R

f dm; are continuous linear functionals. If we denote

the point evaluation functional at a point x by dx; then it is clear that EnðF; mÞ gives
an estimate on the degree of approximation of m� in the dual norm of the norm on X

from the convex hull of fdxg: An important example of this line of thought, that
includes both neural and radial basis function networks, is formulated in the
following theorem.
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Theorem 1.1. Let Q; Q1 be Borel subsets of some Euclidean spaces, F : Q 
 Q1-R be

a fixed, bounded Borel measurable kernel function, and M be a class of signed measures

on Q having total variation equal to 1. We define FS to be the class of all functions on

Q of the form

x/

Z
Q1

Fðx; tÞ dsðtÞ; ð1:5Þ

where s ranges over all signed measures on Q1 having total variation 1, and FM to be

the class of all functions on Q1 of the form t/
R

Q
Fðx; tÞdmðxÞ; mAM: The following

are equivalent:

(a) We have

EnðFS; mÞpdn; mAM: ð1:6Þ

(b) We have

inf
x1;?;xnAQ

sup
tAQ1

gðtÞ � 1

n

Xn

j¼1

Fðxj; tÞ
�����

�����pdn; gAFM: ð1:7Þ

Proof. Let (1.6) hold, mAM; and e40 be arbitrary. Since Fð�; tÞAFS for every
tAQ1; (1.6) implies that there exist x1;y; xnAQ (independent of tAQ1) such thatZ

Fðx; tÞ dmðxÞ � 1

n

Xn

j¼1

Fðxj; tÞ
�����

�����pdn þ e; tAQ1: ð1:8Þ

In view of the definition of the class FM; this estimate is equivalent to estimate (1.7).
Conversely, let (1.7) hold, mAM; and e40 be arbitrary. Then there exist points

x1;y; xnAQ such that (1.8) holds. Let f ðxÞ ¼
R
Fðx; tÞdsðtÞ for some signed

measure s on Q1 with total variation equal to 1. Since F is a bounded function, we
may use Fubini’s theorem to conclude thatZ Z

Fðx; tÞ dmðxÞ dsðtÞ ¼
Z Z

Fðx; tÞ dsðtÞ dmðxÞ ¼
Z

f ðxÞ dmðxÞ:

Therefore, (1.8) leads toZ
f ðxÞ dmðxÞ � 1

n

Xn

j¼1

f ðxjÞ
�����

�����pdn þ e; fAFS;

i.e., EnðFS; mÞpdn: This proves (1.6). &

We observe that one needs an estimate of the form (1.6) uniformly for a large class
of measures to make the approximation estimate (1.7) interesting.

Our first aim in this paper is to explore a general framework that enables us to
analyse different regions, manifolds, function classes, and classes of measures for
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which an estimate of the form (1.2) can be obtained. Many of the known results on
the tractability problem deal with ‘‘tensor product’’ function classes and measures.
Our results include tractability theorems for integration with respect to non-tensor
product measures, and over unbounded and/or non-tensor product subsets,
including the unit spheres of Rq with respect to various norms.

Our second aim in this paper is to obtain bounds of the form cqa=nb on the degree
of approximation by neural and radial basis function networks, where n is the
number of ‘‘neurons’’ in the network (cf. Section 4 for the definition), and c; a; b are
independent of n and q: Typically, the known estimates in this theory are of the form

cðqÞ=nb; where b is independent of q; but often without the requirement that cðqÞ be
polynomially dependent on q:

To give a preview of one of the novelties of our results in this paper, we recall, for
example, that a radial basis function (RBF) network with activation function f :
½0;NÞ-R and n neurons (and norm jj � jj) is a function of the form

x/
Pn

j¼1 ajfðjjx� yjjjÞ; where yjARq and ajAR; 1pjpn: Most results on the

degree of approximation by radial basis function networks assume the norm jj � jj to
be the usual Euclidean norm. One novelty of our results is that we are able to supply
some bounds in the case of any absolute norm (cf. Section 2.2 for the definition) in the
argument of the activation function.

In the next section, we develop some basic concepts, which will be needed in
formulating our results. The main theorems concerning integration are stated in
Section 3. Section 4 describes some applications to the theory of approximation by
neural and radial basis function networks. The proofs are given in Section 5.

2. Preparatory concepts

2.1. Measures

In this section, we introduce certain classes of measures which will be needed in the
statement of our theorems.

We denote by lq the q-dimensional Lebesgue measure. For 1pppN and xARq;

we define

jjxjjp :¼ jjxjjq;p :¼
Pq
k¼1

jxkjp
� �1=p

if 1ppoN;

max
1pkpq

jxkj if p ¼ N:

8>><
>>: ð2:1Þ

Definition 2.1. Let m be a probability measure on Rq; L;M; b; gX0:
(a) The measure m is said to satisfy a decay condition (with parameters ðL; bÞ) if for

all dAð0; 1;
mðRq

\½�Ld�b;Ld�bqÞpd: ð2:2Þ
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(b) The measure m is said to satisfy a continuity condition (with parameters ðM; gÞ)
if for all Borel sets SDRq;

mðSÞpðMlqðSÞÞg: ð2:3Þ

(c) The measure m is said to be regular (with parameters ðL; b;M; gÞ) if it satisfies
both (2.2) and (2.3).

(d) A signed measure s will be called regular if the total variation measure jsj is
regular in the sense of part (c). Similar terminology will apply for s to satisfy a decay
condition or a continuity condition.

Next, we give some examples of regular, non-tensor product measures.

Example 1. Let K be a compact subset of Rq; 1oppN; f : K-½0;NÞ be Lebesgue
measurable, with a finite Lp norm N (with respect to the Lebesgue measure) on K ;

and
R

K
f dlq ¼ 1: The measure defined by mf ðSÞ ¼

R
S-K

f dlq is a regular measure

with parameters ðmaxxAK jjxjj
N
; 0;Np0 ; 1=p0Þ; where 1=p þ 1=p0 ¼ 1:

Example 2. We give two examples of non-tensor product measures supported on the
whole space. Let

mexpða;SÞ :¼ lexp;a

Z
S

expð�jjxjja2Þ dx; ð2:4Þ

where a40; and

lexp;a :¼
aGðq=2Þ

2pq=2Gðq=aÞ ð2:5Þ

is chosen to make mexpða;RqÞ ¼ 1 (cf. (5.33) below).

Another set of examples is given by

mpowða;SÞ :¼ lpow;a

Z
S

dx

1þ jjxjja2
; ð2:6Þ

where a4q; and

lpow;a :¼
aGðq=2Þ sinðpq=aÞ

2pðqþ2Þ=2 ð2:7Þ

is chosen to make mpowða;RqÞ ¼ 1:

Proposition 2.1. (a) Let a40: The measure mexpðaÞ satisfies the continuity condition

with g ¼ 1 and M ¼ lexp;a: It satisfies the decay condition with any b40 and

corresponding L given by

La
exp :¼ 2jq � aj

a
þ 1þ jq � ajb

abe

� 1þjq�ajb
2

Gðq=aÞ

� ab

þ1: ð2:8Þ
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(b) Let a4q: The measure mpowðaÞ satisfies the continuity condition with g ¼ 1 and

M ¼ lpow;a: It satisfies the decay condition with bpow ¼ 1=ða� qÞ and

Lpow :¼ a sinðpq=aÞ
pða� qÞ

� 1=ða�qÞ
: ð2:9Þ

By restricting and renormalizing these measures to different Borel sets, one can
easily generate examples of regular non-tensor product measures supported on Borel
sets other than the whole space, including sets that are both non-tensor product and
unbounded.

2.2. Geometrical concepts

Let jj � jj be any absolute norm on Rq; i.e., we assume that

jjðx1;y; xqÞjj ¼ jjðjx1j;y; jxqjÞjj

for all xARq: It is known (cf. [6, Theorem 5.5.10]) that jj � jj is monotone, i.e.,
jxjjpjyjj; 1pjpq; implies jjxjjpjjyjj: Let ej be the unit vector whose jth component

is 1 and other components are 0, k�1
1 :¼ min1pjpq jjejjj and k2 :¼ jjð1;y; 1Þjj: Then

the monotonicity of the norm leads to

k�1
1 jjxjj

N
pjjxjjpk2jjxjjN; xARq: ð2:10Þ

In the sequel, we will adopt the following notation. If " is a binary operation on
R; x; yARq; then x"y will be the vector in Rq whose jth component is xj"yj: If

cAR; then c"x :¼ ðc;y; cÞ"x; and x"c ¼ x"ðc;y; cÞ: Conventions regarding
the placement of the operator " will be continued as usual; for example, maxðx; yÞ
is the vector whose jth component is maxðxj; yjÞ: Similar conventions are followed

for binary relations. In particular, for xARq; and rA½0;Nq; we define the vector
z ¼ x

r
by

zj ¼

N if rj ¼ 0 and xja0;

0 if rj ¼ xj ¼ 0;

0 if rj ¼ N;
xj

rj

otherwise:

8>>>>><
>>>>>:

If a component of z is infinity, we set jjzjj :¼ N: For yARq; rA½0;Nq; we define the
ellipsoid

Bðjj � jj; y; rÞ ¼ xARq :
x� y

r

��� ������ ���p1
n o

: ð2:11Þ

We note that the values 0 and N are both valid for the components of r in the above
definition. If all components of r are equal to r; then the ellipsoid is the ball denoted
by Bðjj � jj; y; rÞ :¼ Bðjj � jj; y; ðr;y; rÞÞ: We denote Bðjj � jj; 0; 1Þ by Bjj�jj; its volume by

tq;jj�jj; its boundary by S
q�1
jj�jj ; and the area of this boundary by oq�1;jj�jj: It is easy to see
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that

lqðBðjj � jj; y; rÞÞ ¼ tq;jj�jj
Yq

k¼1

rk; ð2:12Þ

where 0 �N :¼ 0:
Next, we introduce some notations concerning strips. Let x � y denote the inner

product of x and y: For yAS
q�1
jj�jj2

; and a; bAR; apb; we write

Sðy; a; bÞ :¼ fxARq : x � yA½a; bg: ð2:13Þ

Further, Sðy; a;NÞ :¼
S

bAða;NÞ Sðy; a; bÞ; Sðy;�N; bÞ :¼
S

aAð�N;bÞ Sðy; a; bÞ: If

a4b; we define Sðy; a; bÞ to be the empty set.

Finally, we discuss some notation related to the sphere. A cap of radius r in S
q�1
jj�jj

centered at y is defined by

S
q�1
jj�jj;rðyÞ :¼ fxAS

q�1
jj�jj : jjx� yjjprg: ð2:14Þ

2.3. Function classes

For a subset SDRq; the characteristic function of S is defined by

wðS; xÞ :¼
1 if xAS;

0 otherwise:

�
ð2:15Þ

The constant function taking the value 1 everywhere on Rq will be denoted by I:
An estimate on EnðF; mÞ where F consists of characteristic functions of certain

sets is usually called a discrepancy estimate. In Section 5, we will obtain the
discrepancy estimates for the following classes of characteristic functions.

We start with the set of characteristic functions of ellipsoids:

Bðjj � jj;R;R1Þ :¼fwðBðjj � jj; y; rÞÞ : yAð�R;RÞq; rA½0;R1qg,fIg;

R;R1X0; ð2:16Þ

where R or R1 may also be infinity. In the case of the norm jj � jj
N
; the ellipsoids are

just cells in Rq; and we write

RðR;R1Þ :¼ Bðjj � jj
N
;R;R1Þ: ð2:17Þ

(We recall that an open cell in Rq is a set of the form
Qq

k¼1 Ik; where each Ik is an

open interval in R: By a cell, we will mean the closure of an open cell.)
Similarly, we define

Kjj�jj :¼ fwðSq�1
jj�jj;rðyÞÞ : yAS

q�1
jj�jj ; rX0g ð2:18Þ

and

SðRÞ :¼ fwðSðy; a; bÞ-Bðjj � jj2; 0;RÞÞ : yAS
q�1
jj�jj2

; a; bARg,fIg: ð2:19Þ

We note that the class Kjj�jj already contains the function I:
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Clearly, any estimate on EnðF; mÞ is valid also ifF is replaced by its signed convex
hull, i.e., the set of functions of the form

P
ajfj ; where the sum is a finite sum, fjAF

for each j; and aj’s are real numbers with
P

jajjp1: We may write
P

ajfj in the formR
Fð�; jÞ dsðjÞ; where for each j involved in the sum, Fð�; jÞ :¼ fj; and s is the signed

measure that associates the mass aj with the integer j: With this motivation in mind,

we now proceed to define the notion of a generalized convex hull of F; denoted by
convðFÞ: In the case when F is the set of characteristic functions defined above,
convðFÞ contains functions of the form (2.21) or (2.22) (described below), as well as
some other sets of functions recently considered in the literature on tractability
problems.

Let F be a class of functions on a subset Q of Rq; and Q1 be a measure space. An
F valued process on Q1 is a jointly measurable mapping F : Q 
 Q1-R; such that
for each tAQ1; Fð�; tÞAF: The generalized convex hull of F with respect to Q1;
denoted by convðF;Q1Þ; is defined to be the set of all functions of the form

x/

Z
Fðx; tÞ dsðtÞ; ð2:20Þ

where s ranges over all signed measures on Q1 having total variation not exceeding
1, and F ranges over all F valued processes on Q1: The class convðFÞ consists of
functions that are in convðF;Q1Þ for some measure space Q1: (Here, we have tacitly
assumed a ‘‘universal set’’ of all measure spaces of interest. In this paper, this
universal set consists of all Borel measurable subsets of all finite-dimensional
Euclidean spaces.)

Next, we discuss some examples of the notion of generalized convex hulls. We
recall (cf. [18, Chapter 8, Sections 12–21]) that there is a one-to-one correspondence
between signed measures having bounded variation on R and functions having
bounded variation on R: Thus, if f : R-R is a right (respectively, left) continuous
function having bounded variation, and fðxÞ-0 as x-�N (respectively, fðxÞ-0
as x-N), then there exists a unique signed measure mf such that fðxÞ ¼
mfðð�N; xÞ (respectively, fðxÞ ¼ �mfð½x;NÞÞ) for all xAR; and the total variation

of this measure is the same as the total variation of f: Similar representations hold
for functions defined on subintervals of R; satisfying different one-sided continuity
conditions, and normalizations. Therefore, one usually thinks of f itself as a signed
measure, and writes df in place of dmf; where mf is the measure appropriate to the

normalizations of f: The corresponding total variation measure is usually denoted
(in the context of integrations) by jdfj:

Example 3. Let f be a left continuous function of bounded variation on ½0;NÞ; such
that limx-NfðxÞ ¼ 0; and the total variation of f is equal to 1. If s is a signed

measure on Rq 
 ½0;NÞq; having total variation equal to 1, then a function of the
form

x/

Z
f

x� y

r

��� ������ ���� �
dsðy; rÞ ¼ �

Z Z
wðBðjj � jj; x; ruÞ; yÞ dfðuÞ dsðy; rÞð2:21Þ

is in convðBðjj � jj;N;NÞÞ:
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Example 4. Let f : R-½0;NÞ be a right continuous function of bounded variation
with limx-�N fðxÞ ¼ 0; s be a signed measure on Rq; having total variation equal to
1. Then a function of the form

x/

Z
fðx � yÞ dsðyÞ

¼
fð0ÞsðRqÞ if x ¼ 0;R R

wðSðx=jjxjj; u=jjxjj;NÞ; yÞ dfðuÞ dsðyÞ if xa0

�
ð2:22Þ

is in convðSðNÞÞ: Functions of the forms described in this and the previous example
are of interest in the theory of neural networks and radial basis function networks,
respectively. We will examine these in further detail in Section 4.

Example 5. In this example, we discuss the set convðRðR;R1ÞÞ in some detail. In [5],
Hickernell, Sloan, and Wasilkowski have studied the tractability of quasi-Monte

Carlo approximation of an integral of the form
R

Q
FðxÞWðxÞ dx; where Q is a

(bounded or unbounded) cell in Rq; and WðxÞ ¼
Qq

k¼1 WkðxkÞ for some weights

W : R-½0;NÞ: They have pointed out that by simple substitutions, this problem is

equivalent to the problem of approximating
R

D
f ðxÞ dx; where D ¼ ½�1=2; 1=2q:

The problem is proved to be tractable for the class FH of functions, defined as

follows. We fix an anchor cAD: For a subset UDf1;y; qg; let DU :¼ ½�1=2; 1=2jU j:
For xARq; let xU denote the vector of length jU j whose components are the
components xj of x for which jAU ; and ðxU ; cÞ be the q-dimensional vector whose

kth component is xk if kAU ; and ck if keU : For a sufficiently smooth function
f : D-R to allow the following differentiation, we write

f 0
UðxUÞ ¼

@jU jQ
kAU @xk

f ðxU ; cÞ: ð2:23Þ

If U is the empty set, the corresponding f 0
U is defined to be the constant function

f ðcÞ: If U is the empty set, it is also convenient to define jjf 0
U jj1;DU

:¼ jf ðcÞj: The class
FH consists of all functions f : D-R for which f 0

UðxUÞ exists for each

xA½�1=2; 1=2q and for each UDf1;y; qg; and

jjf jj1;D :¼
X

UDf1;y;qg

Z
DU

jf 0ðxUÞj dxUp1: ð2:24Þ

For fAFH and xXc; we have the integral representation (cf. [5])

f ðxÞ ¼
X

UDf1;y;qg

Z
½0;1=2jU j

wð½ðyU ; cÞ; ð1=2;y; 1=2Þ; xÞf 0
UðyUÞ dyU : ð2:25Þ

Similar representations hold in each of the 2q quadrants of D defined by c: We
choose the anchor c ¼ 0; and observe that each of the cells involved in (2.25) (and its

analogue in the other quadrants) has its center in ½�1=2; 1=2q and jj � jj
N
-radius not

exceeding 1/4. Thus, the class FH is seen to be a subset of convðRð1=2; 1=4ÞÞ:
Hickernell, Sloan, and Wasilkowski have already made use of this observation in [5]
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to deduce an estimate on EnðFH ; lqÞ from that on the class of characteristic

functions of cells. The additional observation here is regarding the radii and
locations of centers of the cells involved.

The following proposition summarizes an observation which we will use
extensively.

Proposition 2.2. Let m be a probability measure on a Borel measurable subset Q of Rq;
and F be a class of Borel measurable functions on Q; such that jf ðxÞjp1 for all fAF
and xAQ: We have for integer nX1;

EnðconvðFÞ;mÞ ¼ EnðF; mÞ

¼ inf
x1;y;xnAQ

sup
fAF

Z
Q

f ðxÞ dmðxÞ � 1

n

Xn

k¼1

f ðxkÞ
�����

�����: ð2:26Þ

In particular, if e40; one may choose points xj depending only on e; m and F; and

independently of the measure spaces, processes, and measures needed to define

functions in convðFÞ; such that

sup
fAconvðFÞ

Z
Q

f ðxÞ dmðxÞ � 1

n

Xn

k¼1

f ðxkÞ
�����

�����pEnðF; mÞ þ e:

3. Tractability of integration

In this section, we will discuss a variety of theorems estimating EnðF; mÞ for
different function classes and measures. In each case, F includes the function I; and

jf jp1 for all fAF: Hence, the normalized error #EnðF; mÞ ¼ EnðF; mÞ in each case.
In the sequel, we write

G :¼ 4

3 log 3� 2
E3:0868; ð3:1Þ

and, for k;B40;

Dnðk;BÞ :¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

n
fB þ ðk=2Þ logðn=ðGBÞÞg

r
: ð3:2Þ

In general, our estimates will have the form EnðF; mÞpDnðk;BÞ; where the constants
k;B will be given explicitly, in terms of the various parameters defining the function
classes and the decay/continuity conditions on the measures. It is perhaps possible to
sharpen these results with a removal of the term log n; using ideas from V-C theory
of probability, as in [5]. However, this is expected to give an unspecified constant
depending on F and m: We have decided to choose explicitly defined constants, even
if they might not be the best ones, and also have the slightly weaker result with the
logarithmic term, in order to make it easier to determine whether our theorems imply
tractability for particular measures and function classes, with absolute constants.
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Our first theorem is an extension of estimate (21) in [5, Theorem 3] of Hickernell,
Sloan, and Wasilkowski regarding the tractability of integration with respect to lq

on ½�1=2; 1=2q:

Theorem 3.1. Let 0oR;R1oN; M; g40; and L; bX0:
(a) Let

2qMð4R1Þq�1min ð3R1=4;RÞX1: ð3:3Þ

With B defined in (5.10), we have for nXGB; and any measure m satisfying a continuity

condition with parameters ðM; gÞ;
EnðconvðRðR;R1ÞÞ; mÞpDnð2q=g;BÞ: ð3:4Þ

(b) Let

Mqtq;jj�jjð2R1Þq�1minð1; 3R1=4;
ffiffiffiffi
R

p
ð1þ k2 þ k2R1ÞÞX1: ð3:5Þ

With B defined in (5.15), we have for nXGB; and any measure m satisfying a continuity

condition with parameters ðM; gÞ;
EnðconvðBðjj � jj;R;R1ÞÞ; mÞpDnð3qg�1;BÞ: ð3:6Þ

(c) Let qMð22þbLÞq
X2: With the constant B as in (5.12), we have for nXGB; and

any regular measure m with parameters ðL; b;M; gÞ;
EnðconvðRðN;NÞÞ; mÞpDnð2qðbq þ 1=gÞ;BÞ: ð3:7Þ

Part (b) of this theorem is clearly a generalization of part (a), except for different
constants. We present part (a) separately to allow a comparison with the result in [5]
(Example 6 below). We note that the support of the measure m in part (c) may well be
an unbounded and non-tensor product set. In the most general cases, the value of B

determines the tractability, and is Oðq2 log qÞ; where the constant involved in O may
depend upon m; R; R1; and the norm jj � jj: In some special cases, however, the value
of B is smaller. We illustrate this with a few examples.

Example 6. Theorem 3.1(a) may be applied to the case explained in Example 5. In

this example only, let D ¼ ½�1=2; 1=2q; MA½1;NÞ; w : ½�1=2; 1=2q-½0;M; andR
D

wðxÞ dx ¼ 1: The measure m defined on D by dm ¼ wðxÞ dx satisfies a continuity

condition with parameters ðM; 1Þ: Since FHCconvðRð1=2; 1=4ÞÞ; we take R ¼ 1=2;
and R1 ¼ 1=4: Since MX1; condition (3.3) is satisfied if qX3: Part (a) of the above
theorem therefore implies that for the class FH (with the anchor fixed at 0), we have
B ¼ ð4q þ 1Þ log 2þ 2q logðqMÞ; and

EnðFH ; mÞp2
G

n
ðB þ q logðn=ðGBÞÞÞ

� �1=2

: ð3:8Þ

We note that w does not need to be a tensor product function. In the case when
w � 1; we recover the corresponding result in [5] as far as the order of magnitude of
the dependence on q and n is concerned, apart from the values of the different
constants involved.
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Example 7. The purpose of this example is to illustrate Theorem 3.1(b) with a non-
tensor product region of integration and non-tensor product measure. We take jj �
jj ¼ jj � jj2; and omit the reference to this norm from the notations. To avoid conflict

of notation, we write U ¼ Bjj�jj: Let (in this example only), F denote the class of

functions f : ½0;NÞ-½0; 1 which are decreasing on ½0;NÞ; with fð0Þ ¼ 1; and
fðxÞ ¼ 0 if xX1=2; M be the set of all measures supported on U having total
variation 1, and F be the class of functions of the form

f ðxÞ ¼
Z

fðjjx� yjjÞ dsðyÞ

¼ �
Z Z

wðBðjj � jj; x; uÞ; yÞ dfðuÞ dsðyÞ; xAU ; fAF; sAM:

We observe that FCconvðBðjj � jj; 1; 1=2ÞÞ: Let g : ½0; 1-½0;NÞ be an integrable

function with
R 1
0 gðuÞ du ¼ 1; 0pgðuÞpN for uA½0; 1; and m be the measure defined

on U by dmðxÞ ¼ t�1
q gðjjxjjqÞ dlqðxÞ: Then m is a probability measure, satisfying a

continuity condition with M ¼ N=tq; g ¼ 1: Condition (3.5) is satisfied if qX3: The

value of B in (5.15) is given by ð4q þ 1Þ log 2þ 3q log N þ 2q logð2þ 3
ffiffiffi
q

p Þ þ
3q log q:

We observe that if a measure satisfies a decay condition with parameters ðL; bÞ;
then it also satisfies a decay condition with parameters ðL1; b1Þ for any L1XL and
b1Xb: Similarly, if it satisfies a continuity condition with parameters ðM; gÞ then it
also satisfies a continuity condition with parameters ðM1; gÞ for all M1XM:
Therefore, condition (3.3) may be omitted by replacing M in (5.10) by

maxðM; f2qð4R1Þq�1minð3R1=4;RÞg�1Þ: Similar remarks hold also for conditions
(3.5), the lower bound condition in Theorem 3.1(c), and other similar conditions in
the other theorems in this paper. However, we feel that the formulations given here
allows better clarity in the different formulas as well as better flexibility in applying
the results.

Our next theorem deals with tractability on the spheres.

Theorem 3.2. Let M1X1; g140 and the constant B be defined by (5.17). For any

integer nXGB and any measure m; supported on S
q�1
jj�jj and satisfying a spherical

continuity condition,

sup
yAS

q�1

jj�jj

mðSq�1
jj�jj;rðyÞ\S

q�1
jj�jj;rðyÞÞpðM1ðr � rÞÞg1 ; rXrX0; ð3:9Þ

we have

EnðconvðKjj�jjÞ; mÞpDnðq=g1;BÞ: ð3:10Þ

The constant B in (5.17) is OðqÞ; although the constants involved may depend
upon both m and jj � jj: We elaborate upon an example, which we find especially
interesting.
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Example 8. Let K be any compact, convex subset of Rq; 0 be in the interior of K ; and
K be symmetric in the sense that xAK if and only if ðjx1j;y; jxkjÞAK : The
Minkowski functional for K is defined by

jjxjjK :¼ infft40 : t�1xAKg: ð3:11Þ

It is well known ([6, Theorem 5.5.8 and its proof]) that jj � jjK is an absolute norm,

and K ¼ Bjj�jjK : Conversely, for any absolute norm jj � jj; jj � jj ¼ jj � jjBjj�jj
: In

particular, if the unit vectors ej are on the boundary of K ; then

jjxjj
N
pjjxjjKpjjxjj1pqjjxjj

N
: ð3:12Þ

Thus, Theorem 3.2 applies to integration over sets lying on the boundary of sets K

satisfying the properties mentioned above. The constant B in (3.10) in such cases is
q log q þ q log ð7M1Þ þ 3 log 2:

Finally, we state a theorem related to classes defined in terms of strips.

Theorem 3.3. Let R; g;M40; L; bX0:
(a) Let 2Mtq�1;jj�jjq�1;2

Rq
X1: With B as in (5.20), we have for integer nXGB; and any

measure m satisfying a continuity condition with parameters ðM; gÞ;

EnðconvðSðRÞÞ; mÞpDnððq þ 1Þ=g;BÞ: ð3:13Þ

(b) Let

2bqþ1tq�1;jj�jjq�1;2
MLq

X1: ð3:14Þ

With B as in (5.22), we have for integer nXGB; and any regular measure m with

parameters ðL; b;M; gÞ;

EnðconvðSðNÞÞ; mÞpDnððq þ 1Þðqbþ 1=gÞ;BÞ: ð3:15Þ

In the above theorem, as usual, B ¼ Oðq2 log qÞ; although the constants may
depend on m and R: An important class of functions for which Theorem 3.3 implies
tractability in this sense is the class of all functions of the form

x/

Z
expð�x � yÞ dsðyÞ; xX0;

for a signed measure s on ½0;NÞq with total variation equal to 1. Every function in
this class has an analytic extension to the right half-plane with respect to each of the
components of x: If s is a probability measure, the function is completely monotone
in each of its variables.
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4. Applications

In this section, we discuss certain applications of the theorems in Section 3 to the
theory of neural networks and radial basis function networks.

4.1. Neural networks

Let f : R-R: A neural network with activation function f; and having n neurons,

is a function of the form x/
Pn

j¼1 cjfðx � wj þ bjÞ; where the output layer weights

cjAR; the synaptic weights wjARq; and the thresholds bjAR: The theory of

approximation by neural networks is quite well developed (cf. [11] for a survey in
the context of approximation of classical Sobolev classes). In [1], Barron has studied

functions on Rq�1 which can be expressed in the form

FðxÞ ¼
Z
S

q�1

jj�jj2

½�1;1

wð½0;NÞ; x � yþ rÞGðy; rÞ ds1ðy; rÞ;

where s1 is the product measure of the normalized area measure on S
q�1
jj�jj2

with the

one-dimensional Lebesgue measure, andZ
S

q�1

jj�jj2

½�1;1

jGðy; rÞj ds1ðy; rÞ ¼ 1:

For such functions, he proved that for any integer nX1; there exist ak; bkA½�1; 1;
ykAS

q�1
jj�jj2

; 1pkpn; such that

max
xABjj�jj2

FðxÞ �
Xn

k¼1

akwð½0;NÞ; x � yk þ bkÞ
�����

�����pc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
;

where c is a constant depending only on q: Similar results have been proved by many
authors, [2,7–10,12]. In particular, Kurkova [7] has given bounds in a Hilbert space
setting that depend polynomially on q: We observe that we may define a function on
Rq by the formula

f ðxÞ ¼
Z
S

q�1

jj�jj2

½�1;1

wð½0;NÞ; x � yÞgðyÞ ds2ðyÞ;

where g and s2 are just G and s1 expressed in a different notation. Then
f ððx1;y; xq�1; 1ÞÞ ¼ Fððx1;y; xq�1ÞÞ:

Motivated by this example, we define the following class of functions. Let f be a
function having bounded variation on R: The class FNðf;L; b;M; gÞ consists of all
functions of the form

x/

Z
fðx � yÞ dmðyÞ;

where m is a regular, signed measure with parameters ðL; b;M; gÞ:
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Theorem 4.1. Suppose f is a function having bounded variation on R; with the

normalizations that f is right continuous, limx-�N fðxÞ ¼ 0; and the total variation of

f is 1. Let fAFNðf;L; b;M; gÞ; where condition (3.14) is satisfied, and B be the

constant defined in (5.22). Then for integer nXGB; there exist points yjARq; j ¼
1;y; n; (depending on f ) such that

sup
xARq

f ðxÞ � 1

n

Xn

j¼1

fðx � yjÞ
�����

�����pDnððq þ 1Þðqbþ 1=gÞ;BÞ: ð4:1Þ

We note again that B ¼ Oðq2 log qÞ: In addition, all the output layer weights in our
network are equal to 1=n: The proof of Theorem 4.1 is a simple consequence of
Proposition 5.5(b). We are also able to place bounds on the synaptic weights yj ;

provided the measure m in the definition of the target function f ; as well as the
function f; are compactly supported, and the approximation is desired on a compact
set. This is done using Proposition 5.5(a), but no new ideas are needed. As far as we
are aware, Theorem 4.1 is the first of its kind, where the degree of uniform
approximation by neural networks on the whole Euclidean space is estimated.

4.2. Radial basis function networks

Let f : ½0;NÞ-R: A radial basis function (RBF) network with activation
function f and n neurons (and norm jj � jj) is a function of the form

x/
Pn

j¼1 ajfðjjx� yjjjÞ; where the centers yjARq and the weights ajAR; 1pjpn:

Approximation by RBF networks has also been very popular in different
applications, ranging from pattern recognition to the production of animated
cartoons.

In this subsection, the function f : ½0;NÞ-R is a function having bounded
variation on ½0;NÞ; with the normalizations that f is left continuous,
limx-N fðxÞ ¼ 0; and the total variation of f is 1. We assume further that f
satisfies the decay conditionZ

N

Ld�b
jdfðxÞjpd; 0odp1: ð4:2Þ

We now consider the classFRðf; jj � jj;L; b;M; gÞ consisting of functions of the form

x/

Z
fðjjx� yjjÞ dmðyÞ;

where m is a regular, signed measure with parameters ðL; b;M; gÞ: We note that there
is no loss of generality in assuming that the same L and b are used here as in (4.2).
Requiring the two values to be different will only result in a more elaborate book-
keeping, but not in new ideas. This class is analogous to the ‘‘native space’’ for the
function f:

Theorem 4.2. Let L; b;M; g40: We define Bn ¼ B as in (5.15) with R1 ¼
Lðlog n=nÞ�b=2; R ¼ k1ð1þ k2ÞR1; and 21=gM in place of M: Let n be sufficiently
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large, so that nXGBn; log n=np1=4; and condition (3.5) is satisfied with these

parameters. Then for fAFRðf; jj � jj;L; b;M; gÞ; there exist yj ¼ yjðf ÞA½�R1;R1q

such that

sup
xARq

f ðxÞ � 1

n

Xn

j¼1

fðjjx� yjjjÞ
�����

�����pDnð3qg�1;BnÞ þ 7

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: ð4:3Þ

We note that Bn ¼ Oðq2 logðqnÞÞ:

As far as we are aware, this is the first result of its kind where
uniform approximation bounds are obtained for RBF networks using a norm
other than the Euclidean norm on Rq: It appears to be the first result of its
kind proving a tractability result for uniform approximation by RBF
networks on the entire Euclidean space. It is amusing to note that the weights in
our networks are again all equal to 1=n: Our proof can be modified to yield
analogous results where the centers yj are restricted to a compact cell in Rq; and the

approximation is also desired on a compact cell. We do not feel that this adds any
new ideas.

5. Proofs

For clarity of presentation, we postpone the proof of Proposition 2.1 until the end
of this section. The results in Section 4 are simple applications of those in Section 3.
Our strategy for proving the theorems in Section 3 is as follows. In light of
Proposition 2.2, it is enough to estimate EnðF; mÞ when F is the set of characteristic
functions of the sets involved in each theorem. We will use the geometrical properties
of the sets and the notion of one-sided entropy (‘‘entropy with brackets’’ in the
terminology in the book [19] of van der Vaart and Wellner) to obtain a finite set Y of
characteristic functions such that EnðF; mÞ can be estimated using EnðY ; mÞ: This
process is codified in Theorem 5.1 below. The problem of estimating EnðF; mÞ thus
reduces to estimating the one-sided entropy of F: The details of this estimation
depend heavily on the geometrical properties of the sets, and we had to present them
in the form of different propositions, in spite of a common theme behind all these
estimations.

Before proving other theorems, we prove Proposition 2.2.

Proof of Proposition 2.2. It is clear that FDconvðFÞ; so that

EnðconvðFÞ; mÞXEnðF; mÞ:

In the proof of the reverse inequality, we note that EnðF; mÞoN: Let e40 be
arbitrary and xj be chosen so that

sup
gAF

Z
gðxÞ dmðxÞ � 1

n

Xn

k¼1

gðxkÞ
�����

�����pEnðF; mÞ þ e: ð5:1Þ
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Let fAconvðFÞ: There exists an F-valued process F and a signed measure s of total
variation 1 such that

f ðxÞ ¼
Z

Fðx; tÞ dsðtÞ; xAQ:

Using Fubini’s theorem, we see thatZ
f ðxÞ dmðxÞ � 1

n

Xn

k¼1

f ðxkÞ ¼
Z Z

Fðx; tÞ dmðxÞ � 1

n

Xn

k¼1

Fðxk; tÞ
( )

dsðtÞ:

Since Fð�; tÞAF for each t; we conclude from (5.1) that

sup
fAconvðFÞ

Z
f ðxÞ dmðxÞ � 1

n

Xn

k¼1

f ðxkÞ
�����

�����pEnðF; mÞ þ e:

Since e is arbitrary, this completes the proof. &

We now begin with the proofs of the theorems in Sections 3 and 4. Towards this
end, we define the notion of one-sided entropy, and prove a general estimate for
quantities of the form EnðF; mÞ in terms of this one-sided entropy. Let Q be a
measure space, m be a probability measure defined on Q; F be a class of m-integrable
functions on Q; and d40: A finite set Y of m-integrable functions on Q is said to be a
one-sided ðm; dÞ-cover of F if for every fAF; there exist g; hAY with gpfph

everywhere on Q; and
R

Q
ðh � gÞ dmpd: We observe that Y need not be a subset of

F: If NðF; m; dÞ is the number of elements in a minimal one-sided ðm; dÞ-cover of F;
then we define the one-sided entropy HðF; m; dÞ to be the quantity log NðF; m; dÞ;
where we find it convenient to take the natural logarithm.

The starting point of our investigations is the following observation. It is probably
known in the statistical literature, but we find it easier to prove it than finding a
reference.

Theorem 5.1. Let ðQ; mÞ be a probability space, and F be a set of real valued, m-
integrable functions on Q; such that jf ðxÞjp1 for all fAF and xAQ; and the one-sided

entropy HðF; m; �Þ satisfies

HðF; m; dÞp log A � k log d; 0odp1; ð5:2Þ

for some positive constants A and k depending on F; Q; and m: Let B :¼ logð2AÞ: Then

for any integer nXGB; there exist a set TDQ; consisting of n points, such thatZ
f dm� 1

n

X
tAT

f ðtÞ
�����

�����pDnðk;BÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

n
fB þ ðk=2Þ logðn=ðGBÞÞg

r
; ð5:3Þ

where G is the constant defined in (3.1).

The proof of Theorem (5.1) mimics an argument in [4]. The main ingredient is to
use the following sharper version of the Hoeffding’s inequality (cf. [17, p. 191]). It is
proved in [5], but not stated in this way.
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Proposition 5.1. Let ðQ; mÞ be a probability space, nX1 be an integer, and fXkg;
k ¼ 1;y; n be independent random variables on Q; each with range contained in a

compact interval ½a; b and expectation equal to m: Then for any eAð0; ðb � aÞ=2;

Prob n�1
Xn

k¼1

Xk � m

�����
�����Xe

 !
p2 exp � 4ne2

Gðb � aÞ2

 !
: ð5:4Þ

Proof. Let Zj :¼ ðXj � aÞ=ðb � aÞ; 1pjpn: Then for 1pjpn; we have 0pZjp1; the

expected value of Zj is ðm � aÞ=ðb � aÞ; and the variance of Zj can be estimated by

Z
Z2

j dm�
Z

Zj dm
� 2

p
Z

Zj dm�
Z

Zj dm
� 2

p1=4:

Following [5], we now recall the Bennett inequality [17, p. 192]. According to this
inequality, if Yj are independent random variables, each with mean 0, range in

½�M;M; and variance sj; and VX
Pn

j¼1 s
2
j ; then for Z40;

Prob
Xn

j¼1

Yj

�����
�����XZ

 !
p2 exp � V

M2
gðMZ=VÞ

� 
; ð5:5Þ

where, in this proof only, gðtÞ :¼ ð1þ tÞ logð1þ tÞ � t: We apply this estimate with
Yj ¼ Zj � ðm � aÞ=ðb � aÞ: Then we may choose M ¼ 1; V ¼ n=4 and Z ¼ ne=ðb �
aÞ: This leads to

Prob n�1
Xn

k¼1

Xk � m

�����
�����Xe

 !

¼ Prob
Xn

k¼1

Zk � nðm � aÞ=ðb � aÞ
�����

�����XZ

 !

p2 exp � n

4
gð4Z=nÞ

� �
: ð5:6Þ

Using elementary calculus, one verifies (cf. [5]) that gðtÞXð3 log 3� 2Þt2=4 ¼ t2=G if
tA½0; 2: Hence, if 0pZpn=2; i.e., epðb � aÞ=2; then

Prob n�1
Xn

k¼1

Xk � m

�����
�����Xe

 !
p2 exp � 4

nG
Z2

� 
¼ 2 exp � 4ne2

Gðb � aÞ2

 !
:

This completes the proof. &

Proof of Theorem 5.1. If npGfB þ ðk=2Þ logðn=ðGBÞÞg; then (5.3) is trivial.
Therefore, in the remainder of this proof, we will assume that n4GfB þ
ðk=2Þ logðn=ðGBÞÞg; and write d :¼ Dnðk;BÞ=2: Our assumption that nXGB implies
that n4GB and dAð0; 1Þ: Let Y be a minimal one sided ðm; dÞ-cover for F: By
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replacing each gAY by the function

g1ðxÞ :¼
gðxÞ if jgðxÞjp1;

1 if gðxÞX1;

�1 if gðxÞp� 1;

8><
>:

we may assume without loss of generality that the functions gAY satisfy jgjp1 as

well. Now, let fAF: Then there exist g1; g2AY such that g1pfpg2 and
R
ðg2 �

g1Þ dmpd: Then for any measure n on Q;
R

g1 dnp
R

f dnp
R

g2 dn; andZ
g2 dm�

Z
g2 dn� dp

Z
f dm�

Z
f dnp

Z
g1 dm�

Z
g1 dnþ d:

Consequently,

sup
fAF

Z
f dm�

Z
f dn

����
����pmax

gAY

Z
g dm�

Z
g dn

����
����þ d: ð5:7Þ

Now, let gAY : Following [4], we take a random sample xk from Q; distributed
according to m; and consider the random variable Xk ¼ gðxkÞ: Then the expected

value of Xk is
R

g dm and jXkjp1: Since dAð0; 1Þ; Proposition 5.1 implies that

Prob
1

n

Xn

k¼1

gðxkÞ �
Z

g dm

�����
�����Xd

 !
p2 expð�nd2=GÞ:

Hence,

Prob max
gAY

1

n

Xn

k¼1

gðxkÞ �
Z

g dm

�����
�����Xd

 !

p2jY j expð�nd2=GÞ

¼ exp ðlog 2þ HðF; m; dÞ � nd2=GÞ

pexp ðlogð2AÞ � k log d� nd2=GÞ ¼ exp ðB � k log d� nd2=GÞ

¼ exp � k
2
log 1þ k

2B
log

n

GB

� �� �� �
o1: ð5:8Þ

Therefore, there exist points xk such that

max
gAY

1

n

Xn

k¼1

gðxkÞ �
Z

g dm

�����
�����p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

n
B � ðk=2Þ log GB

n

� �s
:

Along with (5.7) (with n being the measure that associates the mass 1=n with each xk),
this proves (5.3) (with T ¼ fxkg). &

We now begin the program of estimating the one-sided entropies of the different
sets of characteristic functions described in Section 2.3. The following simple
estimate will be used often in this process. In the sequel, m will denote a probability
measure on Rq:
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Lemma 5.1. If Z40; 0oRoN; and max1pjpq maxðjxj þ Zj; jxjjÞpR; then

Yq

j¼1

ðxj þ ZÞ �
Yq

j¼1

xj

�����
�����pqZRq�1: ð5:9Þ

Proof. Estimate (5.9) follows immediately from the identity

Yq

j¼1

ðxj þ ZÞ �
Yq

j¼1

xj ¼
Xq

k¼1

Yq

j¼k

ðxj þ ZÞ
Yk�1

j¼1

xj �
Yq

j¼kþ1

ðxj þ ZÞ
Yk

j¼1

xj

 !

¼ Z
Xq

k¼1

Yq

j¼kþ1

ðxj þ ZÞ
Yk�1

j¼1

xj: &

In order to prove Theorem 3.1, we first prove two propositions, Propositions 5.2
and 5.3.

Proposition 5.2. (a) Let 0oR; R1oN; and m be a measure satisfying a continuity

condition with parameters ðM; gÞ: Suppose that (3.3) is satisfied. With

B ¼ log 2ð2qMÞ2q 2R

R1

� q

ð4R1Þ2q2
� �

; ð5:10Þ

we have for nXGB;

EnðRðR;R1Þ; mÞpDnð2q=g;BÞ: ð5:11Þ

(b) Let m be a regular measure with parameters ðL; b;M; gÞ; where qMð22þbLÞq
X2:

With

B ¼ ð2q2ðbþ 2Þ þ ð3þ 2=gÞq þ 2Þ log 2þ 2q log ðqMLqÞ; ð5:12Þ

we have, for nXGB;

EnðRðN;NÞ; mÞpDnð2qðbq þ 1=gÞ;BÞ: ð5:13Þ

Proof. First, we prove part (a). Let 0odp1: In view of (3.3), there exists an integer
mX3 in the interval

½6qMð4R1Þq�1
Rd�1=g; 8qMð4R1Þq�1

Rd�1=g:

We divide the cube ½�R;Rq into mq congruent subcubes, and let (in this proof only)
C denote the set of centers of these subcubes. Next, let m1 ¼ R1m=R: Condition (3.3)
ensures that m1X4: For zAC and multi-integer kX1; let gz;k denote the characteristic

function of the cell Bðjj � jj
N
; z; kR1=m1Þ: If any component of k is not positive, we

define gz;k ¼ 0: The set consisting of I and the functions gz;k; zAC; 0pkpm1 þ 2

(kAZq) will be denoted by YdðR;R1Þ: Now, if yA½�R;Rq and rA½0;R1q; then there
exist zAC and multi-integer k with 0pkpm1; such that jjy� zjj

N
pR=m; and

kR1=m1prpðkþ 1ÞR1=m1: Denoting the characteristic function of Bðjj � jj
N
; y; rÞ by
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f ; it is easy to verify that gz;k�1pfpgz;kþ2: Further,Z
ðgz;kþ2 � gz;k�1Þ dlq

p
2R1

m1

� q Yq

j¼1

ðkj þ 2Þ �
Yq

j¼1

maxð0; kj � 1Þ
" #

p3q
2R1

m1

� q

ðm1 þ 2Þq�1p3q2q�1ð2R1Þq=m1

¼ 3q2qð2R1Þq�1
R=m ¼ 6qRð4R1Þq�1=mpd1=g=M:

Therefore, the continuity condition on m implies thatZ
ðgz;kþ2 � gz;k�1Þ dmpd:

Thus, the set YdðR;R1Þ is a one-sided ðm; dÞ-cover of RðR;R1Þ: Therefore,
expðHðRðR;R1Þ; m; dÞÞp jYdðR;R1Þjpmqðm1 þ 3Þq þ 1

pmqðm1 þ 3þ 1=mÞqpmqðm1 þ 3þ 1=3Þq

p 2qm2qðR1=RÞq

p 2qðR1=RÞqf8qMRð4R1Þq�1d�1=gg2q

¼ð2qMÞ2q 2R

R1

� q

ð4R1Þ2q2d�2q=g: ð5:14Þ

In view of Theorem 5.1, this leads to (5.11).
To prove part (b), we let h be the characteristic function of

Rq
\½�Lðd=2Þ�b;Lðd=2Þ�b; R ¼ R1 ¼ Lðd=2Þ�b; and

Y ¼ Yd=2ðR;RÞ,fg þ h : gAYd=2ðR;RÞg:

Now, for any yARq and rX0; Bðjj � jj
N
; y; rÞ-½�R;Rq is either empty or equal to

Bðjj � jj
N
; x; r1Þ for some xA½�R;Rq and r1A½0;Rq: Thus, any fARðN;NÞ can be

expressed in the form f ¼ f1 þ f2; where f1ARðR;RÞ,f1� Ig; and 0pf2ph: We

may find g1; g2AYd=2ðR;RÞ such that g1pf1pg2 and
R
ðg2 � g1Þ dmpd=2: Hence,

g1pfpg2 þ h; and the decay condition for m implies thatZ
ðg2 þ h � g1Þ dmpd:

Thus, Y is a one-sided ðm; dÞ-cover for RðN;NÞ: The cardinality of Y is at most
twice that of Yd=2ðR;RÞ: We substitute the values of R ¼ R1 in (5.14), and use d=2 in

place of d to deduce that

HðRðN;NÞ; m; dÞpfð2ðbþ 2Þq2 þ ð3þ 2=gÞq þ 1g log 2

þ 2q logðqMLqÞ � ð2qðqbþ 1=gÞÞ log d:

This estimate and Theorem 5.1 leads to (5.13). &
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Proposition 5.3. Let m be a probability measure satisfying a continuity condition with

parameters ðM; gÞ; 0oR;R1oN; and (3.5) be satisfied. With

B ¼ logf2ðð4Mqtq;jj�jjÞ3Rð1þ k2 þ k2R1Þ2ð2R1Þ3q�2Þqg ð5:15Þ

we have for integer nXGB;

EnðBðjj � jj;R;R1Þ; mÞpDnð3qg�1;BÞ: ð5:16Þ

The next lemma supplies a detail required in the proof of this proposition.

Lemma 5.2. Let rA½0;R1q; 0oep1; jjzjj
N
pe2; and r0Xrþ eð1þ k2 þ k2R1Þ: Then

Bðjj � jj; y; rÞDBðjj � jj; yþ z; r0Þ:

Proof. Since jj � jj is monotone, Bðjj � jj; y; rÞDBðjj � jj; y; rþ eÞ: Further,

x� y

rþ e
� x� y� z

rþ e

����
����

����
����pjjzjj

e
pk2e:

So, xABðjj � jj; y; rþ eÞ implies that xABðjj � jj; yþ z; ðrþ eÞð1þ k2eÞÞ: Since

ðrþ eÞð1þ k2eÞprþ eþ k2eðR1 þ eÞprþ eð1þ k2 þ k2R1Þpr0;

the monotonicity of jj � jj implies that xABðjj � jj; yþ z; r0Þ: &

Proof of Proposition 5.3. In this proof, we will denote tq;jj�jj by tq: We will estimate

the one-sided entropy HðBðjj � jj;R;R1Þ; m; dÞ; and use Theorem 5.1. Let dAð0; 1;
and mXmaxð3;

ffiffiffiffi
R

p
Þ be an integer in the range

½3Mqtqð2R1Þq�1ð1þ k2 þ k2R1Þ
ffiffiffiffi
R

p
d�1=g;

4Mqtqð2R1Þq�1ð1þ k2 þ k2R1Þ
ffiffiffiffi
R

p
d�1=g:

(Condition (3.5) ensures that such an integer exists for every dAð0; 1:) We divide

½�R;Rq into m2q congruent subcubes, and let (in this proof only) C denote the set of
centers of these subcubes. Let

m1 ¼
R1m

ð1þ k2 þ k2R1Þ
ffiffiffiffi
R

p :

Again, Condition (3.5) implies that m1X4: For zAC and multi-integer k with
1pkpm1 þ 2; let gz;k denote the characteristic function of the ellipse Bðjj �
jj; z; kR1=m1Þ: If some component of a multi-integer k is not positive, we define
gz;k ¼ 0: The set consisting of I and the functions gz;k; 0pkpm1 þ 2 (kAZq) will be

denoted by Y : Let yA½�R;Rq; rA½0;R1q; and f be the characteristic function of
Bðjj � jj; y; rÞ: Then there exists zAC and multi-integer k with 0pkpm1 such that

jjy� zjj
N
pR=m2 and kR1=m1prpðkþ 1ÞR1=m1: Using Lemma 5.2, it is easy to
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verify that gz;k�1pfpgz;kþ2: We observe thatZ
ðgz;kþ2 � gz;k�1Þ dlq

ptq

R1

m1

� q Yq

j¼1

ðkj þ 2Þ �
Yq

j¼1

maxð0; kj � 1Þ
 !

p3qtq

R1

m1

� q

ðm1 þ 2Þq�1

p3qtqð2R1Þq�1ð1þ k2 þ k2R1Þ
ffiffiffiffi
R

p
=mpd1=g=M:

Since gz;kþ2 � gz;k�1 is the characteristic function of a Borel measurable set, the

continuity condition on m implies thatZ
ðgz;kþ2 � gz;k�1Þ dmpd:

Thus, the set Y is a one-sided ðm; dÞ-cover for Bðjj � jj;R;R1Þ: The cardinality of Y is
at most

m2qðm1 þ 3Þq þ 1pm2qð2m1Þq ¼ ð2R1ð
ffiffiffiffi
R

p
ð1þ k2 þ k2R1ÞÞ�1Þq

m3q:

Recalling that mp4qMtqð2R1Þq�1ð1þ k2 þ k2R1Þ
ffiffiffiffi
R

p
d�1=g; the above estimate leads

to

HðBðjj � jj;R;R1Þ; m; dÞp logðð4MqtqÞ3Rð1þ k2 þ k2R1Þ2


 ð2R1Þ3q�2Þq � 3q

g
log d:

Along with Theorem 5.1, this leads to (5.16). &

Proof of Theorem 3.1. We recall (2.26). Parts (a) and (c) follow from Proposition 5.2,
parts (a) and (b), respectively. Part (b) follows from Proposition 5.3. &

The proof of Theorem 3.2 requires the following proposition.

Proposition 5.4. Let m be a probability measure on S
q�1
jj�jj satisfying the spherical

continuity condition (3.9), where we assume further that M1X1: Let

B ¼ log
8q

k1k2
ð7k1k2M1Þq

� �
: ð5:17Þ

Then for integer nXGB;

EnðKjj�jj; mÞpDnðq=g1;BÞ: ð5:18Þ

Proof. It is easy to verify that for x; yAS
q�1
jj�jj

N

;

jjx� yjj
N
p2k1k2

x

jjxjj �
y

jjyjj

����
����

����
����pð2k1k2Þ2jjx� yjj

N
: ð5:19Þ
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Let dAð0; 1: Since M1X1; we may find an integer mX6k1k2 in the interval

½6k1k2M1d
�1=g1 ; 7k1k2M1d

�1=g1 :

We divide each of the 2q faces of S
q�1
jj�jj

N

into mq�1 congruent subcubes, and let C be

the set of projections of the centers of these subcubes on S
q�1
jj�jj : For integer c; let

rc ¼ 2k1k2c=m: Let gz;c denote the characteristic function of the cap S
q�1
jj�jj;rcðzÞ; zAC;

1pcpm=ðk1k2Þ þ 2; (c integer), and gz;c ¼ 0; if cp0: Let Y be the set of functions

gz;c; zAC; 0pcpm=ðk1k2Þ þ 2: Now, let f be the characteristic function of S
q

jj�jj;rðyÞ:
In view of (5.19), there exist zAC and integer k with 0pkpm=ðk1k2Þ such that
jjy� zjjp2k1k2=m and rkprprkþ1: It is easy to verify that gz;rk�1

pfpgz;rkþ2
: Our

choice of m and the continuity condition (3.9) lead to
R
ðgz;rkþ2

� gz;rk�1
Þ dmpd:

Thus, Y is a one-sided ðm; dÞ-cover of Kjj�jj: The cardinality of Y does not exceed

2qmq�1 m þ 3k1k2
k1k2

p
4q

k1k2
mqp

4q

k1k2
ð7k1k2M1Þqd�q=g1 :

Therefore,

HðKjj�jj; m; dÞp log
4q

k1k2
ð7k1k2M1Þq

� �
� ðq=g1Þ log d;

Along with Theorem 5.1, this leads to (5.18). &

Proof of Theorem 3.2. The theorem follows immediately from (2.26) and Proposition
5.4. &

The proof of Theorem 3.3 will follow from the following proposition.

Proposition 5.5. (a) Let m be a probability measure satisfying a continuity condition

with parameters ðM; gÞ: Let R40 and 2Mtq�1;jj�jjq�1;2
Rq

X1: Let

B ¼ logf16ð14 ffiffiffi
q

p
tq�1;jj�jjq�1;2

MRqÞqþ1g: ð5:20Þ

Then for integer nXGB;

EnðSðRÞ; mÞpDnððq þ 1Þ=g;BÞ: ð5:21Þ

(b) Let m be a regular measure with parameters ðL; b;M; gÞ satisfying (3.14). Let

B ¼ logf32ð14tq�1;jj�jjq�1;2
Mqðqþ1Þ=2Lq2qbþ1=gÞqþ1g: ð5:22Þ

Then for integer nXGB;

EnðSðNÞ; mÞpDnððq þ 1Þðqbþ 1=gÞ;BÞ: ð5:23Þ

In order to prove this proposition, we first prove a simple lemma, estimating the
volume of intersections of strips and spheres.
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Lemma 5.3. Let yAS
q�1
jj�jj2

; R40; �RpaobpR: Then

lqðSðy; a; bÞ-Bðjj � jj2; 0;RÞÞptq�1;jj�jjq�1;2
Rq�1ðb � aÞ: ð5:24Þ

Proof. Since lq is rotation-invariant, we may assume that y ¼ ð0;y; 0; 1Þ: Let

CðR; a; bÞ be the right cylinder with cross sections congruent to Bðjj � jjq�1;2; 0;RÞ;
base in the plane xqþ1 ¼ a and top in the plane xqþ1 ¼ b: Then Sðy; a; bÞ-Bðjj �
jjq;2; 0;RÞDCðR; a; bÞ: Estimate (5.24) is now clear. &

Proof of Proposition 5.5. In this proof, we will denote S
q�1
jj�jj2

by Sq�1 and tq�1;jj�jjq�1;2
by

tq�1: Let dAð0; 1: In view of the condition 2Mtq�1R
q
X1; there exists an integer

mX6
ffiffiffi
q

p
in the interval

½12 ffiffiffi
q

p
tq�1MRqd�1=g; 14

ffiffiffi
q

p
tq�1MRqd�1=g:

As in the proof of Proposition 5.4, we find a set C consisting of 2qmq�1 points on

Sq�1 such that for any yASq�1; there exists zAC with jjy� zjj2p2
ffiffiffi
q

p
=m: Let rk ¼

�R þ 2kR
ffiffiffi
q

p
=m; �2pkp2þ m=

ffiffiffi
q

p
(k integer). Let gz;c;k denote the characteristic

function of Sðz; rc; rkÞ-Bðjj � jj2; 0;RÞ; and YdðRÞ be the set consisting of I; 1� I;
and these functions. Now, let f be the characteristic function of Sðy; a; bÞ-Bðjj �
jj2; 0;RÞ for some yASq�1; ½a; bDR: We may assume that ½a; bD½�R;R: We find a

zAC with jjy� zjj2p2
ffiffiffi
q

p
=m; and integers c; k; 0pc; kpm=

ffiffiffi
q

p
such that

½rcþ1; rk�1D½a; bD½rc; rk: It is easy to verify that

gz;cþ2;k�2pfpgz;c�1;kþ1:

In view of Lemma 5.3, we verify thatZ
ðgz;c�1;kþ1 � gz;cþ2;k�2Þ dlq

p
Z

ðgz;c�1;cþ2 þ gz;k�2;kþ1Þ dlq

p
12

ffiffiffi
q

p
tq�1Rq

m
:

The continuity condition on m and our choice of m now lead to the estimateZ
ðgz;c�1;kþ1 � gz;cþ2;k�2Þ dmpd:

Thus, YdðRÞ is a one-sided ðm; dÞ-cover of SðRÞ: Its cardinality does not exceed

jYdðRÞjp2qmq�1ð5þ m=
ffiffiffi
q

p Þ2 þ 2p8mqþ1

p8ð14 ffiffiffi
q

p
tq�1MRqÞqþ1d�ðqþ1Þ=g: ð5:25Þ

Theorem 5.1 now leads to (5.21).
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To prove part (b), we let R ¼ Lðd=2Þ�b; h be the characteristic function of

Rq
\½�R;Rq; and

Y :¼ Yd=2ð
ffiffiffi
q

p
RÞ,fg þ h : gAYd=2ð

ffiffiffi
q

p
RÞg:

As in the proof of Proposition 5.2(b), Y is a one-sided ðm; dÞ-cover of SðNÞ; and
jY jp2jYd=2ð

ffiffiffi
q

p
RÞj: Estimate (5.25) with d=2 in place of d and

ffiffiffi
q

p
Lðd=2Þ�b in place

of R then leads to an estimate on HðSðNÞ; m; dÞ; which, along with Theorem 5.1
implies (5.23). &

Proof of Theorem 3.3. The theorem follows immediately from (2.26) and
Proposition 5.5. &

Proof of Theorem 4.1. There is no loss of generality in assuming that f is
nondecreasing. Let

f ðxÞ ¼
Z
Rq

fðx � yÞ dmðyÞ; xARq;

for a regular measure m with parameters ðL; b;M; gÞ satisfying (3.14). Again, without
loss of generality, we may assume that m is a positive measure. In this proof, we will
write jj � jj in place of jj � jj2: We observe that f ð0Þ ¼ fð0Þ: Let xARq; xa0; and
X :¼ x=jjxjj: We note that for yARq;

fðx � yÞ ¼
Z
R

wðð�N; x � y; uÞ dfðuÞ ¼
Z
R

wðð�N;X � y; u=jjxjjÞ dfðuÞ:

Using Fubini’s theorem, we obtain the representation

f ðxÞ ¼
Z
Rq

fðx � yÞ dmðyÞ ¼
Z
R

Z
Rq

wðSðX; u=jjxjj;NÞ; yÞ dmðyÞ dfðuÞ: ð5:26Þ

In view of Proposition 5.5 (and its proof via Theorem 5.1), for nXGB; there exist
points yjARq such thatZ

Rq

wðSðX; u=jjxjj;NÞ; yÞ dmðyÞ
����

� 1

n

Xn

j¼1

wðSðX; u=jjxjj;NÞ; yjÞ
�����pDnðk;BÞ; ð5:27Þ

where, in this proof only, k ¼ ðq þ 1Þðqbþ 1=gÞ: Now, we observe again thatZ
R

wðSðX; u=jjxjj;NÞ; yjÞ dfðuÞ ¼
Z
R

wðð�N; x � yj; uÞ dfðuÞ ¼ fðx � yjÞ:

Consequently, (5.26) and (5.27) lead to estimate (4.1) &
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Proof of Theorem 4.2. Without loss of generality, we assume that f is nonincreasing.
Let

f ðxÞ ¼
Z
Rq

fðjjx� yjjÞ dmðyÞ

for a regular measure m with parameters ðL; b;M; gÞ; where we may assume without
loss of generality that m is a positive measure. Let xARq: Writing dnðuÞ ¼ �dfðuÞ;
we note that

f ðxÞ ¼ �
Z
Rq

Z
N

0

wð½jjx� yjj;NÞ; uÞ dfðuÞ dmðyÞ

¼
Z

N

0

Z
Rq

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dnðuÞ: ð5:28Þ

Using (4.2) and the decay condition on m; we derive that

f ðxÞ �
Z R1

0

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dnðuÞ
�����

�����
p
Z
ðu;yÞA½0;N
Rq

\½0;R1
½�R1;R1q
dmðyÞ dnðuÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
p1=2: ð5:29Þ

First, we consider the case when jjxjj
N
pR: Writing I ¼

R
½�R1;R1q dmðyÞ and I1 ¼RR1

0 dnðuÞ; we see that for any measurable function g : ½0;NÞ-½�1; 1;Z
N

0

gðuÞ dnðuÞ � 1

I1

Z R1

0

gðuÞ dnðuÞ
����

����p3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
ð5:30Þ

and

Z R1

0

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dfðuÞ
�����
� 1

II1

Z R1

0

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dnðuÞ
�����

p3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
:

Therefore,

f ðxÞ � 1

II1

Z R1

0

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dnðuÞ
�����

�����p4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
: ð5:31Þ

The measure 1
I

dmðyÞ; supported on ½�R1;R1q satisfies the continuity condition with

parameters ð21=gM; gÞ: Since condition (3.5) is satisfied, we may apply Proposition

5.3 (and its proof via Theorem 5.4) to obtain points yjA½�R1;R1q such that for
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uA½0;R1;

1

I

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ � 1

n

Xn

j¼1

wðBðjj � jj; x; uÞ; yjÞ
�����

�����pDnðk;BÞ;

where, in this proof only, k ¼ 3qg�1: Consequently,

1

II1

Z R1

0

Z
½�R1;R1q

wðBðjj � jj; x; uÞ; yÞ dmðyÞ dnðuÞ
�����
� 1

nI1

Xn

j¼1

Z R1

0

wðBðjj � jj; x; uÞ; yjÞ dnðuÞ
�����

pDnðk;BÞ:

In view of (5.30) and (5.31) this leads to

f ðxÞ � 1

n

Xn

j¼1

fðjjx� yj jjÞ
�����

�����pDnðk;BÞ þ 7

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
:

This proves (4.3) in the case when jjxjj
N
pR:

Next, let jjxjj
N
4R: Then jjxjj4ð1þ k2ÞR1; and for ðu; yÞA½0;R1 
 ½�R1;R1q; we

obtain

jjx� yjjXjjxjj � jjyjj4ð1þ k2ÞR1 � k2jjyjjNXR1Xu;

i.e., wðBðjj � jj; x; uÞ; yÞ ¼ 0: Therefore, for all yA½�R1;R1q;

jfðjjx� yjjÞj ¼
Z

N

0

wðBðjj � jj; x; uÞ; yÞ dnðuÞ
����

����
p
Z

N

R1

dnðuÞp
ffiffiffiffiffiffiffiffiffiffi
log n

n

r
;

and in particular,

1

n

Xn

j¼1

fðjjx� yjjjÞ
�����

�����p
ffiffiffiffiffiffiffiffiffiffi
log n

n

r
:

Moreover, (5.29) implies that jf ðxÞjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=n

p
: Hence,

f ðxÞ � 1

n

Xn

j¼1

fðjjx� yj jjÞ
�����

�����p2

ffiffiffiffiffiffiffiffiffiffi
log n

n

r
: &

Finally, we prove the remaining assertion of this paper, Proposition 2.1.

Proof of Proposition 2.1. In this proof only, we will denote the surface area of the
Euclidean unit sphere embedded in Rq by

oq�1 :¼
2pq=2

Gðq=2Þ: ð5:32Þ
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Passing to spherical coordinates, we see that

l�1
exp;a ¼

Z
Rq

expð�jjxjja2Þ dx ¼ oq�1

Z
N

0

rq�1e�ra dr

¼oq�1

a

Z
N

0

tq=a�1e�tdt ¼ oq�1Gðq=aÞ
a

: ð5:33Þ

Since expð�jjxjja2Þp1; the assertion about the continuity condition is now clear. To

prove the assertion regarding the decay condition, let (in this proof only) s :¼
ðq � aÞ=a; and s! :¼ Gðq=aÞ: Passing to the spherical coordinates again, a little
calculation as above leads to

mexpða;Rq
\½�R;RqÞp1

s!

Z
N

Ra
tse�t dt; R40: ð5:34Þ

Now, an integration by parts shows that if RX1;Z
N

Ra
tse�t dt ¼Ras expð�RaÞ þ s

Z
N

Ra
ts�1e�t dtpRajsj expð�RaÞ

þ jsj
Ra

Z
N

Ra
tse�t dt:

It follows that if Ra4maxð2jsj; 1Þ; then

mexpða;Rq
\½�R;RqÞp1

s!

Z
N

Ra
tse�t dtp

2

s!
Rajsj expð�RaÞ: ð5:35Þ

Now, let d40; and in this proof only, let e ¼ ðs!=2Þd: Using elementary calculus, we
verify that x � a log xXa logðe=aÞ for every x40 and a40: Therefore, choosing

log A

ab
:¼ ðjsj þ 1=ðabÞÞ log jsj þ 1=ðabÞ

e

� 
; x ¼ Ae�ab; a ¼ jsj þ 1=ab;

we conclude that ðAe�abÞjsj expð�Ae�abÞpe: Therefore, with Ra
Xmaxð1; 2jsj;Ae�abÞ;

we see from (5.35) that mexpða;Rq
\½�R;RqÞpd: This completes the proof of part (a).

For the proof of part (b), we recall the identity (cf. [3, Chapter V, Example 2.12])Z
N

0

xt�1

1þ x
¼ p

sin pt
; 0oto1:

The remainder of the proof of part (b) using spherical coordinates is very elementary,
and is omitted. &
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