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Abstract

Let ¢>1 be an integer, Q be a Borel subset of the Euclidean space R, u be a probability
measure on Q, and # be a class of real valued, u-integrable functions on Q. The complexity
problem of approximating [/ du using quasi-Monte Carlo methods is to estimate

/fdu——fok

The problem is said to be tractable if there exist constants ¢, o,  independent of ¢ (but
possibly dependent on u and #) such that &,(F, u)<cg’n ?. We explore different regions
(including manifolds), function classes, and measures for which this problem is tractable. Our
results include tractability theorems for integration with respect to non-tensor product
measures, and over unbounded and/or non-tensor product subsets, including the unit spheres
of R? with respect to various norms. We discuss applications to approximation capabilities of
neural and radial basis function networks.
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1. Introduction

In many applications, one needs to approximate the multi-dimensional integral
fQ f(x) du(x) where Q is a Borel subset of a Euclidean space R? (where ¢>1 is an

integer), and u is a probability measure supported on Q. Such problems arise, for
example, in mathematical finance [15,16], statistical learning theory [20], and
approximation by neural and radial basis function networks [2,8—12]. The quasi-
Monte Carlo technique for this approximation is to choose appropriate points
X},...,X} so that the average of the values f(x}) approximates this integral. An

important question in complexity theory is to estimate

[ e - 13 1), (1)
o k=1

En(F,p) = inf  sup

X1, X0 €Q fegF

for a suitable class # of functions. The problem is said to be tractable if

o o cq”
én(/,uKnﬁ (1.2)

for some constants ¢, o, f >0, independent of g. However, the constants may depend
upon u and Z#.

In addition to &,(Z,pu), it is often customary to study the normalized error,
defined by

; En(F, 1)
(T ) = — 7o
() supse 7 | [ f dyl

The denominator in the above fraction may be thought of as an “initial cost™ or the
“cost of doing nothing”, and the normalized error measures the improvement of the
quasi-Monte Carlo method over this initial cost. If % contains the function [, which
is identically equal to 1 on Q, then clearly, sup;. #| [ f du|>1.1If, in addition, each
function f in F satisfies |[f(x)|<1 (x€ Q), then

En(F 1) = En(F ). (1.4)

(1.3)

In many results on this subject, the tractability problem is studied for functions
that can be represented in the form x — o (®(x, -)), where @ is a fixed kernel function
(e.g., the reproducing kernel in a reproducing kernel Hilbert space), and o varies over
a suitable class of functionals. Novak and Wozniakowski have given two interesting
surveys of this topic in [13,14].

Next, we note an interesting connection between the tractability problem for
multivariate integration and approximation theory. Suppose that Z is the unit ball
of some normed linear function space X, on which point evaluations as well as the
functional u*, given by f— [f du, are continuous linear functionals. If we denote
the point evaluation functional at a point x by dy, then it is clear that &,(F, 1) gives
an estimate on the degree of approximation of u* in the dual norm of the norm on X
from the convex hull of {0x}. An important example of this line of thought, that
includes both neural and radial basis function networks, is formulated in the
following theorem.
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Theorem 1.1. Let Q, Q) be Borel subsets of some Euclidean spaces, ® : Q x Q) —> R be
a fixed, bounded Borel measurable kernel function, and M be a class of signed measures
on Q having total variation equal to 1. We define F 5 to be the class of all functions on

Q of the form
X &(x,t) da(t), (1.5)
0

where a ranges over all signed measures on Q) having total variation 1, and F ; to be
the class of all functions on Qy of the form t+— fQ &(x, t)du(x), ue . The following
are equivalent:

(a) We have
En(F 5, 10)<0y, pEM. (1.6)
(b) We have
1 n
inf  suplg(r) — — D(x;,1)| <0y, JET 4 (1.7)
X1, X €Q e Q) n

Proof. Let (1.6) hold, pe.#, and ¢>0 be arbitrary. Since &(-,1)e F 5 for every
te 01, (1.6) implies that there exist xy, ..., X, € Q (independent of 7€ Q;) such that

’/¢wgwgy&§:mmg
=1

In view of the definition of the class & ,, this estimate is equivalent to estimate (1.7).
Conversely, let (1.7) hold, ue.#, and ¢>0 be arbitrary. Then there exist points
X1, ...,X,€Q such that (1.8) holds. Let f(x) = [®(x,t)do(t) for some signed
measure ¢ on Q) with total variation equal to 1 Since @ is a bounded function, we
may use Fubini’s theorem to conclude that

// (x, 1) du(x) do(t // (x, 1) do(t) du(x /f ) du(x

Therefore, (1.8) leads to

[100 au =13 s
J=1

ie., &,(F 5, 1) <9,. This proves (1.6). O

<o, +e teQ. (1.8)

<5n+87 feg27

We observe that one needs an estimate of the form (1.6) uniformly for a large class
of measures to make the approximation estimate (1.7) interesting.

Our first aim in this paper is to explore a general framework that enables us to
analyse different regions, manifolds, function classes, and classes of measures for
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which an estimate of the form (1.2) can be obtained. Many of the known results on
the tractability problem deal with “tensor product” function classes and measures.
Our results include tractability theorems for integration with respect to non-tensor
product measures, and over unbounded and/or non-tensor product subsets,
including the unit spheres of R? with respect to various norms.

Our second aim in this paper is to obtain bounds of the form cg*/n” on the degree
of approximation by neural and radial basis function networks, where n is the
number of “neurons” in the network (cf. Section 4 for the definition), and ¢, o,  are
independent of n and ¢. Typically, the known estimates in this theory are of the form
c(q)/nP, where B is independent of ¢, but often without the requirement that ¢(gq) be
polynomially dependent on g.

To give a preview of one of the novelties of our results in this paper, we recall, for
example, that a radial basis function (RBF) network with activation function ¢ :
[0,00)>R and n neurons (and norm |[|-]|) is a function of the form
x> 300 aip(|[x —y;|l), where y;eR? and a;eR, 1<j<n. Most results on the
degree of approximation by radial basis function networks assume the norm || - || to
be the usual Euclidean norm. One novelty of our results is that we are able to supply
some bounds in the case of any absolute norm (cf. Section 2.2 for the definition) in the
argument of the activation function.

In the next section, we develop some basic concepts, which will be needed in
formulating our results. The main theorems concerning integration are stated in
Section 3. Section 4 describes some applications to the theory of approximation by
neural and radial basis function networks. The proofs are given in Section 5.

2. Preparatory concepts
2.1. Measures

In this section, we introduce certain classes of measures which will be needed in the
statement of our theorems.

We denote by 4, the g-dimensional Lebesgue measure. For 1<p< o and xeRY,
we define

q 1/p
{Z |xkp} if 1<p<oo,
=1

max |xy| if p= o0.
1<k<q

[Ix[l, = [Ixl,, = (2.1)

Definition 2.1. Let u be a probability measure on R?, L, M, f,7>=0.
(a) The measure u is said to satisfy a decay condition (with parameters (L, f8)) if for
all 6€(0, 1],

w(RN[—L5 P L67P)") <. (2.2)
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(b) The measure u is said to satisfy a continuity condition (with parameters (M, 7))
if for all Borel sets S<=R?,

H(S) < (Miy(S))'. (2.3)

(c) The measure p is said to be regular (with parameters (L, f, M, 7)) if it satisfies
both (2.2) and (2.3).

(d) A signed measure ¢ will be called regular if the total variation measure |a| is

regular in the sense of part (c). Similar terminology will apply for o to satisfy a decay
condition or a continuity condition.

Next, we give some examples of regular, non-tensor product measures.
Example 1. Let K be a compact subset of RY, 1 <p< o0, f: K—[0, c0) be Lebesgue

measurable, with a finite 7 norm N (with respect to the Lebesgue measure) on K,
and [ f dl, = 1. The measure defined by u,(S) = [ xf d’ is a regular measure

with parameters (maxye g ||x||OC7O7N1’/, 1/p"), where 1/p+1/p' = 1.

Example 2. We give two examples of non-tensor product measures supported on the
whole space. Let

;Wma:mwémwwmw, (2.4)
where ¢>0, and

__*(q/2)
owa = 3T (2.5)

is chosen to make fiy, (o RY) = 1 (cf. (5.33) below).
Another set of examples is given by

dx
u ow(a;S) =4 ow,z/ 2 (26)
P P s THIx[[3
where o >¢g, and
_ al'(¢/2) sin(nq/%)
;"pOWd L 27'[(q+2)/2 (27)

is chosen to make p,q, (o RY) = 1.

Proposition 2.1. (a) Let «>0. The measure i, (o) satisfies the continuity condition
with y =1 and M = dexpy. It satisfies the decay condition with any >0 and
corresponding L given by

o _2a—ol  (1+lg—ap\" 2 N
v =20 () () (28)
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(b) Let a>q. The measure o, (x) satisfies the continuity condition with y = 1 and
M = Jpowq- It satisfies the decay condition with f,,, = 1/(o — q) and

_ (asin(ng/«) 1/(a=q)
o (2510 -

By restricting and renormalizing these measures to different Borel sets, one can
easily generate examples of regular non-tensor product measures supported on Borel
sets other than the whole space, including sets that are both non-tensor product and
unbounded.

2.2. Geometrical concepts

Let || - || be any absolute norm on R, i.e., we assume that
1Gers s 21T = 1l - g
for all xeRY?. It is known (cf. [6, Theorem 5.5.10]) that || -|| is monotone, i.c.,

|xj] < |yjl, 1 <j<gq, implies ||x||<||y||- Let e; be the unit vector whose jth component
is 1 and other components are 0, k7! := min;<;<, ||¢j|| and xz == [|(1, ..., 1)||. Then
the monotonicity of the norm leads to

Ky IX]], <Xl <X, xeRE (2.10)

In the sequel, we will adopt the following notation. If @ is a binary operation on
R, x,yeR?, then x®y will be the vector in R? whose jth component is x; @ y;. If
ceR, then c®x = (¢,...,c)®x, and xDc =xD(c, ...,c). Conventions regarding
the placement of the operator @ will be continued as usual; for example, max(x,y)
is the vector whose jth component is max(x;, y;). Similar conventions are followed
for binary relations. In particular, for xeR?, and re|0, c0]?, we define the vector
z=1by

oo if r; =0 and x; #0,
0 if rj:X/‘:O,

Zj=40 ifr= 0,
Xj .
—  otherwise.
Tj
If a component of z is infinity, we set ||z|| == oo. For yeR?, re|0, ov]?, we define the
ellipsoid
B(H-H,y,r):{xeRq:HX_YH<1}. (2.11)
r

We note that the values 0 and oo are both valid for the components of r in the above
definition. If all components of r are equal to r, then the ellipsoid is the ball denoted
by B(|| - ||,y,7) = B(|| - ||y, (r, ...,r)). We denote B(|| - ||,0, 1) by By, its volume by

T4,1||> its boundary by Sml, and the area of this boundary by w,_; |- It is easy to see
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that
q
2Bl 11,¥,1)) = g TT e (2.12)
k=1

where 0 - o0 := 0.
Next, we introduce some notations concerning strips. Let x -y denote the inner

product of x and y. For yegml, and a,beR, a<bh, we write
S(y,a,b) = {xeR?:x-ye[a,b]}. (2.13)

Further, S(y,a, 90) = Upe(s,0) SV, @,0), S(y,—00,0) = Use(coopy S(¥,a,0). 1f
a>b, we define S(y,a,b) to be the empty set.
Finally, we discuss some notation related to the sphere. A cap of radius r in Sml

centered at y is defined by

Sﬁul( ) —{XES”H Hx =y} (2.14)

2.3. Function classes

For a subset S=RY, the characteristic function of S is defined by

(5:%) {1 if xesS, (2.15)
;X) = . .
z 0 otherwise.

The constant function taking the value 1 everywhere on R? will be denoted by [.
An estimate on &,(%, u) where & consists of characteristic functions of certain
sets is usually called a discrepancy estimate. In Section 5, we will obtain the
discrepancy estimates for the following classes of characteristic functions.
We start with the set of characteristic functions of ellipsoids:

B R, Ry) = {x(B(|| - |I.y,1)) : ye (=R, R)?, re[0, Ri]"} {1},
R, R, >0, (2.16)

where R or R; may also be infinity. In the case of the norm || - the ellipsoids are

just cells in RY, and we write
A(RR) = B(| ||... R R). (2.17)

oo

(We recall that an open cell in R is a set of the form []f_, Ir, where each I is an
open interval in R. By a cell, we will mean the closure of an open cell.)
Similarly, we define

A = (ST v) :yeS) |, r=0} (2.18)
and

(R) = {x(S(y,a,b)nB(|| - ||5,0,R)) ye§”H ,a,beR}U{l}. (2.19)

We note that the class 7 already contains the function [.
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Clearly, any estimate on &, (7, u) is valid also if Z is replaced by its signed convex
hull, i.e., the set of functions of the form ) a;f;, where the sum is a finite sum, f;€ %
for each j, and a;’s are real numbers with ) |a;|<1. We may write ) ¢;f; in the form
[ @(-,j) do(j), where for each j involved in the sum, &(-,/) == f;, and o is the signed
measure that associates the mass a; with the integer j. With this motivation in mind,
we now proceed to define the notion of a generalized convex hull of &, denoted by
conv(Z). In the case when # is the set of characteristic functions deﬁned above,
conv(Z) contains functions of the form (2.21) or (2.22) (described below), as well as
some other sets of functions recently considered in the literature on tractability
problems.

Let & be a class of functions on a subset Q of R?, and Q| be a measure space. An
Z valued process on Q) is a jointly measurable mapping @ : Q x Q) — R, such that
for each teQy, @(-,t)eF. The generalized convex hull of # with respect to O,
denoted by conv(ZF, Q)), is defined to be the set of all functions of the form

xr—>/d5(x, t) do(t), (2.20)

where ¢ ranges over all signed measures on Q; having total variation not exceeding
1, and @ ranges over all # valued processes on Q. The class conv(Z) consists of
functions that are in conv(Z, Q;) for some measure space Q. (Here, we have tacitly
assumed a ‘“‘universal set” of all measure spaces of interest. In this paper, this
universal set consists of all Borel measurable subsets of all finite-dimensional
Euclidean spaces.)

Next, we discuss some examples of the notion of generalized convex hulls. We
recall (cf. [18, Chapter 8, Sections 12-21]) that there is a one-to-one correspondence
between signed measures having bounded variation on R and functions having
bounded variation on R. Thus, if ¢ : R—> R is a right (respectively, left) continuous
function having bounded variation, and ¢(x) -0 as x— — oo (respectively, ¢(x)—0
as x— o0), then there exists a unique signed measure u, such that ¢(x)=
ty((— 00, x]) (respectively, ¢p(x) = —u,([x, 00))) for all xeR, and the total variation
of this measure is the same as the total variation of ¢. Similar representations hold
for functions defined on subintervals of R, satisfying different one-sided continuity
conditions, and normalizations. Therefore, one usually thinks of ¢ itself as a signed
measure, and writes d¢ in place of du,, where p, is the measure appropriate to the
normalizations of ¢. The corresponding total variation measure is usually denoted
(in the context of integrations) by |d¢|.

Example 3. Let ¢ be a left continuous function of bounded variation on [0, o0 ), such
that lim,_, . ¢(x) = 0, and the total variation of ¢ is equal to 1. If ¢ is a signed
measure on R? x [0, o0 )?, having total variation equal to 1, then a function of the
form

XH/ HX_YH // Al x 1) y) dep(u) da(y, r)(2.21)

is in conv(4(|| - ||, 0, 0)).
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Example 4. Let ¢ : R—[0, c0) be a right continuous function of bounded variation
with lim,_, _, ¢(x) = 0, o be a signed measure on R?, having total variation equal to
1. Then a function of the form

x> [ glx-y) do(y
[ $(0)a(R?) if x=0,
- { S S&/1xIu/lxl], 0):y) db(u) do(y) if x#0
is in conv(%(c0)). Functions of the forms described in this and the previous example

are of interest in the theory of neural networks and radial basis function networks,
respectively. We will examine these in further detail in Section 4.

(2.22)

Example 5. In this example, we discuss the set conv(Z(R, R;)) in some detail. In [5],
Hickernell, Sloan, and Wasilkowski have studied the tractability of quasi-Monte
Carlo approximation of an integral of the form fQ F(x)W(x) dx, where Q is a
(bounded or unbounded) cell in R?, and W (x) = [[{_, Wi(xx) for some weights
W : R—[0, o0). They have pointed out that by simple substitutions, this problem is
equivalent to the problem of approximating [, f(x) dx, where D = [—1/2,1/2]%.

The problem is proved to be tractable for the class % y of functions, defined as
follows. We fix an anchor ce D. For a subset U< {1, ..., q}, let Dy = [—1/2,1/2]IVl.
For xeR? let xy denote the vector of length |U| whose components are the
components x; of x for which je U, and (xy,¢) be the g-dimensional vector whose
kth component is x; if ke U, and ¢, if k¢ U. For a sufficiently smooth function
f : D—R to allow the following differentiation, we write

fu(x ):&f(x ¢) (2.23)
U ey o0 0 '

If U is the empty set, the corresponding /7, is defined to be the constant function
f(c). If U is the empty set, it is also convenient to define Hle/”lpu = |f(¢)|. The class
Fy consists of all functions f:D—R for which f,(xy) exists for each
xe[—1/2,1/2]7 and for each U<={l, ..., ¢}, and

Mio= 35 [ roolxwst .24

vedl,...,

For fe %y and x>c¢, we have the integral representation (cf. [5])

o= 3 /[0 e A0 0202 ) dye (229

Us{l,....q

Similar representations hold in each of the 29 quadrants of D defined by ¢. We
choose the anchor ¢ = 0, and observe that each of the cells involved in (2.25) (and its
analogue in the other quadrants) has its center in [—1/2,1/2]% and || - || , -radius not
exceeding 1/4. Thus, the class # g is seen to be a subset of conv(Z%(1/2,1/4)).
Hickernell, Sloan, and Wasilkowski have already made use of this observation in [5]
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to deduce an estimate on &,(%# g,/,) from that on the class of characteristic
functions of cells. The additional observation here is regarding the radii and
locations of centers of the cells involved.

The following proposition summarizes an observation which we will use
extensively.

Proposition 2.2. Let u be a probability measure on a Borel measurable subset Q of RY,
and F be a class of Borel measurable functions on Q, such that |f(x)|<1 for all f e F
and xe€ Q. We have for integer n>=1,

En(conv(F), p) = E,(F, 1)

n

IRCIZERF WS

k=

= inf sup
Xt % €0 fez

. (2.26)

In particular, if ¢>0, one may choose points X; depending only on ¢, u and &, and
independently of the measure spaces, processes, and measures needed to define
Sfunctions in conv(F), such that

l n
70 ) = S s

sup
feconv(F)

<@@’7('977#) + &.

3. Tractability of integration

In this section, we will discuss a variety of theorems estimating &,(%,u) for
different function classes and measures. In each case, .# includes the function [, and
[f|<1 for all feZ. Hence, the normalized error &,(%,u) = &,(F, ) in each case.
In the sequel, we write

4
G = m~3.0868, (3.1)
and, for x, B>0,
G
An(k,B) = 2\/;{8 + (x/2)log(n/(GB))}. (3.2)

In general, our estimates will have the form &,(%, u) <4,(k, B), where the constants
K, B will be given explicitly, in terms of the various parameters defining the function
classes and the decay/continuity conditions on the measures. It is perhaps possible to
sharpen these results with a removal of the term log n, using ideas from V-C theory
of probability, as in [5]. However, this is expected to give an unspecified constant
depending on % and u. We have decided to choose explicitly defined constants, even
if they might not be the best ones, and also have the slightly weaker result with the
logarithmic term, in order to make it easier to determine whether our theorems imply
tractability for particular measures and function classes, with absolute constants.
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Our first theorem is an extension of estimate (21) in [5, Theorem 3] of Hickernell,
Sloan, and Wasilkowski regarding the tractability of integration with respect to 4,
on [—1/2,1/2]%.

Theorem 3.1. Let 0O<R, Ry < o0, M,y>0, and L,>0.
(a) Let
2¢M (4R, 'min (3R, /4, R)>1. (3.3)

With B defined in (5.10), we have for n= GB, and any measure 1 satisfying a continuity
condition with parameters (M,7),

&n(conv(Z(R, Ry)), 1) <44(2q/7, B). (3.4)
(b) Let
Mgz, (2R)* 'min(1, 3R /4, VR(1 + 12 + K2Ry)) = 1. (3.5)

With B defined in (5.15), we have for n= GB, and any measure 1 satisfying a continuity
condition with parameters (M,7),

En(conv(A(|| - ||, R, R)), 1) <4, (3qy ", B). (3.6)

(c) Let gM (2**PL)"=2. With the constant B as in (5.12), we have for n>GB, and
any regular measure p with parameters (L, , M,7y),

Ea(conv(#( o0, ), 1) <A,(24(Bg + 1/7), B). (3.7)

Part (b) of this theorem is clearly a generalization of part (a), except for different
constants. We present part (a) separately to allow a comparison with the result in [5]
(Example 6 below). We note that the support of the measure u in part (¢c) may well be
an unbounded and non-tensor product set. In the most general cases, the value of B
determines the tractability, and is (/(¢> log q), where the constant involved in ¢ may
depend upon y, R, R;, and the norm || - ||. In some special cases, however, the value
of B is smaller. We illustrate this with a few examples.

Example 6. Theorem 3.1(a) may be applied to the case explained in Example 5. In
this example only, let D =[-1/2,1/2]7, Me[l, ), w:[-1/2,1/2]7—-[0, M], and
Jpw(x) dx = 1. The measure u defined on D by du = w(x) dx satisfies a continuity
condition with parameters (M, 1). Since F gy cconv(#(1/2,1/4)), we take R = 1/2,
and R; = 1/4. Since M > 1, condition (3.3) is satisfied if ¢=3. Part (a) of the above
theorem therefore implies that for the class % y (with the anchor fixed at 0), we have
B = (4q+1)log2 +2qlog(qM), and

G 1/2
67 <2{ 2B + glogtn/(GB)) | (33)
We note that w does not need to be a tensor product function. In the case when
w = 1, we recover the corresponding result in [5] as far as the order of magnitude of
the dependence on ¢ and n is concerned, apart from the values of the different
constants involved.
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Example 7. The purpose of this example is to illustrate Theorem 3.1(b) with a non-
tensor product region of integration and non-tensor product measure. We take || -
[ =1|-1l,, and omit the reference to this norm from the notations. To avoid conflict
of notation, we write U = Bj|;;. Let (in this example only), @ denote the class of
functions ¢ : [0, c0)—[0, 1] which are decreasing on [0, c0), with ¢(0) =1, and
¢(x) =0 if x=1/2, .4 be the set of all measures supported on U having total
variation 1, and & be the class of functions of the form

- / S(IIx - yI)) do(y)
// [-1],x,u);y) dp(u) do(y), xeU, ¢ed, oe.l.

We observe that # cconv(%(||-]],1,1/2)). Let g :[0,1]—[0, 00) be an integrable
function with fo )du=1,0<g(u)<N for uel0, 1], and u be the measure defined
on U by du(x) = r;]g(||x\|q) d’4(x). Then p is a probability measure, satisfying a
continuity condition with M = N /7,4, y = 1. Condition (3.5) is satisfied if g>3. The
value of B in (5.15) is given by (4¢g+1)log2+ 3qlog N + 2qlog(2 +3./q) +
3qloggq.

We observe that if a measure satisfies a decay condition with parameters (L, 8),
then it also satisfies a decay condition with parameters (L;, f8;) for any L;>L and
f1 = p. Similarly, if it satisfies a continuity condition with parameters (M,7) then it
also satisfies a continuity condition with parameters (M;,y) for all M;>M.
Therefore, condition (3.3) may be omitted by replacing M in (5.10) by
max(M, {2¢(4R,)? 'min(3R, /4, R)} ). Similar remarks hold also for conditions
(3.5), the lower bound condition in Theorem 3.1(c), and other similar conditions in
the other theorems in this paper. However, we feel that the formulations given here
allows better clarity in the different formulas as well as better flexibility in applying
the results.

Our next theorem deals with tractability on the spheres.

Theorem 3.2. Let My >1, y,>0 and the constant B be defined by (5.17). For any
integer n=GB and any measure pu, supported on Sﬁl and satisfying a spherical

continuity condition,

it u(ST L ONSTL,O)S (M= p)"s r=p20, (39)
[I-11
we have
Enlconv (A ), 1) < Au(q/71, B). (3.10)

The constant B in (5.17) is O(g), although the constants involved may depend
upon both g and || - ||. We elaborate upon an example, which we find especially
interesting.
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Example 8. Let K be any compact, convex subset of R?, 0 be in the interior of K, and
K be symmetric in the sense that xeK if and only if (|xi],...,|xx|)€K. The
Minkowski functional for K is defined by

||x||x = inf{t>0: ¢ 'xeK}. (3.11)
It is well known ([6, Theorem 5.5.8 and its proof]) that || - || is an absolute norm,
and K = By.. Conversely, for any absolute norm |[|-[|, [|-[ =" ||BH~H' In

particular, if the unit vectors e; are on the boundary of K, then
[Ix[|, < xllx < x[; <gllx]]..- (3.12)

Thus, Theorem 3.2 applies to integration over sets lying on the boundary of sets K
satisfying the properties mentioned above. The constant B in (3.10) in such cases is
glogq+qlog (7M;) + 3log?2.

Finally, we state a theorem related to classes defined in terms of strips.

Theorem 3.3. Let R,y, M >0, L, $>0.
(a) Let M7y, R7Z1 With B as in (5.20), we have for integer n= GB, and any

measure | satisfying a continuity condition with parameters (M),

En(conv(L(R)), 1) < Au((q +1)/7, B). (3.13)
(b) Let
2 e, ML 1. (3.14)

With B as in (5.22), we have for integer n=GB, and any regular measure p with
parameters (L, 5, M,7),

En(conv(F(0)), 1) S 4u((q + 1)(gf + 1/7), B). (3.15)

In the above theorem, as usual, B = ((¢*>logq), although the constants may
depend on p and R. An important class of functions for which Theorem 3.3 implies
tractability in this sense is the class of all functions of the form

x> [ expl(-x-y) doty), x>0,

for a signed measure ¢ on [0, 00)? with total variation equal to 1. Every function in
this class has an analytic extension to the right half-plane with respect to each of the
components of x. If ¢ is a probability measure, the function is completely monotone
in each of its variables.
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4. Applications

In this section, we discuss certain applications of the theorems in Section 3 to the
theory of neural networks and radial basis function networks.

4.1. Neural networks

Let ¢ : R— R. A neural network with activation function ¢, and having n neurons,
is a function of the form x> j" 1 ¢io(x - w; + b;), where the output layer weights
c;eR, the synaptic weights w;eR?, and the thresholds bjeR. The theory of
approximation by neural networks is quite well developed (cf [11] for a survey in
the context of approximation of classical Sobolev classes). In [1], Barron has studied
functions on RY~! which can be expressed in the form

PO = [ (0. )sxy 41 G(r) don (o),

[l12 x[=1.1)

where o] is the product measure of the normalized area measure on SH 1 ! with the
one-dimensional Lebesgue measure, and

/q 1 |G(y,r)| doy(y,r) = 1.

Sii X111

For such functions, he proved that for any integer n>1, there exist ax, by e[—1, 1],
ykESﬁ;‘i, 1 <k<n, such that

> az([0, 0);x -y + br) | <e/logn/n,

max |F(x) —
XeBy,

where c is a constant depending only on ¢. Similar results have been proved by many
authors, [2,7-10,12]. In particular, Kurkova [7] has given bounds in a Hilbert space
setting that depend polynomially on g. We observe that we may define a function on
R? by the formula

100 = [ 00 y)gts) o)
X

where ¢g and o, are just G and g, expressed in a different notation. Then

f((xl, cey Xg—1, 1)) = F((xl, ...,xq,l)).

Motivated by this example, we define the following class of functions. Let ¢ be a
function having bounded variation on R. The class & (¢, L, 5, M, 7) consists of all
functions of the form

xio / P(x-y) du(y),

where u is a regular, signed measure with parameters (L, §, M, 7).
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Theorem 4.1. Suppose ¢ is a function having bounded variation on R, with the
normalizations that ¢ is right continuous, lim,_, _,, ¢(x) = 0, and the total variation of
¢ is 1. Let feF v(¢p,L,B,M,y), where condition (3.14) is satisfied, and B be the
constant defined in (5.22). Then for integer n>=GB, there exist points y,eR?, j =

1, ....n, (depending on f) such that
] n
sup /(%) = 3 9lx-¥)| <Al + DaB+1/2). B (4.1)
xeR! J=1

We note again that B = ((¢* log ¢). In addition, all the output layer weights in our
network are equal to 1/n. The proof of Theorem 4.1 is a simple consequence of
Proposition 5.5(b). We are also able to place bounds on the synaptic weights y;,
provided the measure u in the definition of the target function f, as well as the
function ¢, are compactly supported, and the approximation is desired on a compact
set. This is done using Proposition 5.5(a), but no new ideas are needed. As far as we
are aware, Theorem 4.1 is the first of its kind, where the degree of uniform
approximation by neural networks on the whole Euclidean space is estimated.

4.2. Radial basis function networks

Let ¢:[0,0)—>R. A radial basis function (RBF) network with activation
function ¢ and n neurons (and norm ||-||) is a function of the form
x>0 @d(|[x —y;||), where the centers y;eR? and the weights a;eR, 1<j<n.
Approximation by RBF networks has also been very popular in different
applications, ranging from pattern recognition to the production of animated
cartoons.

In this subsection, the function ¢ : [0, 00)—>R is a function having bounded
variation on [0,00), with the normalizations that ¢ is left continuous,
lim,_, o, ¢(x) =0, and the total variation of ¢ is 1. We assume further that ¢
satisfies the decay condition

/L;ﬁ dp(x)| <5, 0<o<l. (4.2)

We now consider the class # 4(9¢, || - ||, L, B, M, 7) consisting of functions of the form

X /¢>(||x —yll) duly),

where u is a regular, signed measure with parameters (L, f, M, y). We note that there
is no loss of generality in assuming that the same L and f are used here as in (4.2).
Requiring the two values to be different will only result in a more elaborate book-
keeping, but not in new ideas. This class is analogous to the “native space” for the
function ¢.

Theorem 4.2. Let L,p, M,y>0. We define B,=B as in (5.15) with Ry =
L(log n/n)*ﬂ/27 R=1x1(1+12)Ry, and 2'"M in place of M. Let n be sufficiently
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large, so that n=GB,, logn/n<1/4, and condition (3.5) is satisfied with these
parameters. Then for feF 4(¢,|| - ||, L, B, M,y), there exist y; = yj(f)e[—Rl,Rl]q

such that
1
<A,(3qy"",B) + T4/ Of " (4.3)

As far as we are aware, this is the first result of its kind where
uniform approximation bounds are obtained for RBF networks using a norm
other than the Euclidean norm on RY. It appears to be the first result of its
kind proving a tractability result for uniform approximation by RBF
networks on the entire Euclidean space. It is amusing to note that the weights in
our networks are again all equal to 1/n. Our proof can be modified to yield
analogous results where the centers y; are restricted to a compact cell in R?, and the
approximation is also desired on a compact cell. We do not feel that this adds any
new ideas.

sup |70~ 1> pllix— )
=

xeR?

We note that B, = 0(q*log(qn)).

5. Proofs

For clarity of presentation, we postpone the proof of Proposition 2.1 until the end
of this section. The results in Section 4 are simple applications of those in Section 3.
Our strategy for proving the theorems in Section 3 is as follows. In light of
Proposition 2.2, it is enough to estimate &,(%, u) when Z is the set of characteristic
functions of the sets involved in each theorem. We will use the geometrical properties
of the sets and the notion of one-sided entropy (“‘entropy with brackets” in the
terminology in the book [19] of van der Vaart and Wellner) to obtain a finite set ¥ of
characteristic functions such that &,(%,u) can be estimated using &,(Y, ). This
process is codified in Theorem 5.1 below. The problem of estimating &,(Z, 1) thus
reduces to estimating the one-sided entropy of . The details of this estimation
depend heavily on the geometrical properties of the sets, and we had to present them
in the form of different propositions, in spite of a common theme behind all these
estimations.

Before proving other theorems, we prove Proposition 2.2.

Proof of Proposition 2.2. It is clear that # =conv(%), so that
En(conv(F ), ) = E0(F, ).

In the proof of the reverse inequality, we note that &,(%,u)<oo. Let ¢>0 be
arbitrary and x; be chosen so that

sup
geF

[ 000 ) = -3 gt | <700 0 (5.1)

k=1
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Let f'econv(Z). There exists an # -valued process @ and a signed measure ¢ of total
variation 1 such that

f(x) :/db(x, t)do(t), xeQ.

Using Fubini’s theorem, we see that

[ 70 dut S flx) = / { [ o0 dux - ) ¢<xk,z>} do().
k=1

k=1

Since @(-,t)e F for each ¢, we conclude from (5.1) that

[0 ) = 23" 1)
k=1

sup
feconv(F)

<§n('9:a,u) + &.

Since ¢ is arbitrary, this completes the proof. [

We now begin with the proofs of the theorems in Sections 3 and 4. Towards this
end, we define the notion of one-sided entropy, and prove a general estimate for
quantities of the form &,(Z,u) in terms of this one-sided entropy. Let Q be a
measure space, u be a probability measure defined on Q, 7 be a class of p-integrable
functions on Q, and 6 >0. A finite set Y of p-integrable functions on Q is said to be a
one-sided (u,d)-cover of F if for every feZ, there exist g,he Y with g<f<h
everywhere on Q, and fQ (h—g) du<d. We observe that Y need not be a subset of
F I N(Z, 1, 9) is the number of elements in a minimal one-sided (u, d)-cover of F,
then we define the one-sided entropy H(Z , u,d) to be the quantity log N(F, u, 9),
where we find it convenient to take the natural logarithm.

The starting point of our investigations is the following observation. It is probably
known in the statistical literature, but we find it easier to prove it than finding a
reference.

Theorem 5.1. Let (Q,u) be a probability space, and F be a set of real valued, u-
integrable functions on Q, such that |f(x)| <1 for all f € 7 and x € Q, and the one-sided
entropy H(F , b, -) satisfies

H(7,u,0)<logd —xlogd, 0<o<l, (5.2)

for some positive constants A and k depending on F , Q, and u. Let B = 1og(2A4). Then
for any integer n= GB, there exist a set T = Q, consisting of n points, such that

[ran- 23 s

teT

<Ay(x. B) = 2\/%3 (/2 log(n/(GB))}.  (5.3)

where G is the constant defined in (3.1).

The proof of Theorem (5.1) mimics an argument in [4]. The main ingredient is to
use the following sharper version of the Hoeffding’s inequality (cf. [17, p. 191]). It is
proved in [5], but not stated in this way.
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Proposition 5.1. Let (Q, u) be a probability space, n=1 be an integer, and {X},
k =1, ...,n be independent random variables on Q, each with range contained in a
compact interval [a,b] and expectation equal to m. Then for any ¢€(0, (b — a)/2],

4 4ne?
Prob | |n~! X —m|=e <26Xp<— 7> (5.4)
( ,; > G(b - a)’

Proof. Let Z; = (X; —a)/(b —a), 1 <j<n. Then for 1 <j<n, we have 0<Z;<1, the
expected value of Z; is (m — a)/(b — a), and the variance of Z; can be estimated by

/Zj2 du — (/z, du)zs/zj du— </Z, du>2<1/4.

Following [5], we now recall the Bennett inequality [17, p. 192]. According to this
inequality, if Y; are independent random variables, each with mean 0, range in

[—M, M}, and variance g;, and V=377, o7, then for >0,

Prob <

where, in this proof only, g(¢) = (1 + ¢) log(l 4+ ) — . We apply this estimate with
Yy =Z;— (m—a)/(b— a). Then we may choose M =1, V' =n/4 and n =ne/(b —
a). This leads to

-]

Prob( n! i: X —m
k=1
> Zi—n(m—a)/(b—a)
k=1

= Prob ( = ’7)

<Zexp(—gg(411/n)). (5.6)

n

>

J=1

>n> <2exp<—%g(Mn/V)>, (5.5)

Using elementary calculus, one verifies (cf. [5]) that g(f) > (3log3 — 2)#?/4 = #/G if
t€[0,2]. Hence, if 0<n<n/2;ie., e<(b—a)/2, then

Prob( n! zn: Xy —m >8> <Zexp( 4 172> 2exp< dne? )
k—m|Ze | < -—— = -—— |-
=1 nG G(b—a)’

This completes the proof. [

Proof of Theorem 5.1. If n<G{B+ (x/2)log(n/(GB))}, then (5.3) is trivial.
Therefore, in the remainder of this proof, we will assume that n>G{B+
(1c/2)log(n/(GB))}, and write ¢ == 4,,(x, B) /2. Our assumption that n> GB implies
that n>GB and 6€(0,1). Let Y be a minimal one sided (g, d)-cover for #. By
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replacing each ge Y by the function
g(x) if [g(x)[<1,
gi(x) =<1 if g(x)>1,
-1 if g(x)< -1,
we may assume without loss of generality that the functions ge Y satisfy |g|<1 as

well. Now, let feZ. Then there exist g;,g,€ Y such that g;<f<g> and [(g> —
¢g1) du<é. Then for any measure v on Q, [g1 dv< [fdv< [ g, dv, and

/gzdﬂ—/gzdv—5</fdu—/fdv</gl du—/gl dv + 6.

Consequently,
sup /fdu—/fdv<max/gd,u—/gdv +0 (5.7)
feF geY

Now, let ge Y. Following [4], we take a random sample &, from Q, distributed
according to u, and consider the random variable Xy = ¢g(&;). Then the expected
value of Xy is [gdu and |Xi|<1. Since 6€(0,1), Proposition 5.1 implies that

Prob(ii 9(&k) —/gdu

>5> <2exp(—nd*/G).

k=1
Hence,
1 n
Prob| max |- — du| =0
(gey n;g(ék) /g w )

<2|Y|exp(—nd*/G)
=exp (log2+ H(F, 1, 0) — nd*/G)
<exp (log(24) — klogo — n&z/G) =exp (B—klogo — n52/G)
K n
= exp(—3loe(1 +55108(55) ))
<l (5.8)

Therefore, there exist points &; such that

2> o)~ [odu <\/§{B— (6/2) 107 .

k=1
Along with (5.7) (with v being the measure that associates the mass 1/n with each &),
this proves (5.3) (with T = {&,}). O

max
geyY

We now begin the program of estimating the one-sided entropies of the different
sets of characteristic functions described in Section 2.3. The following simple
estimate will be used often in this process. In the sequel, u will denote a probability
measure on RY.
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Lemma 5.1. If n>0, 0<R< o0, and max, <j<, max(|x; +nl, |x;|) <R, then
q

[T o+ -

J=

x| <qnR"” L (5.9)

H z»a

Proof. Estimate (5.9) follows immediately from the identity

q q q k—1 k
[Teson-TTv=3 (T enTlv- 1T tvom Hx,)
il i1 =1 ik R s =1

q

H (x; +n) 1:[ Xj-
=l

=1 j=k+1

QQ

>

In order to prove Theorem 3.1, we first prove two propositions, Propositions 5.2
and 5.3.

Proposition 5.2. (a) Let 0<R, Ry < o0, and u be a measure satisfying a continuity
condition with parameters (M ,v). Suppose that (3.3) is satisfied. With

q 2
:10g{2(2qM)2q (i—R) (4R,)™ } (5.10)
1
we have for n=GB,
En(A(R, R1), 1) <44(29/7, B). (5.11)

(b) Let u be a regular measure with parameters (L, B, M ,7y), where gM (2**PL)7>2.
With

B=(2¢*(B+2) + (3+2/y)q +2)log 2 + 2qlog (¢ML), (5.12)
we have, for n=GB,
En(R(0, ), 1) <44(29(Pg +1/7), B). (5.13)

Proof. First, we prove part (a). Let 0 << 1. In view of (3.3), there exists an integer
m>=3 in the interval

[6gM(4R))* " RO 8gM (4R 'R6™/7).

We divide the cube [—R, R]? into m? congruent subcubes, and let (in this proof only)
% denote the set of centers of these subcubes. Next, let m; = Rym/R. Condition (3.3)
ensures that m; >4. For ze ¢ and multi-integer k> 1, let g, denote the characteristic
function of the cell B(|| - ||.,,z,kR;/m,). If any component of k is not positive, we
define g,x = 0. The set consisting of | and the functions g,x, ze %, 0<k<m; +2
(ke Z%) will be denoted by Y5(R, R;). Now, if ye [~ R, R]? and re [0, R|]?, then there
exist ze% and multi-integer k with 0<k<my, such that ||y —z||  <R/m, and
kR, /m; <r<(k + 1)R;/m;. Denoting the characteristic function of B(|| - || ., y,r) by
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f, it is easy to verify that g, x| <f <gzx+2. Further,

/(gz,k+2 — gak—1) dlg
< <ﬁ)q f[ (k; +2) - f[ max(0,k; — 1)
S\ j 1 ) Kj

j=1

my
=3¢29(2R))"'R/m = 6qR(4R))* " /m< 6" /M.

2R1\* -1 - q
<3g(=—) (mi +2)7 <3¢27 (2R))/my

Therefore, the continuity condition on u implies that

/(9z,k+2 — Jrx—1) du<o.

Thus, the set Y5(R, R;) is a one-sided (u, d)-cover of Z(R, R;). Therefore,
exp(H(Z(R,Ry),11,0))< | Y5(R, Ry)|<m?(my +3)7 + 1
<mi(my + 3+ 1/m)!<m?(m; +3+1/3)7
< 29m*(Ry/R)?
< 29(R/R){8gMR(4R, ) "o/}
= (2 M) (%)4(41{1)2‘125-%/?. (5.14)

In view of Theorem 5.1, this leads to (5.11).
To prove part (b), we let h be the characteristic function of
RN[—L(5/2) ", L(6/2)"], R= R, = L(6/2)", and
Y =Y5(R,R)U{g+h:geY;n(R R)}.

Now, for any yeR? and r>0, B(|| - ||.,y,r)n[—R, R]? is either empty or equal to
B(|| - 1|.,,x,r1) for some xe[—R, R]? and r, €[0, R]?. Thus, any f' e #( o0, o0) can be
expressed in the form f = f) + /5, where fi e Z(R, R)u{l — [}, and 0<fo <h. We
may find gi,g2€ Y;/2(R, R) such that g;<fi<g, and [(g92 — g1) du<d9/2. Hence,
g1<f<g> + h, and the decay condition for u implies that

/(gz+h—g1) du<o.

Thus, Y is a one-sided (u,d)-cover for %#(o0, c0). The cardinality of Y is at most
twice that of Y;s,,(R, R). We substitute the values of R = R; in (5.14), and use 6/2 in
place of ¢ to deduce that

H(# (0, 0),1,0) <{2(B+2)¢° + (3 +2/7)qg + 1} log2
+ 2qlog(gML?) — (29(¢f + 1/7)) log 6.
This estimate and Theorem 5.1 leads to (5.13). O
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Proposition 5.3. Let u be a probability measure satisfying a continuity condition with
parameters (M,7), 0<R, R < oo, and (3.5) be satisfied. With

B = log{2((4Mqr, )’ R(1 + 12 + 12 R1)* (2R )1} (5.15)
we have for integer n= GB,
gﬂ('%)(”||7R7R1)>:u)<An(3qy_l>B) (516)

The next lemma supplies a detail required in the proof of this proposition.

Lemma 5.2. Let re[0, Ri]?, 0<e<], ||z||, <&’ and ¥ >r+¢(1 + 2 + kaRy). Then
B(H : ||,y,l‘)EB(|| : H,y—l—Z,l‘/).

Proof. Since || - || is monotone, B(|| - ||,y,r) S B(|| - ||,y,r + ¢). Further,

X — X—y—12z z
y_ y SQSK”&

r+e r+e¢

So, xeB(|| - ||,y,r + &) implies that xe B(|| - ||,y + z, (r + &)(1 + x2¢)). Since
(r+&)(1 +r26) <r+ e+ k28(Ry + &) <r +¢(1 + k2 + K2R <r,
the monotonicity of || - || implies that xe B(|| - ||,y + z,r'). O

Proof of Proposition 5.3. In this proof, we will denote 7, .| by 7,. We will estimate
the one-sided entropy H(%(||- ||, R, Ri), 1t,9), and use Theorem 5.1. Let d€(0, 1],
and m> max(3,V/R) be an integer in the range

[3Mqry(2R)"" (1 + K3 + 1R ) VRS,
4Mqr,(2R)* (1 + 12 + 1R )VRS7).
(Condition (3.5) ensures that such an integer exists for every de (0, 1].) We divide

[~ R, R]? into m*? congruent subcubes, and let (in this proof only) % denote the set of
centers of these subcubes. Let

le
(I+ry+ Kle)\/E.

mp; =

Again, Condition (3.5) implies that m;>4. For ze® and multi-integer k with
I<k<m; +2, let g,x denote the characteristic function of the ellipse B(]|-
[|,z, kR, /my). If some component of a multi-integer k is not positive, we define
gx = 0. The set consisting of [ and the functions g,x, 0 <k<m; + 2 (ke Z?) will be
denoted by Y. Let ye[—R, R]?, re[0, R(]?, and f be the characteristic function of
B(|| - ||,¥,r). Then there exists ze % and multi-integer k with 0<<k<{m; such that
|ly —z||, <R/m?* and kR, /m; <r<(k + 1)R;/m;. Using Lemma 5.2, it is easy to
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verify that g, x_1 <f <gzx+2. We observe that

/(gz,k+2 - gz,k—l) d;hq
Rl q q q
<‘cq(m—l> ,1:[1 (k; +2) —E max(0,k; — 1)
R\ -1
< K q
<3qr, <m1) (m +2)

<3qt, 2R (1 + K2 + k2R )VR/m <" /M.

Since gzk+2 — gzk—1 1s the characteristic function of a Borel measurable set, the
continuity condition on yu implies that

/(gz,k+2 — Jrx—1) du<o.

Thus, the set Y is a one-sided (u, d)-cover for %(|| - ||, R, R;). The cardinality of Y is
at most

4 (my +3)1 + 1<m®(2m)? = 2R (VR(1 + 12 + 15 Ry )) ) 4m™.

Recalling that m<4gMt,(2R))? ' (1 + Kz + k2R )V/RO~/7 | the above estimate leads
to

H(B(| - [, R R1), 1, 6) < log((4Mqz,) R(1 + 12 + K2Ry )
X (2R3 — %log 0.
Along with Theorem 5.1, this leads to (5.16). O

Proof of Theorem 3.1. We recall (2.26). Parts (a) and (c) follow from Proposition 5.2,
parts (a) and (b), respectively. Part (b) follows from Proposition 5.3. [

The proof of Theorem 3.2 requires the following proposition.

Proposition 5.4. Let p be a probability measure on Sml satisfying the spherical
continuity condition (3.9), where we assume further that M, >1. Let

log{ 8 (7K1K2M1) } (517)
K1K
Then for integer n>= GB,

En(A |, ) <Aulq/71, B). (5.18)

Proof. It is easy to verify that for x,ye S|| H1 ’

X = yll., <2K1%2 (2K152)°]|x = | o - (5.19)

|| | |Y|H
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Let 0€(0, 1]. Since M, >1, we may find an integer m > 6k x; in the interval
[6K1K2M15_1/A’y',7K1K2M15_1/y'].

We divide each of the 2¢ faces of Sml’ into m?~! congruent subcubes, and let % be
the set of projections of the centers of these subcubes on Sﬁful. For integer 7, let

rp = 2K112/ /m. Let g, , denote the characteristic function of the cap §“ﬂ|}r/ (z),2€%,
1</<m/(x1x2) + 2, (¢ integer), and g, , = 0, if /<0. Let Y be the set of functions
Gusy ZEC, 0</<m/(x1K2) + 2. Now, let f be the characteristic function of SﬁAH,r(y).
In view of (5.19), there exist ze % and integer k& with 0<k<m/(ix;) such that
lly — z|| <2152 /m and 1 <r<rp4;. It is easy to verify that g,,, , <f<gys,,. Our
choice of m and the continuity condition (3.9) lead to [(gss., — grr ,) du<9.
Thus, Y is a one-sided (u, d)-cover of 7). The cardinality of ¥ does not exceed

3 4 4 \
2qm‘1’1m+ Mk mi< q2(7K1K2M1)"57‘1/".

Kiky K1 K1k
Therefore,
4
H(A )5 11, 0) < log{rzz(WﬂKle)q} = (q/71) logo,
Along with Theorem 5.1, this leads to (5.18). O

Proof of Theorem 3.2. The theorem follows immediately from (2.26) and Proposition
54. O

The proof of Theorem 3.3 will follow from the following proposition.

Proposition 5.5. (a) Let u be a probability measure satisfying a continuity condition
with parameters (M ,y). Let R>0 and 2MT(1717H'”4—1.2R‘[> 1. Let

B = log{16(14\/q7,_1., ,,MR))""'}. (5.20)
Then for integer n>= GB,
En(L(R), 1) <4u((q +1)/7, B). (5.21)
(b) Let p be a regular measure with parameters (L, f, M, v) satisfying (3.14). Let
B =log{32(14t,_y ., ,, MgtV LI29P /)0ty (5.22)
Then for integer n>= GB,
En(S(0), W) <Au((g +1)(ghf +1/7), B). (5.23)

In order to prove this proposition, we first prove a simple lemma, estimating the
volume of intersections of strips and spheres.
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Lemma 5.3. Let yeS?,', R>0, —R<a<b<R. Then

(1112

2q(S(y,a,b) 0 B(| - []5,0, R)) g1y, ,, R (b — a). (5.24)

Proof. Since A, is rotation-invariant, we may assume that y = (0,...,0,1). Let
C(R,a,b) be the right cylinder with cross sections congruent to B(|| - ||,_;,0, R),
base in the plane x,41 = a and top in the plane x,,; = b. Then S(y,a,b)nB(]|-
||q’2,0, R)= C(R,a,b). Estimate (5.24) is now clear. [

Proof of Proposition 5.5. In this proof, we will denote S"ﬁl by SY~! and Tyt )1l by

74-1. Let 6€(0,1]. In view of the condition 2Mt, ;R?>1, there exists an integer
m=6,/q in the interval

[12y/gt, 1 MRIS™7 14, /ge,  MRIS™7).

As in the proof of Proposition 5.4, we find a set % consisting of 2gm?~! points on
S such that for any ye S?', there exists ze % with ||y — z||,<2,/g/m. Let ry =
—R+2kR./q/m, =2<k<2+m/,/q (k integer). Let g,,, denote the characteristic
function of S(z,rs,r) " B(|| - ||5,0, R), and Y5(R) be the set consisting of [, 1 — I,
and these functions. Now, let f* be the characteristic function of S(y,a,b)nB(|| -
||5,0, R) for some ye S? ', [a,h] = R. We may assume that [a, b] < [~R, R]. We find a
ze% with ||y —z|,<2,/q/m, and integers /,k,0</,k<m/,/q such that
[Frot, re—1] S la, b] S [rs, ri]. Tt is easy to verify that

Grs+2hk-2<f <Gur—1k+1-

In view of Lemma 5.3, we verify that
/(gz,/—l,k+1 — Gur24—2) dlg

< /(gz,/fl,/+2 + Grj—2k11) dlyg

12Var R
m

The continuity condition on u and our choice of m now lead to the estimate
/(gz,/—l,kJrl — Grri2h—2) du<o.
Thus, Y5(R) is a one-sided (u, d)-cover of ¥ (R). Its cardinality does not exceed
| Y5(R)|<2gm?™" (5 + m//g)* +2<8m""!
<8(14y/gr, 1 MR)* 5=+ 1/, (5.25)
Theorem 5.1 now leads to (5.21).
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To prove part (b), we let R = L(5/2) , h be the characteristic function of
R\[-R, R]’, and

Y = Y50(VqR)u{g+h:geYspn(\/qR)}.

As in the proof of Proposition 5.2(b), Y is a one-sided (u,d)-cover of ¥ (o), and
|Y|<2|Y;/2(y/gR)|. Estimate (5.25) with 6/2 in place of 6 and \/ﬁL((S/2)_ﬁ in place
of R then leads to an estimate on H(%(o0), ,d), which, along with Theorem 5.1
implies (5.23). O

Proof of Theorem 3.3. The theorem follows immediately from (2.26) and
Proposition 5.5. [

Proof of Theorem 4.1. There is no loss of generality in assuming that ¢ is
nondecreasing. Let

(0= [ ox-y) duty), xeR,

for a regular measure u with parameters (L, §, M, y) satisfying (3.14). Again, without
loss of generality, we may assume that u is a positive measure. In this proof, we will
write || - || in place of || - ||, We observe that f(0) = ¢(0). Let xeR?, x#0, and
X = x/||x||. We note that for ye R,

dx-¥) = [ 2l x- vl dotu) = [ 7((=o0, X v u/lIe]) dgCo)
R R
Using Fubini’s theorem, we obtain the representation
0= [ oy = [ Al )sy) duty) dgtw). (520

In view of Proposition 5.5 (and its proof via Theorem 5.1), for n> GB, there exist
points y;€R? such that

‘/ SOX,u/lIx]1, 50);¥) du(y)

1

- Z S(X, u/|[x]], 90):¥;)| <4u(x, B), (5.27)

3

where, in this proof only, k = (¢ + 1)(¢f + 1/y). Now, we observe again that

/RX(S(X»M/IIXH,OO);yj) d¢>(u)=/ 2(=o0,x -y liu) dp(u) = (x-y)).

R

Consequently, (5.26) and (5.27) lead to estimate (4.1) [
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Proof of Theorem 4.2. Without loss of generality, we assume that ¢ is nonincreasing.
Let

:/<mw—ymdmw
RY

for a regular measure p with parameters (L, f, M, y), where we may assume without
loss of generality that u is a positive measure. Let xe R?. Writing dv(u) = —d¢(u),

we note that
== [ [ iix =yl o) dptw duty

:A‘@xwmwmmmwmwmw. (528)

Using (4.2) and the decay condition on yu, we derive that

‘ﬂw—llﬁhmﬂwmwmmmwmwmw

du(y) dv(u)<+/logn/n<1/2. (5.29)

<
(u,y) €[0,00]x RN[0,Ry ] x [~ Ry, R;]?

First, we consider the case when ||x|| , <R. Writing ] = ﬁ_Rl~Rl][I du(y) and I =

fOR' dv(u), we see that for any measurable function g : [0, c0) —[—1, 1],

/oog(u) dv(u)—li/ ' g(u) dv(w)| <3+/Togn/m (5.30)
0 1 Jo

and
Ry
. [l x,u);y) du(y) de(u)
Ry
Hl / e LB 11, 20:9) diy) dvia)
<Mﬁ£ﬂﬁ
Therefore,
P T [ B k) duty) o) <aognf (531

The measure %d,u(y), supported on [— R, R;]? satisfies the continuity condition with
parameters (2'/7M,7y). Since condition (3.5) is satisfied, we may apply Proposition
5.3 (and its proof via Theorem 5.4) to obtain points yje[—Rl,Rl}q such that for
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ue [OaRlL

1/ 1
¥ XB LXu - - » X, U)3Y;
1] g B 09 )= 52 20801y

where, in this proof only, x = 3¢y~!. Consequently,

Hl/ /R R x(B(| - 1], x,u);y) du(y) dv(u)

Ry
-or g / %)y, dvw)

<An(Ka )
In view of (5.30) and (5.31) this leads to

0= 13 x|
=1

This proves (4.3) in the case when [|x|| , <R.
Next, let ||x||, > R. Then ||x||> (1 + x2) Ry, and for (u,y)€[0, Ri] x [—Ry, Ri]?, we
obtain

<A,(x, B),

logn
_—

An(k,B)+7

[Ix = yl[Z[Ix]] = [[¥l|> (1 + ©2) Ry — K2]|yl| . = Ry >
ie., x(B(|| - I|,x,u);y) = 0. Therefore, for all ye[—R;, R]?,
o |x—y|||—]/ [ lxou:y) dv(@
logn
< dv(u) < ;
R n

and in particular,

—Z Blllx | <22~

Moreover, (5.29) 1mp11es that |[f(x)|<+/logn/n. Hence,

Finally, we prove the remaining assertion of this paper, Proposition 2.1.

Proof of Proposition 2.1. In this proof only, we will denote the surface area of the
Euclidean unit sphere embedded in R? by

2n4/?

Wg—1 = W (532)
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Passing to spherical coordinates, we see that
0
-1 o —1 -
b= [ eI dx =yt [ e dr

o /“O jfit iy _ Ca1L(@/%) (5.33)
o 0 x

Since exp(—|[x|[3) <1, the assertion about the continuity condition is now clear. To
prove the assertion regarding the decay condition, let (in this proof only) s :=
(g —a)/a, and s!==T(q/a). Passing to the spherical coordinates again, a little
calculation as above leads to

1
,uexp(a; Rq\[_Ra R]q) <7'

w
S/ rfe 'dt, R>0. (5.34)

o

Now, an integration by parts shows that if R>1,

. o)
/ lse,l dt — R% exp(_R“) + s/ Z“Y71€7[ dl<R9€|8| eXp(—R“)

o o
o0
5]

+ . re”! dt.
It follows that if R*> max(2|s|, 1), then
1 [* 2
Hexp (0, RA\[— R, R]?) <5 re! dzggR“‘S‘ exp(—R%). (5.35)
. R7 .

Now, let 6 >0, and in this proof only, let ¢ = (s!/2)J. Using elementary calculus, we
verify that x — alog x>alog(e/a) for every x>0 and a>0. Therefore, choosing

lofﬁA = (Is| + 1/(«p)) log<|s+le/(am>7 x=A4e a=|s|+ 1/ap,

we conclude that (4e=*#)" exp(—Ae=*F) <e. Therefore, with R* >max(1,2]s|, Ade~*),
we see from (5.35) that g, (o; R/\[- R, R]?) <9. This completes the proof of part (a).
For the proof of part (b), we recall the identity (cf. [3, Chapter V, Example 2.12])

0 t—1
/ al =— n , O<r<l.
o l+x sinmt
The remainder of the proof of part (b) using spherical coordinates is very elementary,
and is omitted. [
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