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Several characterizations about preinvex fuzzy mapping are obtained in this paper. Firstly,
an equivalent condition of preinvex fuzzymapping is established under certain conditions.
Furthermore, the necessary and sufficient conditions for differentiable and twice differ-
entiable preinvex fuzzy mapping are provided by using the given equivalent condition of
preinvex fuzzy mapping. Finally, a new proof of some known important conclusions is of-
fered. These results generalize and improve some known results.
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1. Introduction

In [1], Zadeh introduced the concept of fuzzy number. Since then, fuzzy numbers have been extensively studied by
many authors. With the development of theories of fuzzy numbers and their applications, the concept of fuzzy numbers
becomes more and more important. Researchers have begun to study theories in relation to fuzzy numbers. For instance,
the problems of integrability and differentiability and measurability of fuzzy mapping have been discussed by Goetschel
and Voxman [2], Dubois and Prade [3]. Since Nanda and Kar [4] proposed the concept of convex fuzzy mapping in 1992, the
research of convexity for fuzzy mapping and application to fuzzy optimization have been developed widely and deeply (for
examples, see [5–11]). Convexity plays a key role in fuzzy optimization theory. But, the condition of convex fuzzy mapping
is very strict. So the area of its application is limited. Therefore, different types of convexity and generalized convexity
of fuzzy mappings are defined and their properties are studied. Especially, in [12], Noor firstly introduced the concept of
fuzzy preinvex functions over the fields R, and obtained some basic properties of fuzzy preinvex functions. Subsequently,
in [13–15], Syau introduced the concepts of all kinds of generalized convexity for fuzzy mappings of one variable such as
invexity, pseudoinvexity, B-vexity etc. and also discussed many important properties of these generalized convex fuzzy
mappings. Mishra et al. [16] introduced semistrictly preinvex fuzzymappings. In [17,18], Wu and Xu introduce the concepts
of fuzzy pseudoconvex, fuzzy invex, fuzzy pseudoinvex and fuzzy preinvex mapping from Rn to the set of fuzzy numbers,
and obtained the relation between fuzzy vector optimization and fuzzy variational inequality.
Motivated by the recent work going on in these fields, on the basis of the concept of parameterized triples of fuzzy

numbers, we discuss several important characterizations about preinvex fuzzy mapping. By making use of Weierstrass
Theorem, we give a new proof of some known important conclusions. It is worth pointing out that the results obtained
here generalize and improve the corresponding ones in the references.
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2. Preliminaries

In this section, We first quote some preliminary notations, definitions and results which will be needed in the sequel.

Definition 2.1. Let R denote the set of all real numbers. A fuzzy number is a mapping µ : R → [0, 1] with the following
properties:
(1) µ is normal, that is, [µ]1 = {x ∈ R : µ(x) = 1} 6= ∅,
(2) µ is upper semicontinuous,
(3) µ is convex, that is, µ(λx+ (1− λ)y) ≥ min{µ(x), µ(y)} for all x, y ∈ R, λ ∈ [0, 1],
(4) the support of µ, supp(µ) = {x ∈ R : µ(x) > 0} and its closure cl(supp µ) is compact.
Denote by F the set of all fuzzy numbers on R. Let α ∈ [0, 1], the α-level set of a fuzzy set µ : R→ [0, 1], denoted by

[µ]α , is defined as

[µ]α =

{
{x ∈ R : µ(x) ≥ α}, if 0 < α ≤ 1;
cl(supp(µ)), if α = 0.

It is clear that the α-level set of a fuzzy number is a closed and bounded interval [µ∗(α), µ∗(α)], where µ∗(α) denotes
the left-hand end point of [µ]α and µ∗(α) denotes the right-hand endpoint of [µ]α .
Also any r ∈ R1 can be considered as a fuzzy number r̃ defined by as

r̃(x) =
{
1, x = r,
0, x 6= r.

Thus a fuzzy number µ can be identified by a parameterized triples

{(µ∗(α), µ
∗(α), α) : α ∈ [0, 1]}.

This leads to the following characterization of a fuzzy number in terms of the two end point functions µ∗(α) and µ∗(α).

Theorem 2.1 (See [2]). Assume that µ∗(α) : [0, 1] → R and µ∗(α) : [0, 1] → R satisfy the following conditions:
(1) µ∗(α) : [0, 1] → R is a nondecreasing function,
(2) µ∗(α) : [0, 1] → R is a nonincreasing function,
(3) µ∗(1) ≤ µ∗(1),
(4) µ∗(α) and µ∗(α) are bounded and left continuous on (0, 1], and right continuous at α = 0.
Then µ : R→ [0, 1] defined by

µ(x) = sup{α : µ∗(α) ≤ x ≤ µ∗(α)}

is a fuzzy number with parameterization given by {(µ∗(α), µ∗(α), α) : α ∈ [0, 1]}. Moreover, if µ : R → [0, 1] is a
fuzzy number with parameterization given by {(µ∗(α), µ∗(α), α) : α ∈ [0, 1]}, then functions µ∗(α) and µ∗(α) satisfy
conditions (1)–(4).

Definition 2.2. Let µ, ν ∈ F represented parametrically by

{(µ∗(α), µ
∗(α), α) : α ∈ [0, 1]} and {(ν∗(α), ν∗(α), α) : α ∈ [0, 1]},

respectively. We say thatµ � ν, if for each α ∈ [0, 1], µ∗(α) ≤ ν∗(α) andµ∗(α) ≤ ν∗(α). Ifµ � ν and ν � µ, thenµ = ν.
We say that µ ≺ ν, if µ � ν and there exists α0 ∈ [0, 1] such that µ∗(α0) < ν∗(α0) or µ∗(α0) < ν∗(α0).
Note that� is a partial order on F . Sometimes we may write ν � µ instead of µ � ν.
For fuzzy numbers µ and ν parameterized by

{(µ∗(α), µ
∗(α), α) : α ∈ [0, 1]} and {(ν∗(α), ν∗(α), α) : α ∈ [0, 1]},

respectively, and each nonnegative real number k, we define the additionµ+̃ν and nonnegative scalar multiplication kµ as
follows:

µ+̃ν = {(µ∗(α)+ ν∗(α), µ
∗(α)+ ν∗(α), α) : α ∈ [0, 1]}, (2.1)

kµ = {(kµ∗(α), kµ∗(α), α) : α ∈ [0, 1]}. (2.2)

It is known that (see [2]) the above defined addition and nonnegative scalar multiplication on F are equivalent to those
derived from the usual extension principle, and that F is closed under the addition and nonnegative scalar multiplication.
Obviously, for each real number r ,

µ+̃r = {(µ∗(α)+ r, µ∗(α)+ r, α) : α ∈ [0, 1]}. (2.3)
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Definition 2.3. Let x = (x1, x2, . . . , xn) ∈ Rn and A = (a1, a2, . . . , an) ∈ F n be an n-dimensional real vector and an n-
dimensional fuzzy vector, respectively. We define the product of a fuzzy vector with a real vector as AxT =

∑n
i=1 aixi, which

is a fuzzy number.

Definition 2.4. Let A = (aij) be an n × n fuzzy matrix in which the entries aij, i, j = 1, 2, . . . n are all fuzzy numbers.
A is said to be a positive definite fuzzy matrix, if for each α ∈ [0, 1], the left-hand and the right-hand α-level matrices
(aij∗) and (aij∗) (where aij = {(aij∗, aij∗, α) : α ∈ [0, 1]}), are all positive definite. Similarly, A is said to be a positive
semi-definite fuzzy matrix, if for each α ∈ [0, 1], the left-hand and the right-hand α-level matrices (aij∗) and (aij∗) (where
aij = {(aij∗, aij∗, α) : α ∈ [0, 1]}) are all positive semi-definite.

In this paper, a mapping F : K ⊂ Rn → F is said to be a fuzzy mapping. For any α ∈ [0, 1], the α-cut of F denoted by
F(x)[α] = [F∗(α, x), F∗(α, x)].
Below we have accepted the fuzzy differentiability concept due to Buckley–Feuring [19,20], see also [7].

Definition 2.5 (See [7]). Let F : K → F be a fuzzy mapping, where K ⊂ Rn is an open set. Let x = (x1, x2, . . . , xn) ∈ K .
Let Dxi , i = 1, 2, . . . , n, stand for the ‘‘partial differentiation’’ with respect to the ith variable xi. Assume that for all
α ∈ [0, 1], F∗(α, x), F∗(α, x) have continuous partial derivatives so that DxiF∗(α, x),DxiF

∗(α, x) are continuous. Define

DxiF(x)[α] = [DxiF∗(α, x),DxiF
∗(α, x)], for i = 1, 2, . . . , n, α ∈ [0, 1].

If for each i, j = 1, 2, . . . , n,DxiF(x)[α] defines the α-cut of a fuzzy number, then we will say that F is differentiable at x,
and we write

∇̃F(x) = (Dx1F(x),Dx2F(x), . . . ,DxnF(x)).

We call ∇̃F(x), the gradient of the fuzzy function F at x.
Note that ∇̃F(x) is an n-dimensional fuzzy vector. For the gradient of a fuzzy mapping we use the symbol ∇̃ , whereas for

the gradient of a real-valued function we use the symbol ∇ .

Definition 2.6 (See [7]). Let F : K → F be a fuzzy mapping, where K ⊂ Rn is an open set. Let x = (x1, x2, . . . , xn) ∈ K .
Let Dxixj , i, j = 1, 2, . . . , n, stand for the ‘‘second-order partial’’ with respect to the ith variable xi and jth variable xj.
Assume that ∇̃F(x) exists and for all α ∈ [0, 1], F∗(α, x), F∗(α, x) have continuous second-order partial derivatives so that
DxixjF∗(α, x),DxixjF

∗(α, x) are continuous. Define

DxixjF(x)[α] = [DxixjF∗(α, x),DxixjF
∗(α, x)], for i, j = 1, 2, . . . , n, α ∈ [0, 1].

If for each i, j = 1, 2, . . . , n,DxixjF(x)[α] defines the α-cut of a fuzzy number, then we define the Hessian of the fuzzy
function (in the matrix notation) as follows:

∇̃
2F(x) = (DxixjF(x))i,j=1,2,...,n.

Wewill say that F is twice differentiable at x, if the Hessian of the fuzzy function exists and both F∗(α, x), F∗(α, x) are twice
differentiable at x.

Definition 2.7 (See [9]). Let F : K ⊂ Rn → F be a fuzzy mapping parameterized by

F(x) = {(F∗(α, x), F∗(α, x), α) : α ∈ [0, 1]}, ∀x ∈ K .

(1) F is said to be upper semicontinuous at x0 ∈ K , if both F∗(α, x) and F∗(α, x) are upper semicontinuous at x0 uniformly
in α ∈ [0, 1]. F is upper semicontinuous on K , if it is upper semicontinuous at each point of K .
(2) F is said to be lower semicontinuous at x0 ∈ K , if both F∗(α, x) and F∗(α, x) are lower semicontinuous at x0 uniformly

in α ∈ [0, 1]. F is lower semicontinuous on K , if it is lower semicontinuous at each point of K .
Note that the concept of upper and lower semicontinuity introduced here is essentially same as that given by Bao and

Wu [10].

Theorem 2.2 (See [21]). Let X be a nonempty closed and bounded subset of Rn. A real-valued function f : Rn → R1 is upper
(respectively, lower) semicontinuous on X attains its maximum (respectively, minimum) on X.

3. Some characterizations of preinvex fuzzy mapping

In this section, we will discussed several new characterizations of preinvex fuzzy mapping in view of complex analysis.

Definition 3.1. Let y ∈ K(⊂Rn), we say K is invex at y with respect to (w.r.t. in short) a function η : K × K −→ Rn, if for
each x ∈ K , λ ∈ [0, 1], y+ λη(x, y) ∈ K .K is said to be an invex set w.r.t.η, if K is invex at each y ∈ K .
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Definition 3.2. Let K(⊂Rn) be an invex set w.r.t. η. A fuzzy mapping F : K → F is said to be preinvex on K , if
F(y+ λη(x, y)) � λF(x)+̃(1− λ)F(y) holds for all x, y ∈ K and any λ ∈ [0, 1].
It is obvious that preinvexity implies convexity, but that the converse is not true (see [17,18]). In the case when

η(x, y) = x− y, we obtain the definition of convex fuzzy mapping (see [4]).

To prove some results in the paper, we need the well-known Condition C introduced by Mohan and Neogy in [22] and
developed in [16–18].
Condition C:We say that the function η: Rn × Rn −→ Rn satisfies Condition C, if for any x, y ∈ Rn,

η(y, y+ λη(x, y)) = −λη(x, y), η(x, y+ λη(x, y)) = (1− λ)η(x, y),

are satisfied for any λ ∈ [0, 1].
For example, let K = R− {0} and

η(x, y) =
{
x− y, if xy ≥ 0,
−y, if xy < 0.

It is clear that K is an invex set (not a convex set) and that η satisfies Condition C. In fact, there exist many vector functions
that satisfy Condition C.

Lemma 3.1. Let K be a nonempty invex set in Rn w.r.t. η, and let F : K → F be a fuzzy mapping parameterized by

F(x) = {(F∗(α, x), F∗(α, x), α) : α ∈ [0, 1]}, ∀x ∈ K . (3.1)

Then F is preinvex on K if and only if for each α ∈ [0, 1],

F∗(α, x) and F∗(α, x) are preinvex w.r.t η on K . (3.2)

Proof. Assume that for each α ∈ [0, 1], F∗(α, x) and F∗(α, x) are preinvex w.r.t η on K . Let α ∈ [0, 1] be given. From (3.2),
we have

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y)

and

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y)

for all x, y ∈ K and λ ∈ [0, 1]. Then, by (3.1), (2.1) and (2.2), we obtain

F(y+ λη(x, y)) = {(F∗(α, y+ λη(x, y)), F∗(α, y+ λη(x, y)), α) : α ∈ [0, 1]}
� {(λF∗(α, x), λF∗(α, x), α) : α ∈ [0, 1]}+̃{((1− λ)F∗(α, y), (1− λ)F∗(α, y), α) : α ∈ [0, 1]}
= λF(x)+̃(1− λ)F(y)

for all x, y ∈ K and λ ∈ [0, 1]. Hence F is preinvex on K .
Conversely, let F is preinvex on K . Then for all x, y ∈ K and λ ∈ [0, 1], we have F(y + λη(x, y)) � λF(x)+̃(1 − λ)F(y).

From (3.1), we have

F(y+ λη(x, y)) = {(F∗(α, y+ λη(x, y)), F∗(α, y+ λη(x, y)), α) : α ∈ [0, 1]}, (3.3)

for all x, y ∈ K and λ ∈ [0, 1]. From (3.1), (2.1) and (2.2), we obtain

λF(x)+̃(1− λ)F(y) = {(λF∗(α, x)+ (1− λ)F∗(α, y), λF∗(α, x)+ (1− λ)F∗(α, y), α) : α ∈ [0, 1]},

for all x, y ∈ K and λ ∈ [0, 1]. Then, by (3.3) and the preinvexity of F , we have for every x, y ∈ K and λ ∈ [0, 1],

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y)

and

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y)

for each α ∈ [0, 1]. This completes the proof. �

Remark 3.1. Let η(x, y) = x− y, Lemma 3.1 is reduced to Theorem 3.1 in [11].

In [6, Theorem 4.6], Yan and Xu gave the following result for convex fuzzy mapping.

Theorem A. Let f (x) define on a convex set K ⊂ Rn. For any x, y ∈ K , let ϕ(λ) = f (λx+ (1− λ)y),∀λ ∈ [0, 1]. Then f (x) is
convex on K if and only if ϕ(λ) is convex on [0, 1].
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In the following, we shall generalize the above Theorem A to the case of preinvex fuzzy mapping and establish an
equivalent condition for preinvex fuzzy mapping under certain assumptions. From the blow Theorem 3.1, we can see that
the preinvexity can be characterized by convexity of a fuzzy function defined on [0, 1] equivalently.

Theorem 3.1. Let K be a nonempty invex set in Rn w.r.t. η where η satisfies Condition C. Assume that F : K → F is a fuzzy
mapping and satisfies F(y + η(x, y)) � F(x) for all x, y ∈ K . Then F is a preinvex on K if and only if, for any x, y ∈ K ,
ϕ(λ) = F(y+ λη(x, y)) is convex on [0,1].

Proof. Suppose that F is preinvex on K , for arbitrary fixed x, y ∈ K and ∀λ, α1, α2 ∈ [0, 1], if α1 = α2, then the result is
obvious.
If α1 > α2, then α1 − α2 > 0 and α2 6= 1, thus we have

0 < (α1 − α2)/(1− α2) ≤ 1.

From Condition C, for ∀x, y ∈ K , α ∈ [0, 1], we have

η(y+ αη(x, y), y) = η(y+ αη(x, y), y+ αη(x, y)− αη(x, y))
= η(y+ αη(x, y), y+ αη(x, y)+ η(y, y+ αη(x, y)))
= −η(y, y+ αη(x, y)) = αη(x, y), (3.4)

again from Condition C and (3.4), we have

η(y+ α1η(x, y), y+ α2η(x, y)) = η(y+ α2η(x, y)+ (α1 − α2)η(x, y), y+ α2η(x, y))
= η(y+ α2η(x, y)+ [(α1 − α2)/(1− α2)]η(x, y+ α2η(x, y)), y+ α2η(x, y))

= [(α1 − α2)/(1− α2)]η(x, y+ α2η(x, y)) = (α1 − α2)η(x, y). (3.5)

By (3.5) and the preinvexity of F , thus for arbitrary fixed x, y ∈ K ,

ϕ(α2 + λ(α1 − α2)) = F(y+ α2η(x, y)+ λ(α1 − α2)η(x, y))
= F(y+ α2η(x, y)+ λη(y+ α1η(x, y), y+ α2η(x, y)))
� λF(y+ α1η(x, y))+̃(1− λ)F(y+ α2η(x, y))

= λϕ(α1)+̃(1− λ)ϕ(α2). (3.6)

If α1 < α2, by a similar way, then we have

ϕ(α2 + λ(α1 − α2)) � λϕ(α1)+̃(1− λ)ϕ(α2). (3.7)

Hence, by (3.6), (3.7) we conclude that ϕ(λ) is a convex function on [0, 1].
Next, we prove the sufficiency of this theorem. Since ϕ(λ) = F(y+λη(x, y)) is convex on [0,1], and F(y+η(x, y)) � F(x),

then for any λ ∈ [0, 1] and arbitrary fixed x, y ∈ K , we have

F(y+ λη(x, y)) = ϕ(λ) = ϕ(λ · 1+ (1− λ) · 0) � λϕ(1)+̃(1− λ)ϕ(0)
= λF(y+ η(x, y))+̃(1− λ)F(y) � λF(x)+̃(1− λ)F(y).

This completes the proof. �

In [7, Theorem 4.6], Panigrahi and Nanda gave the following result for convex fuzzy mapping.

Theorem B. Let f̃ be a twice differentiable fuzzy mapping on an open convex set Ω ⊆ Rn to F . f̃ is convex on Ω if and only if
for each x ∈ Ω , ∇̃2 f̃ is a positive semi-definite fuzzy matrix.
Obviously, let f̃ : (a, b)→ F be twice differentiable. Then f̃ is convex on (a,b) if and only if ∇̃2 f̃ (x) � 0̃ for any x ∈ (a, b).

Next, we will establish the necessary and sufficient conditions for a twice differentiable preinvex fuzzy mapping by
making use of Theorem 3.1.

Theorem 3.2. Let K be a nonempty open invex set in Rn w.r.t. ηwhere η satisfies Condition C. Assume that F : K → F is a twice
differentiable fuzzy mapping and satisfies F(y + η(x, y)) � F(x) for all x, y ∈ K . Then F(x) is preinvex fuzzy mapping w.r.t. η if
and only if, for any x, y ∈ K , η(x, y)∇̃2F(y)η(x, y)T � 0̃.

Proof. Necessity. Suppose that F(x) is twice differentiable preinvex fuzzymappingw.r.t. η. From Theorem 3.1, for any x, y ∈
K , ϕ(λ) = F(y+ λη(x, y)) is twice differentiable convex on (0, 1). By Theorem B, we have for any λ ∈ (0, 1), ∇̃2ϕ(λ) � 0̃.
Since

∇̃ϕ(λ) = ∇̃F(y+ λη(x, y))η(x, y)T,

∇̃
2ϕ(λ) = η(x, y)∇̃2F(y+ λη(x, y))η(x, y)T,
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thus, we can obtain

∇̃
2ϕ(λ) = η(x, y)∇̃2F(y+ λη(x, y))η(x, y)T � 0̃. (3.8)

Let λ→ 0+ in (3.8), then

η(x, y)∇̃2F(y)η(x, y)T � 0̃.

Sufficiency. For any x, y ∈ K , η(x, y)∇̃2F(y)η(x, y)T � 0̃. Then, for ∀λ ∈ (0, 1), y+ λη(x, y) ∈ K and

η(x, y+ λη(x, y))∇̃2F(y+ λη(x, y))η(x, y+ λη(x, y))T � 0̃.

From Condition C, thus

(1− λ)2η(x, y)∇̃2F(y+ λη(x, y))η(x, y)T � 0̃.

This means, since λ ∈ (0, 1),

η(x, y)∇̃2F(y+ λη(x, y))η(x, y)T � 0̃.

Hence we can get ∇̃2ϕ(λ) � 0̃. Again by Theorem B and Theorem 3.1, then F(x) is preinvex w.r.t. η. �

Theorem 3.3. Let K be a nonempty open invex set in Rn w.r.t. η that which satisfy Condition C. Assume that F : K → F is
differentiable on K . Then F(x) is preinvex on K if and only if, for any x, y ∈ K ,

F(x) � ∇̃F(y)η(x, y)T+̃F(y). (3.9)

Proof. Assume that F is differentiable and preinvex on K . By Lemma 3.1, for every x, y ∈ K and λ ∈ [0, 1], then

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y), (3.10)

F∗(α, y+ λη(x, y)) ≤ λF∗(α, x)+ (1− λ)F∗(α, y), (3.11)

for each α ∈ [0, 1]. According to the mean-valued theorem, for each fixed α ∈ [0, 1], we have

F∗(α, y+ λη(x, y)) = F∗(α, y)+ λ∇F∗(α, ξ)η(x, y)T, (3.12)

F∗(α, y+ λη(x, y)) = F∗(α, y)+ λ∇F∗(α, ζ )η(x, y)T, (3.13)

where ξ = y+ θ1λη(x, y), ζ = y+ θ2λη(x, y), 0 < θ1, θ2 < 1. From (3.10), (3.12), and taking the limit as θ1 → 0+, we can
obtain

F∗(α, x) ≥ ∇F∗(α, y)η(x, y)T + F∗(α, y).

By the same way as θ2 → 0+ gives

F∗(α, x) ≥ ∇F∗(α, y)η(x, y)T + F∗(α, y).

From the above two inequalities, the desired conclusion (3.9) is obtained.
Conversely, for x, y ∈ K , λ ∈ (0, 1), let z = y + λη(x, y), then z ∈ K . By the assumption and Condition C, we have for

any x, y ∈ K ,

F(x) � ∇̃F(z)η(x, z)T+̃F(z) = (1− λ)∇̃F(z)η(x, y)T+̃F(z) (3.14)

and

F(y) � ∇̃F(z)η(y, z)T+̃F(z) = −λ∇̃F(z)η(x, y)T+̃F(z). (3.15)

Multiplying inequality (3.14) by λ plus multiplying inequality (3.15) by 1− λ, we can get for x, y ∈ K ,

λF(x)+̃(1− λ)F(y) � F(y+ λη(x, y)),

then F is a preinvex fuzzy mapping on K . �

Corollary 3.1. Let K be a nonempty open invex set in Rn w.r.t. η that which satisfy Condition C. Assume that F : K → F is
differentiable on K . Then F(x) is preinvex on K if and only if, for any x, y ∈ K ,

∇̃F(y)η(x, y)T+̃∇̃F(x)η(y, x)T � 0̃.

Corollary 3.2. Let K be a nonempty open invex set in Rn w.r.t. η and x0 ∈ K. Assume that F : K → F is a differentiable preinvex
fuzzy mapping on K . If for ∀x ∈ K , ∇̃F(x0)η(x, x0)T � 0̃, then F(x) achieves its global minimum at x0.

Remark 3.2. Corollaries 3.1 and 3.2 directly follow fromTheorem3.3. Letη(x, y) = x−y, Corollary 3.1 is reduced to Theorem
4.4 in [7] and Corollary 3.2 is reduced to Theorem 4.6 in [14].
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4. Semicontinuity and preinvex fuzzy mapping

In [18, Theorem 3.1], Wu and Xu proved the following important results which revealed the relationships between
semicontinuity and preinvexity of fuzzy mappings.

Theorem 4.1. Let K ⊂ Rn be an open invex setw.r.t.η thatwhich satisfy Condition C. Let F : K → F be an upper semicontinuous
fuzzy mapping that satisfies F(y+ η(x, y)) � F(x),∀x, y ∈ K. If there exists a t ∈ (0, 1) such that

F(y+ tη(x, y)) � tF(x)+̃(1− t)F(y), ∀x, y ∈ K ,

then F is a preinvex fuzzy mapping on K .

Based on the established conclusions, we shall omit the condition that K is open set on the above Theorem 4.1 and obtain
an improved conclusion in view of Theorem 2.2 and Lemma 3.1 in the following statements.

Theorem 4.2. Let K ⊂ Rn be an invex set w.r.t. η that which satisfy Condition C. Let F : K → F be an upper semicontinuous
fuzzy mapping that satisfies F(y+ η(x, y)) � F(x),∀x, y ∈ K. If there exists a t ∈ (0, 1) such that

F(y+ tη(x, y)) � tF(x)+̃(1− t)F(y), ∀x, y ∈ K ,

then F is a preinvex fuzzy mapping on K .

Proof. By contradiction, suppose that F is not preinvex on K . Hence, there exist x, y ∈ K and λ̄ ∈ (0, 1) such that

F(y+ λ̄η(x, y))�̄λ̄F(x)+̃(1− λ̄)F(y),

i.e., there exist x, y ∈ K and λ̄ ∈ (0, 1), for some α0 ∈ [0, 1] such that

F∗(α0, y+ λ̄η(x, y)) > λ̄F∗(α0, x)+ (1− λ̄)F∗(α0, y), (4.1)

or

F∗(α0, y+ λ̄η(x, y)) > λ̄F∗(α0, x)+ (1− λ̄)F∗(α0, y). (4.2)

Without loss of generality, suppose that (4.1) holds. Now let

g(λ) = F∗(α0, y+ λη(x, y))− λF∗(α0, x)− (1− λ)F∗(α0, y).

By the upper semicontinuity of F and Definition 2.7, then F∗(α, x) is upper semicontinuous real-valued function. Therefore,
g(λ) also is upper semicontinuous real-valued function in interval [0, 1]. From Theorem 2.2, it follows that g(λ) exists
maximumM0 > 0 due to (4.1), in interval [0,1]. Let λ0 = max{λ ∈ [0, 1] : g(λ) = M0}. By the conditions, we have

g(0) = 0, g(1) = F∗(α0, y+ η(x, y))− F∗(α0, x) ≤ 0.

Hence λ0 ∈ (0, 1). Choose a δ > 0, such that

(λ0 − (1− t)δ, λ0 + tδ) ⊂ (0, 1).

Let

λ2 = λ0 − (1− t)δ, λ1 = λ0 + tδ.

Obviously, λ1 = λ2 + δ and λ1 6= λ0, λ2 6= λ0. Let

x̂ = y+ λ2η(x, y), ŷ = y+ λ1η(x, y).

By the Condition C, we can get that

ŷ+ tη(x̂, ŷ) = y+ λ1η(x, y)+ tη(y+ λ2η(x, y), y+ λ1η(x, y))
= y+ λ1η(x, y)+ t(λ2 − λ1)η(x, y)
= y+ (λ0 + tδ)η(x, y)− tδη(x, y)
= y+ λ0η(x, y).

From Lemma 3.1, we known that F∗(α, x) is preinvex on K . Thus,

M0 = g(λ0) = F∗(α0, y+ λ0η(x, y))− λ0F∗(α0, x)− (1− λ0)F∗(α0, y)
= F∗(α0, ŷ+ tη(x̂, ŷ))− λ0F∗(α0, x)− (1− λ0)F∗(α0, y)
≤ tF∗(α0, x̂)+ (1− t)F∗(α0, ŷ)− λ0F∗(α0, x)− (1− λ0)F∗(α0, y)
= t[F∗(α0, x̂)− λ2F∗(α0, x)− (1− λ2)F∗(α0, y)]
+ (1− t)[F∗(α0, ŷ)− λ1F∗(α0, x)− (1− λ1)F∗(α0, y)]
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= t[F∗(α0, y+ λ2η(x, y))− λ2F∗(α0, x)− (1− λ2)F∗(α0, y)]
+ (1− t)[F∗(α0, y+ λ1η(x, y))− λ1F∗(α0, x)− (1− λ1)F∗(α0, y)]

= tg(λ2)+ (1− t)g(λ1) < tM0 + (1− t)M0 = M0.

This is a contradiction. Hence F is preinvex on K w.r.t. η. �

Remark 4.1. Comparing with Theorem 4.1 given by Wu and Xu in [18], we omit the hypothesis on K being an open set
in our theorem. It is easy to see that there is no proof on the density for the set A = {λ ∈ [0, 1] : F(y + tη(x, y)) �
tF(x)+̃(1− t)F(y),∀x, y ∈ K}, which lead to a completely different proof with [18].

By a similar way, using Theorem 2.2 and Lemma 3.1, we can conclude the following Theorem 4.3.

Theorem 4.3. Let K ⊂ Rn be an invex set w.r.t. η that which satisfy Condition C. Let F : K → F be an lower semicontinuous
fuzzy mapping that satisfies F(y+ η(x, y)) � F(x),∀x, y ∈ K. If there exists a t ∈ (0, 1) such that

F(y+ tη(x, y)) � tF(x)+̃(1− t)F(y), x, y ∈ K ,

then F is a preinvex fuzzy mapping on K .

5. Conclusion

The concept of generalized convex fuzzy mappings without differentiability has been discussed in the literature by
many researchers. The objective of this paper is to give some important properties of preinvex fuzzy mappings under
differentiability along convex analysis. This paper also provides a new proof of some known important conclusions, which
is different from the work in [18]. Furthermore, the properties obtained here for preinvex fuzzy mapping can be derived
for prequasi-invex fuzzy mapping by a similar way. Also we will try to explore these characterizations of preinvex fuzzy
mappings to fuzzy optimization in the future.
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