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a b s t r a c t

We give a new interpretation of the derangement numbers dn
as the sum of the values of the largest fixed points of all non-
derangements of lengthn−1.We also show that the analogous sum
for the smallest fixed points equals the number of permutations of
length n with at least two fixed points. We provide analytic and
bijective proofs of both results, as well as a new recurrence for the
derangement numbers.
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1. Largest fixed point

Let [n] = {1, 2, . . . , n}, and let Sn denote the set of permutations of [n]. Throughout the paper, we
will represent permutations using cycle notation unless specifically stated otherwise. Recall that i is a
fixed point of π ∈ Sn if π(i) = i. Denote byDn the set of derangements of [n], i.e., permutations with
no fixed points, and let dn = |Dn|. Given π ∈ Sn \Dn, let `(π) denote the largest fixed point of π . Let

an,k = |{π ∈ Sn \Dn : `(π) = k}|.

Clearly,

an,1 = dn−1 and an,n = (n− 1)!. (1)

It also follows from the definition that

an,k = dn−1 +
k−1∑
j=1

an−1,j, (2)

since by removing the largest fixed point k of a permutation in Sn \ Dn, we get a permutation of
{1, . . . , k − 1, k + 1, . . . , n} whose largest fixed point (if any) is less than k. If in (2) we replace k by
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Table 1
The values of an,k for n up to 6.

n \ k 1 2 3 4 5 6

1 1
2 0 1
3 1 1 2
4 2 3 4 6
5 9 11 14 18 24
6 44 53 64 78 96 120

k− 1, then by subtraction we obtain

an,k = an,k−1 + an−1,k−1 (3)

for k ≥ 2, or equivalently, an,k = an,k+1−an−1,k for k ≥ 1. Together with the second equation in (1), it
follows that the numbers an,k form Euler’s difference table of the factorials (see [2–4]). Table 1 shows
the values of an,k for small n. The combinatorial interpretation given in [2,3] is that an,k is the number
of permutations of [n − 1] where none of k, k + 1, . . . , n − 1 is a fixed point. This interpretation is
clearly equivalent to ours using the same reasoning behind Eq. (2). In fact, Eqs. (1)–(3) can also be
derived from [2].
We point out that it is possible to give a direct combinatorial proof of the recurrence (3) from our

definition of the an,k. Indeed, let π ∈ Sn with `(π) = k. If π(1) = m 6= 1, then the permutation
of [n] obtained from the one-line notation of π by moving m to the end, replacing 1 with n + 1, and
subtracting one from all the entries has largest fixed point k − 1. If π(1) = 1, then removing 1 and
subtracting one from the remaining entries of π we get a permutation of [n− 1]whose largest fixed
point is k− 1.
From (1) and (3) it follows that

an,k =
k−1∑
j=0

(
k− 1
j

)
dn−j−1.

A simple combinatorial proof of this equation is obtained by observing that the number of
permutations π ∈ Sn \Dn with `(π) = k having exactly j additional fixed points is

(
k−1
j

)
dn−j−1, for

each 0 ≤ j ≤ k− 1.
Define

αn =

n∑
k=1

kan,k =
∑

π∈Sn\Dn

`(π). (4)

We now state our main result, which we prove analytically and bijectively in the next two
subsections.

Theorem 1.1. For n ≥ 1, we have

αn = dn+1.

1.1. Analytic proof

Replacing n by n+ 1, from (4) we have

αn+1 = an+1,1 + 2an+1,2 + · · · + nan+1,n + (n+ 1)an+1,n+1. (5)

Adding (4) and (5) and taking into account (3), we obtain

αn + αn+1 = an+1,2 + 2an+1,3 + · · · + nan+1,n+1 + (n+ 1)!. (6)

Adding (6) with the equality

(n+ 1)! − dn+1 = an+1,1 + an+1,2 + · · · + an+1,n + an+1,n+1,
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which is a special case of Eq. (2), we obtain
αn + αn+1 + (n+ 1)! − dn+1 = αn+1 + (n+ 1)!,

whence αn = dn+1.

1.2. Bijective proof

To find a bijective proof of Theorem 1.1, we first construct a set whose cardinality is αn. Let
Mn ⊂ (Sn \Dn) × [n] be the set of pairs (π, i) where π ∈ Sn \Dn and i ≤ `(π). We underline the
number i in π to indicate that it is marked. For example, we write (2)(3)(7)(8)(1, 4, 9)(5, 6) instead
of the pair ((2)(3)(7)(8)(1, 4, 9)(5, 6), 4). It is clear that

|Mn| =

n∑
k=1

kan,k = αn.

To prove Theorem 1.1, we give a bijection betweenDn+1 andMn.
Given π ∈ Dn+1, we assign to it an element π̂ ∈ Mn as follows. Write π as a product of cycles,

starting with the one containing n+ 1, say
π = (n+ 1, i1, i2, . . . , ir) σ .

Let q be the largest index, 1 ≤ q ≤ r , such that i1 < i2 < · · · < iq. We define

π̂ =

{
(i1)(i2) . . . (ir) σ if q = r,
(i1)(i2) . . . (iq)(iq+1, iq+2, . . . , ir) σ if q < r.

Nowwe describe the inverse map. Given π̂ ∈Mn, let its unmarked fixed points be i1 < i2 < · · · <
iq, and let j1 be the marked element. We can write π̂ = (i1) . . . (iq)(j1, j2, . . . , jt) σ . Notice that t = 1
if the marked element is a fixed point. Define

π = (n+ 1, i1, i2, . . . , iq, j1, j2, . . . , jt) σ .
Here are some examples of the bijection betweenDn+1 andMn:
π = (12, 2, 4, 9, 7, 5, 6)(1, 3)(8, 11, 10)↔ π̂ = (2)(4)(9)(7, 5, 6)(1, 3)(8, 11, 10),
π = (10, 2, 3, 7, 8)(1, 4, 9)(5, 6)↔ π̂ = (2)(3)(7)(8)(1, 4, 9)(5, 6),
π = (10, 2, 7, 8, 3)(1, 4, 9)(5, 6)↔ π̂ = (2)(7)(8)(3)(1, 4, 9)(5, 6),
π = (10, 2, 3, 7, 8, 4, 9, 1)(5, 6)↔ π̂ = (2)(3)(7)(8)(4, 9, 1)(5, 6).

2. Smallest fixed point

In a symmetric fashion to the statistic `(π), we can define s(π) to be the smallest fixed point of
π ∈ Sn \Dn. Let

bn,k = |{π ∈ Sn \Dn : s(π) = k}|.
The numbers bn,k appear in [1, pp. 174–176, 185] as Rn,k (called rank). Define

βn =

n∑
k=1

kbn,k =
∑

π∈Sn\Dn

s(π). (7)

It is not hard to see that, by symmetry,
bn,k = an,n+1−k. (8)

Indeed, one can use the involution π 7→ π ′ on Sn where π ′(i) = n+ 1−π(n+ 1− i). This involution
is equivalent to replacing each entry i in the cycle representation of π with n + 1 − i; for example,
(183)(2)(4975)(6) is mapped to (927)(8)(6135)(4).
To find a combinatorial interpretation of βn, let En+1 be the set of permutations of [n+1] that have

at least two fixed points. We have that
|En+1| = (n+ 1)! − dn+1 − (n+ 1)dn, (9)
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since out of the (n + 1)! permutations of [n + 1], there are dn+1 derangements and (n + 1)dn
permutations having exactly one fixed point.
The following result is the analogue of Theorem 1.1 for the statistic s(π). We give an analytic proof

based on that theorem, and a direct bijective proof as well.

Theorem 2.1. For n ≥ 1, we have

βn = |En+1|.

2.1. Analytic proof

From the definitions of αn and βn, and Eq. (8), it follows that

αn + βn = (n+ 1)
n∑
k=1

an,k = (n+ 1)(n! − dn).

Using Theorem 1.1, we have

βn = (n+ 1)! − (n+ 1)dn − dn+1,

which by (9) is just the cardinality of En+1 as claimed.
Note also the following identities involving βn which follow from the known recurrence dn =

ndn−1 + (−1)n:

βn = (n+ 1)! + (−1)n − 2(n+ 1)dn,
βn = (n+ 1)βn−1 + n(−1)n+1.

The sequence βn starts 0, 1, 1, 7, 31, 191, . . .. Using the well known fact that

lim
n→∞

dn
n!
=
1
e
, (10)

we see that

lim
n→∞

βn

(n+ 1)!
= 1−

2
e
.

2.2. Bijective proof

LetM′n ⊂ (Sn \Dn)× [n] be the set of pairs (π, i)where π ∈ Sn \Dn and i ≤ s(π). As before, we
underline the number i in π to indicate that it is marked. It is clear that

|M′n| =
n∑
k=1

kbn,k.

We now give a bijection between En+1 andM′n. Given π ∈ En+1, let i be its smallest fixed point.
We can write

π = (i)(n+ 1, j2, . . . , jt) σ ,

where no js appear if n+ 1 is a fixed point. Define

π̃ = (i, j2, . . . , jt) σ .

Note that π̃ ∈M′n, because if σ has fixed points then they are all larger than i, and if it does not, then
t = 1 and i is the smallest fixed point of π̃ . Essentially, π and π̃ are related by conjugation by the
transposition (i, n+ 1).
Conversely, given π̃ ∈M′n, let i be the marked entry. We can write

π̃ = (i, j2, . . . , jt) σ ,

where no js appear if i is a fixed point. Then

π = (i)(n+ 1, j2, . . . , jt) σ .
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Roughly speaking, we replace i with n + 1 and add i as a fixed point. Note that if t ≥ 2 then σ must
have fixed points.
Here are some examples of the bijection between En+1 andM′n:

π = (3)(10, 1, 7, 2, 8)(5)(6)(4, 9)↔ π̃ = (3, 1, 7, 2, 8)(5)(6)(4, 9),
π = (5)(10)(6)(3, 1, 7, 2, 8)(4, 9)↔ π̃ = (5)(6)(3, 1, 7, 2, 8)(4, 9).

3. Other remarks

3.1. A recurrence for the derangement numbers

An argument similar to the bijective proof of Theorem 1.1 can be used to prove the recurrence

dn =
n∑
j=2

(j− 1)
(
n
j

)
dn−j (11)

combinatorially as follows.
A derangement π ∈ Dn can be written as a product of cycles, starting with the one containing n,

say

π = (n, i1, i2, . . . , ir) σ .

Consider two cases:

• If i1 < i2 < · · · < ir−1 (this is vacuously true for r = 1, 2), then the number of choices for the
numbers i1, . . . , ir satisfying this condition is r

(
n−1
r

)
, since we can first choose an r-subset of

[n− 1] and then decide which one is ir . Now, the number of choices for σ is dn−r−1.
• Otherwise, there is an index 1 ≤ q ≤ r − 1 such that i1 < i2 < · · · < iq > iq+1. In this case,

there are q
(
n−1
q+1

)
choices for the numbers i1, . . . , iq+1, since we can first choose a (q+ 1)-subset

of [n− 1] and then decide which element other than the maximum is iq+1. Now, there are dn−q−1
choices for (iq+1, . . . , ir) σ .

The total number of choices is
n−1∑
r=1

r
(
n− 1
r

)
dn−r−1 +

n−1∑
q=1

q
(
n− 1
q+ 1

)
dn−q−1 =

n−1∑
r=1

r
((
n− 1
r

)
+

(
n− 1
r + 1

))
dn−r−1

=

n−1∑
r=1

r
(
n
r + 1

)
dn−r−1,

which equals the right hand side of (11).
Alternatively, the recurrence (11) is relatively straightforward to prove using generating functions.

Indeed, let

D(x) =
∑
n≥0

dn
xn

n!
=
e−x

1− x

be the generating function for the number of derangements. The generating function for the right
hand side of (11), starting from n = 1, is∑

n≥1

n∑
j=2

(j− 1)
(
n
j

)
dn−j

xn

n!
=

(∑
i≥0

di
xi

i!

)(∑
j≥1

(j− 1)
xj

j!

)

=
e−x

1− x
(xex − ex + 1) = −1+

e−x

1− x
= D(x)− 1.
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3.2. Another interpretation of dn

As conjectured by an anonymous referee, the derangement numbers also count permutations
whose largest fixed point is greater than the first entry. We give a bijective proof of this fact.

Proposition 3.1. For n ≥ 1, we have

dn = |{π ∈ Sn \Dn : `(π) > π(1)}|.

Proof. In Section 1.2we gave a bijection betweenDn andMn−1. Herewe describe a bijection between
Ln = {π ∈ Sn \Dn : `(π) > π(1)} andMn−1.
Given π ∈ Ln, delete π(1) in the one-line notation π(1)π(2) . . . π(n) and decrease by one all the

entries greater than π(1). This yields the one-line notation of a permutation σ ∈ Sn−1 \ Dn−1. We
define the image of π to be the pair (σ , π(1)) ∈ Mn−1. Conversely, given (σ , i) ∈ Mn−1, increase
by one the entries greater than or equal to i in σ(1)σ (2) . . . σ (n − 1) and insert i at the beginning,
recovering the one-line notation of π ∈ Ln. �

3.3. Probabilistic interpretation of Theorem 1.1

Let Xn be the random variable that gives the value of the largest fixed point of a random element
of Sn \Dn. Its expected value is then

E[Xn] =

n∑
k=1
kan,k

|Sn \Dn|
.

Theorem 1.1 is equivalent to the fact that

E[Xn] =
dn+1
n! − dn

. (12)

Using (10), we get from Eq. (12) that

lim
n→∞

E[Xn]
n
=

1
e− 1

. (13)

Occurrences of fixed points in a random permutation of [n], normalized by dividing by n, approach
a Poisson process in the interval [0, 1]with mean 1 as n goes to infinity. An interpretation of Eq. (13)
is that, in such a Poisson process, if we condition on the fact that there is at least one occurrence, then
the largest event occurs at 1/(e− 1) on average.
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