

The largest and the smallest fixed points of permutations

Emeric Deutsch^a, Sergi Elizalde^b

^a Polytechnic Institute of New York University, Brooklyn, NY 11201, United States
^b Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States

ARTICLE INFO

Article history: Received 22 April 2009 Accepted 12 October 2009 Available online 21 December 2009

ABSTRACT

We give a new interpretation of the derangement numbers d_n as the sum of the values of the largest fixed points of all nonderangements of length n-1. We also show that the analogous sum for the smallest fixed points equals the number of permutations of length n with at least two fixed points. We provide analytic and bijective proofs of both results, as well as a new recurrence for the derangement numbers.

© 2009 Elsevier Ltd. All rights reserved.

1. Largest fixed point

Let $[n] = \{1, 2, ..., n\}$, and let δ_n denote the set of permutations of [n]. Throughout the paper, we will represent permutations using cycle notation unless specifically stated otherwise. Recall that *i* is a fixed point of $\pi \in \delta_n$ if $\pi(i) = i$. Denote by \mathcal{D}_n the set of derangements of [n], i.e., permutations with no fixed points, and let $d_n = |\mathcal{D}_n|$. Given $\pi \in \delta_n \setminus \mathcal{D}_n$, let $\ell(\pi)$ denote the largest fixed point of π . Let

$$a_{n,k} = |\{\pi \in \mathcal{S}_n \setminus \mathcal{D}_n : \ell(\pi) = k\}|.$$

Clearly,

$$a_{n,1} = d_{n-1}$$
 and $a_{n,n} = (n-1)!$. (1)

It also follows from the definition that

$$a_{n,k} = d_{n-1} + \sum_{j=1}^{k-1} a_{n-1,j},$$
(2)

since by removing the largest fixed point *k* of a permutation in $\delta_n \setminus D_n$, we get a permutation of $\{1, \ldots, k-1, k+1, \ldots, n\}$ whose largest fixed point (if any) is less than *k*. If in (2) we replace *k* by

E-mail address: sergi.elizalde@dartmouth.edu (S. Elizalde).

^{0195-6698/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2009.12.002

$n \setminus k$	1	2	3	4	5	6
1	1					
2	0	1				
3	1	1	2			
4	2	3	4	6		
5	9	11	14	18	24	
6	44	53	64	78	96	120

Table 1 The values of $a_{n,k}$ for *n* up to 6.

k - 1, then by subtraction we obtain

$$a_{n,k} = a_{n,k-1} + a_{n-1,k-1} \tag{3}$$

for $k \ge 2$, or equivalently, $a_{n,k} = a_{n,k+1} - a_{n-1,k}$ for $k \ge 1$. Together with the second equation in (1), it follows that the numbers $a_{n,k}$ form Euler's difference table of the factorials (see [2–4]). Table 1 shows the values of $a_{n,k}$ for small n. The combinatorial interpretation given in [2,3] is that $a_{n,k}$ is the number of permutations of [n - 1] where none of k, k + 1, ..., n - 1 is a fixed point. This interpretation is clearly equivalent to ours using the same reasoning behind Eq. (2). In fact, Eqs. (1)–(3) can also be derived from [2].

We point out that it is possible to give a direct combinatorial proof of the recurrence (3) from our definition of the $a_{n,k}$. Indeed, let $\pi \in \mathscr{S}_n$ with $\ell(\pi) = k$. If $\pi(1) = m \neq 1$, then the permutation of [n] obtained from the one-line notation of π by moving m to the end, replacing 1 with n + 1, and subtracting one from all the entries has largest fixed point k - 1. If $\pi(1) = 1$, then removing 1 and subtracting one from the remaining entries of π we get a permutation of [n - 1] whose largest fixed point is k - 1.

From (1) and (3) it follows that

$$a_{n,k} = \sum_{j=0}^{k-1} {\binom{k-1}{j}} d_{n-j-1}.$$

A simple combinatorial proof of this equation is obtained by observing that the number of permutations $\pi \in \mathscr{S}_n \setminus \mathscr{D}_n$ with $\ell(\pi) = k$ having exactly j additional fixed points is $\binom{k-1}{j} d_{n-j-1}$, for each $0 \le j \le k-1$.

Define

$$\alpha_n = \sum_{k=1}^n k a_{n,k} = \sum_{\pi \in \mathscr{S}_n \setminus \mathscr{D}_n} \ell(\pi).$$
(4)

We now state our main result, which we prove analytically and bijectively in the next two subsections.

Theorem 1.1. For $n \ge 1$, we have

$$\alpha_n=d_{n+1}$$

1.1. Analytic proof

Replacing *n* by n + 1, from (4) we have

 $\alpha_{n+1} = a_{n+1,1} + 2a_{n+1,2} + \dots + na_{n+1,n} + (n+1)a_{n+1,n+1}.$ (5)

Adding (4) and (5) and taking into account (3), we obtain

$$\alpha_n + \alpha_{n+1} = a_{n+1,2} + 2a_{n+1,3} + \dots + na_{n+1,n+1} + (n+1)!.$$
(6)

Adding (6) with the equality

 $(n + 1)! - d_{n+1} = a_{n+1,1} + a_{n+1,2} + \dots + a_{n+1,n} + a_{n+1,n+1},$

which is a special case of Eq. (2), we obtain

 $\alpha_n + \alpha_{n+1} + (n+1)! - d_{n+1} = \alpha_{n+1} + (n+1)!,$ whence $\alpha_n = d_{n+1}$.

1.2. Bijective proof

To find a bijective proof of Theorem 1.1, we first construct a set whose cardinality is α_n . Let $\mathcal{M}_n \subset (\mathscr{S}_n \setminus \mathcal{D}_n) \times [n]$ be the set of pairs (π, i) where $\pi \in \mathscr{S}_n \setminus \mathcal{D}_n$ and $i \leq \ell(\pi)$. We underline the number *i* in π to indicate that it is marked. For example, we write $(2)(3)(7)(8)(1, \underline{4}, 9)(5, 6)$ instead of the pair ((2)(3)(7)(8)(1, 4, 9)(5, 6), 4). It is clear that

$$|\mathcal{M}_n| = \sum_{k=1}^n k a_{n,k} = \alpha_n$$

To prove Theorem 1.1, we give a bijection between \mathcal{D}_{n+1} and \mathcal{M}_n .

Given $\pi \in \mathcal{D}_{n+1}$, we assign to it an element $\widehat{\pi} \in \mathcal{M}_n$ as follows. Write π as a product of cycles, starting with the one containing n + 1, say

$$\pi = (n+1, i_1, i_2, \ldots, i_r) \sigma.$$

Let *q* be the largest index, $1 \le q \le r$, such that $i_1 < i_2 < \cdots < i_q$. We define

$$\widehat{\pi} = \begin{cases} (i_1)(i_2) \dots (i_r) \sigma & \text{if } q = r, \\ (i_1)(i_2) \dots (i_q)(i_{q+1}, i_{q+2}, \dots, i_r) \sigma & \text{if } q < r. \end{cases}$$

Now we describe the inverse map. Given $\widehat{\pi} \in \mathcal{M}_n$, let its unmarked fixed points be $i_1 < i_2 < \cdots < i_q$, and let j_1 be the marked element. We can write $\widehat{\pi} = (i_1) \dots (i_q)(\underline{j_1}, j_2, \dots, j_t) \sigma$. Notice that t = 1 if the marked element is a fixed point. Define

 $\pi = (n + 1, i_1, i_2, \dots, i_q, j_1, j_2, \dots, j_t) \sigma.$

Here are some examples of the bijection between \mathcal{D}_{n+1} and \mathcal{M}_n :

$$\begin{split} \pi &= (12, 2, 4, 9, 7, 5, 6)(1, 3)(8, 11, 10) \leftrightarrow \widehat{\pi} = (2)(4)(9)(\underline{7}, 5, 6)(1, 3)(8, 11, 10), \\ \pi &= (10, 2, 3, 7, 8)(1, 4, 9)(5, 6) \leftrightarrow \widehat{\pi} = (2)(3)(7)(\underline{8})(1, 4, 9)(5, 6), \\ \pi &= (10, 2, 7, 8, 3)(1, 4, 9)(5, 6) \leftrightarrow \widehat{\pi} = (2)(7)(8)(\underline{3})(1, 4, 9)(5, 6), \\ \pi &= (10, 2, 3, 7, 8, 4, 9, 1)(5, 6) \leftrightarrow \widehat{\pi} = (2)(3)(7)(8)(\underline{4}, 9, 1)(5, 6). \end{split}$$

2. Smallest fixed point

In a symmetric fashion to the statistic $\ell(\pi)$, we can define $s(\pi)$ to be the smallest fixed point of $\pi \in \mathscr{S}_n \setminus \mathscr{D}_n$. Let

$$b_{n,k} = |\{\pi \in \mathscr{S}_n \setminus \mathscr{D}_n : s(\pi) = k\}|.$$

The numbers $b_{n,k}$ appear in [1, pp. 174–176, 185] as $R_{n,k}$ (called *rank*). Define

$$\beta_n = \sum_{k=1}^n k b_{n,k} = \sum_{\pi \in \delta_n \setminus \mathcal{D}_n} s(\pi).$$
(7)

It is not hard to see that, by symmetry,

 $b_{n,k} = a_{n,n+1-k}.$ (8)

Indeed, one can use the involution $\pi \mapsto \pi'$ on S_n where $\pi'(i) = n + 1 - \pi(n + 1 - i)$. This involution is equivalent to replacing each entry *i* in the cycle representation of π with n + 1 - i; for example, (183)(2)(4975)(6) is mapped to (927)(8)(6135)(4).

To find a combinatorial interpretation of β_n , let \mathcal{E}_{n+1} be the set of permutations of [n+1] that have at least two fixed points. We have that

$$|\mathcal{E}_{n+1}| = (n+1)! - d_{n+1} - (n+1)d_n, \tag{9}$$

1406

since out of the (n + 1)! permutations of [n + 1], there are d_{n+1} derangements and $(n + 1)d_n$ permutations having exactly one fixed point.

The following result is the analogue of Theorem 1.1 for the statistic $s(\pi)$. We give an analytic proof based on that theorem, and a direct bijective proof as well.

Theorem 2.1. For $n \ge 1$, we have

$$\beta_n = |\mathcal{E}_{n+1}|.$$

2.1. Analytic proof

From the definitions of α_n and β_n , and Eq. (8), it follows that

$$\alpha_n + \beta_n = (n+1) \sum_{k=1}^n a_{n,k} = (n+1)(n!-d_n).$$

Using Theorem 1.1, we have

 $\beta_n = (n+1)! - (n+1)d_n - d_{n+1},$

which by (9) is just the cardinality of \mathcal{E}_{n+1} as claimed.

Note also the following identities involving β_n which follow from the known recurrence $d_n = nd_{n-1} + (-1)^n$:

$$\beta_n = (n+1)! + (-1)^n - 2(n+1)d_n,$$

$$\beta_n = (n+1)\beta_{n-1} + n(-1)^{n+1}.$$

The sequence β_n starts 0, 1, 1, 7, 31, 191, Using the well known fact that

$$\lim_{n \to \infty} \frac{d_n}{n!} = \frac{1}{e},\tag{10}$$

we see that

$$\lim_{n\to\infty}\frac{\beta_n}{(n+1)!}=1-\frac{2}{e}.$$

2.2. Bijective proof

Let $\mathcal{M}'_n \subset (\mathscr{S}_n \setminus \mathcal{D}_n) \times [n]$ be the set of pairs (π, i) where $\pi \in \mathscr{S}_n \setminus \mathcal{D}_n$ and $i \leq s(\pi)$. As before, we underline the number i in π to indicate that it is marked. It is clear that

$$|\mathcal{M}'_n| = \sum_{k=1}^n k b_{n,k}.$$

We now give a bijection between \mathcal{E}_{n+1} and \mathcal{M}'_n . Given $\pi \in \mathcal{E}_{n+1}$, let *i* be its smallest fixed point. We can write

$$\pi = (i)(n+1, j_2, \ldots, j_t) \sigma,$$

where no *j*s appear if n + 1 is a fixed point. Define

$$\breve{t} = (i, j_2, \ldots, j_t) \, \sigma.$$

Note that $\tilde{\pi} \in \mathcal{M}'_n$, because if σ has fixed points then they are all larger than *i*, and if it does not, then t = 1 and *i* is the smallest fixed point of $\tilde{\pi}$. Essentially, π and $\tilde{\pi}$ are related by conjugation by the transposition (i, n + 1).

Conversely, given $\widetilde{\pi} \in \mathcal{M}'_n$, let *i* be the marked entry. We can write

$$\widetilde{\pi} = (\underline{i}, \underline{j}_2, \ldots, \underline{j}_t) \sigma,$$

where no *j*s appear if *i* is a fixed point. Then

 $\pi = (i)(n+1, j_2, \ldots, j_t) \sigma.$

Roughly speaking, we replace \underline{i} with n + 1 and add i as a fixed point. Note that if $t \ge 2$ then σ must have fixed points.

Here are some examples of the bijection between \mathcal{E}_{n+1} and \mathcal{M}'_n :

$$\begin{aligned} \pi &= (3)(10, 1, 7, 2, 8)(5)(6)(4, 9) \leftrightarrow \widetilde{\pi} = (\underline{3}, 1, 7, 2, 8)(5)(6)(4, 9), \\ \pi &= (5)(10)(6)(3, 1, 7, 2, 8)(4, 9) \leftrightarrow \widetilde{\pi} = (\underline{5})(6)(3, 1, 7, 2, 8)(4, 9). \end{aligned}$$

3. Other remarks

3.1. A recurrence for the derangement numbers

An argument similar to the bijective proof of Theorem 1.1 can be used to prove the recurrence

$$d_n = \sum_{j=2}^{n} (j-1) \binom{n}{j} d_{n-j}$$
(11)

combinatorially as follows.

A derangement $\pi \in \mathcal{D}_n$ can be written as a product of cycles, starting with the one containing *n*, say

 $\pi = (n, i_1, i_2, \ldots, i_r) \, \sigma.$

Consider two cases:

- If $i_1 < i_2 < \cdots < i_{r-1}$ (this is vacuously true for r = 1, 2), then the number of choices for the numbers i_1, \ldots, i_r satisfying this condition is $r\binom{n-1}{r}$, since we can first choose an *r*-subset of [n-1] and then decide which one is i_r . Now, the number of choices for σ is d_{n-r-1} .
- Otherwise, there is an index $1 \le q \le r 1$ such that $i_1 < i_2 < \cdots < i_q > i_{q+1}$. In this case, there are $q\binom{n-1}{q+1}$ choices for the numbers i_1, \ldots, i_{q+1} , since we can first choose a (q+1)-subset of [n-1] and then decide which element other than the maximum is i_{q+1} . Now, there are d_{n-q-1} choices for $(i_{q+1}, \ldots, i_r) \sigma$.

The total number of choices is

$$\sum_{r=1}^{n-1} r\binom{n-1}{r} d_{n-r-1} + \sum_{q=1}^{n-1} q\binom{n-1}{q+1} d_{n-q-1} = \sum_{r=1}^{n-1} r\binom{n-1}{r} + \binom{n-1}{r+1} d_{n-r-1}$$
$$= \sum_{r=1}^{n-1} r\binom{n}{r+1} d_{n-r-1},$$

which equals the right hand side of (11).

Alternatively, the recurrence (11) is relatively straightforward to prove using generating functions. Indeed, let

$$D(x) = \sum_{n \ge 0} d_n \frac{x^n}{n!} = \frac{e^{-x}}{1 - x}$$

be the generating function for the number of derangements. The generating function for the right hand side of (11), starting from n = 1, is

$$\sum_{n\geq 1} \sum_{j=2}^{n} (j-1) \binom{n}{j} d_{n-j} \frac{x^n}{n!} = \left(\sum_{i\geq 0} d_i \frac{x^i}{i!}\right) \left(\sum_{j\geq 1} (j-1) \frac{x^j}{j!}\right)$$
$$= \frac{e^{-x}}{1-x} \left(xe^x - e^x + 1\right) = -1 + \frac{e^{-x}}{1-x} = D(x) - 1.$$

1408

3.2. Another interpretation of d_n

As conjectured by an anonymous referee, the derangement numbers also count permutations whose largest fixed point is greater than the first entry. We give a bijective proof of this fact.

Proposition 3.1. For $n \ge 1$, we have

$$d_n = |\{\pi \in \mathcal{S}_n \setminus \mathcal{D}_n : \ell(\pi) > \pi(1)\}|.$$

Proof. In Section 1.2 we gave a bijection between \mathcal{D}_n and \mathcal{M}_{n-1} . Here we describe a bijection between $L_n = \{\pi \in \mathcal{S}_n \setminus \mathcal{D}_n : \ell(\pi) > \pi(1)\}$ and \mathcal{M}_{n-1} .

Given $\pi \in L_n$, delete $\pi(1)$ in the one-line notation $\pi(1)\pi(2) \dots \pi(n)$ and decrease by one all the entries greater than $\pi(1)$. This yields the one-line notation of a permutation $\sigma \in \mathscr{S}_{n-1} \setminus \mathscr{D}_{n-1}$. We define the image of π to be the pair $(\sigma, \pi(1)) \in \mathscr{M}_{n-1}$. Conversely, given $(\sigma, i) \in \mathscr{M}_{n-1}$, increase by one the entries greater than or equal to i in $\sigma(1)\sigma(2) \dots \sigma(n-1)$ and insert i at the beginning, recovering the one-line notation of $\pi \in L_n$. \Box

3.3. Probabilistic interpretation of Theorem 1.1

Let X_n be the random variable that gives the value of the largest fixed point of a random element of $\mathscr{S}_n \setminus \mathscr{D}_n$. Its expected value is then

$$E[X_n] = \frac{\sum\limits_{k=1}^n ka_{n,k}}{|\mathscr{S}_n \setminus \mathscr{D}_n|}.$$

Theorem 1.1 is equivalent to the fact that

$$E[X_n] = \frac{d_{n+1}}{n! - d_n}.$$
(12)

Using (10), we get from Eq. (12) that

$$\lim_{n \to \infty} \frac{E[X_n]}{n} = \frac{1}{e-1}.$$
(13)

Occurrences of fixed points in a random permutation of [n], normalized by dividing by n, approach a Poisson process in the interval [0, 1] with mean 1 as n goes to infinity. An interpretation of Eq. (13) is that, in such a Poisson process, if we condition on the fact that there is at least one occurrence, then the largest event occurs at 1/(e - 1) on average.

Acknowledgement

The authors thank Peter Winkler for useful comments.

References

- [1] Ch.A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [2] D. Dumont, A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994) 37-49.
- [3] I. Gessel, Symmetric inclusion–exclusion, Sém. Lothar. Combin. 54 (2005/07) Art. B54b.
- [4] F. Rakotondrajao, k-fixed-points-permutations, Integers 7 (2007) A36.