

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Shuffles of copulas

Fabrizio Durante a, Peter Sarkoci ^a*,*∗, Carlo Sempi ^b

^a *Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria* ^b *Dipartimento di Matematica "Ennio De Giorgi", Università del Salento, I-73100 Lecce, Italy*

article info abstract

Article history: Received 27 May 2008 Available online 28 November 2008 Submitted by M. Peligrad

Keywords: Copula Doubly stochastic measure Measure-preserving transformation Shuffle of Min

1. Introduction

We show that every copula that is a shuffle of Min is a special push-forward of the doubly stochastic measure induced by the copula *M*. This fact allows to generalize the notion of shuffle by replacing the measure induced by *M* with an arbitrary doubly stochastic measure, and, hence, the copula *M* by any copula *C*.

© 2008 Elsevier Inc. All rights reserved.

Let I be the closed unit interval [0, 1] and let $\mathbb{I}^2 = \mathbb{I} \times \mathbb{I}$ be the unit square. A *two-dimensional copula* (or a *copula* for brevity) is a distribution function $C: \mathbb{I}^2 \to \mathbb{I}$ whose univariate margins are distributed uniformly on \mathbb{I} [16]. During the last few years, copulas have been widely studied because of their connections with, for instance, Markov operators, doubly stochastic measures and mass transportation theory [3,7,11,12,14,18,20]. However, the primary importance of this notion lies in probability theory and statistics. In fact, by *Sklar's theorem* [21] copulas link joint distribution functions to their onedimensional margins in the sense that, if *X* and *Y* are random variables with individual distribution functions *F ^X* and *FY* and joint distribution function H_{XY} , then there exists a copula C_{XY} such that $H_{XY}(x, y) = C_{XY}(F_X(x), F_Y(y))$. Moreover, C_{XY} is uniquely determined on Ran $(F_X) \times \text{Ran}(F_Y)$, and, hence, unique when *X* and *Y* are continuous.

The copulas Π , M and W, given respectively by $\Pi(u, v) = uv$, $M(u, v) = min\{u, v\}$ and $W(u, v) = max\{u + v - 1, 0\}$ are of particular importance. For continuous random variables *X* and *Y*, $C_{XY} = \Pi$ if, and only if, *X* and *Y* are independent, and $C_{XY} = M$ (respectively, $C_{XY} = W$) if, and only if, each of *X*, *Y* is almost surely an increasing (respectively, decreasing) function of the other one. The copula *Π* distributes the probability mass uniformly on the unit square, while the copulas *M* and *W* distribute it on the segment joining the points $(0, 0)$ with $(1, 1)$ and on the segment joining $(0, 1)$ with $(1, 0)$, respectively.

In this paper, the notion of shuffle of Min is reconsidered (Section 3), by describing it in terms of measure-preserving transformations of I and push-forward of the doubly stochastic measure induced by the copula *M*. Then, the concept of shuffle of an arbitrary copula *C* is introduced and investigated (Section 4). In particular, the rôle of the copula *Π* will be analysed in detail (Section 5).

Corresponding author.

E-mail addresses: fabrizio.durante@jku.at (F. Durante), [peter.sarkoci@jku.at,](mailto:peter.sarkoci@jku.at) peter.sarkoci@gmail.com (P. Sarkoci), carlo.sempi@unile.it (C. Sempi).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2008 Elsevier Inc. All rights reserved. [doi:10.1016/j.jmaa.2008.11.064](http://dx.doi.org/10.1016/j.jmaa.2008.11.064)

2. Preliminaries

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, let $(\Omega_1, \mathcal{F}_1)$ be a measurable space and let $f : \Omega \to \Omega_1$ be a measurable function. We recall that a *push-forward* (also called an *image measure*) of μ under f is a set function $f * \mu$ defined, for every $A \in \mathcal{F}_1$, by

$$
(f * \mu)(A) = \mu(f^{-1}(A)).
$$
\n(2.1)

Obviously, the push-forward *f* * *μ* is a measure on \mathcal{F}_1 . Moreover, if *μ* is a probability, then so is *f* * *μ*. If (Ω_2 , \mathcal{F}_2) is a third measurable space and $g: \Omega_1 \to \Omega_2$ another measurable function, then

$$
(g \circ f) * \mu = g * (f * \mu). \tag{2.2}
$$

We recall that a *measure-preserving transformation from* the measure space $(\Omega, \mathcal{F}, \mu)$ *to* the measure space $(\Omega_1, \mathcal{F}_1, \nu)$ is a measurable map $f : \Omega \to \Omega_1$ such that $f * \mu = \nu$, or, equivalently, such that $\mu \circ f^{-1} = \nu$. If the two measure spaces coincide, we speak about a measure-preserving transformation *of* the corresponding space. Throughout this paper, the *σ* -algebra of Borel subsets of ^I is denoted ^B*(*I*)* and *^λ* stands for the restriction of the Lebesgue measure to this *σ* -algebra. A *permutation* of a set *S* is any bijective mapping from *S* onto itself. We denote by T the set of all measure-preserving transformations of the measure space $(\mathbb{I}, \mathcal{B}(\mathbb{I}), \lambda)$ and by \mathcal{T}_p the set of all measure-preserving permutations (automorphisms) of that space. The set T equipped with the composition of mappings is a semigroup and T_p is a subgroup of T.

An important subclass of T_p is that of the well-known *interval exchange transformations* [2]. The following particular class of such transformations will be useful for our purposes. Let $\bar{n} = \{1, 2, ..., n\}$ and let $\{J_{1,i}\}_{i \in \bar{n}}$ be a collection of disjoint non-degenerate intervals $J_{1,i} = [a_{1,i}, b_{1,i}]$ in I for all $i \in \overline{n-1}$ and the singleton $J_{1,n} = \{1\}$. Let $\{J_{2,i}\}_{i \in \overline{n}}$ be another such collection and suppose that $\lambda(J_{1,i}) = \lambda(J_{2,i})$ for all $i \in \overline{n}$. Then one among the interval exchange transformations which map *J*_{1*,i}* linearly onto *J*_{2*,i*} for all $i \in \overline{n-1}$ is given, for all $x \in \mathbb{I}$, by</sub>

$$
T(x) = \begin{cases} x - a_{1,1} + a_{2,1} & \text{if } x \in J_{1,i}, \\ \lambda((\mathbb{I} \setminus \bigcup_{i \in \bar{n}} J_{1,i}) \cap [0, x]) + \sum_{i \in \bar{n}} (b_{2,i} - a_{2,a}) \mathbf{1}_{[a_{2},1]}(x) & \text{otherwise,} \end{cases}
$$
(2.3)

where **1***^A* is the indicator of the set *A*.

Now we briefly recall some facts about copulas that will be used in the sequel; for more details we refer to the extensive treatments given by Schweizer and Sklar [19] and by Nelsen [16]. Given a copula *C*, a measure *μ^C* is defined on the semiring R of rectangles $[a, b] \times [c, d] \subseteq \mathbb{I}^2$ via

$$
\mu_C([a, b] \times [c, d]) = C(b, d) - C(b, c) - C(a, d) + C(a, c).
$$

Through standard measure-theoretic techniques, μ_C can be extended from the semi-ring R to the σ -algebra $\mathcal{B}(\mathbb{I}^2)$ of the Borel subsets of the unit square. For example, μ _{*Π*} is the restriction of the two-dimensional Lebesgue measure λ ₂ to $\mathcal{B}(\mathbb{I}^2)$. For every copula C, the measure μ_C is doubly stochastic in the sense that $\mu_C(A \times I) = \mu_C(I \times A) = \lambda(A)$ for every Borel set *A* ⊆ I. Conversely, to every doubly stochastic measure *μ* there corresponds a copula *C* given, for all *u* and *v* in I, by

$$
C(u, v) = \mu([0, u] \times [0, v]).
$$
\n(2.4)

This one-to-one correspondence between copulas and doubly stochastic measures allows to translate some measuretheoretic concepts into the language of copulas. For example, a copula *C* is *absolutely continuous* if *μ^C* is absolutely continuous with respect to λ_2 , that is $\lambda_2(A) = 0$ for a Borel set $A \subseteq \mathbb{I}^2$ implies $\mu_C(A) = 0$.

There is a correspondence between copulas and special random vectors. We say that a random vector *(X, Y)* defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is distributed according to a copula C (and we write $(X, Y) \sim C$), whenever $(X, Y) * \mathbb{P} = \mu_C$. Conversely, given a copula *C* there exists a probability space and a random vector (X, Y) defined on it, such that $(X, Y) \sim C$. Obviously, if a random vector is distributed according to a copula, its components are uniformly distributed on $\mathbb I$ and vice versa.

Finally, we mention a correspondence between copulas and measure-preserving transformations of the unit interval [4,10,17,23]. For all $f, g \in \mathcal{T}$, a copula $C_{f,g}$ is defined, for all *u* and *v* in \mathbb{I} , via

$$
C_{f,g}(u,v) = \lambda \left(f^{-1}[0,u] \cap g^{-1}[0,v] \right). \tag{2.5}
$$

Conversely, for every copula *C*, there exist *f* and *g* in *T* such that $C = C_{f,g}$. This representation is not unique; for example, $C_{f,g} = C_{f \circ \varphi, g \circ \varphi}$ for every $\varphi \in \mathcal{T}$. Observe that this representation is just a special case of the correspondence mentioned in the previous paragraph as the pair (f, g) is always a random vector on the probability space $(\mathbb{I}, \mathcal{B}(\mathbb{I}), \lambda)$ provided $f, g \in \mathcal{T}$.

3. Shuffling the minimum copula

We present here the original definition of shuffle of Min [13, Definition 2.1].

Definition 1. A copula *C* is a *shuffle of Min* if there is a natural number *n*, two partitions

 $0 = s_0 < s_1 < \cdots < s_n = 1$ and $0 = t_0 < t_1 < \cdots < t_n = 1$

of I, and a permutation σ of $\{1,\ldots,n\}$ such that each $[s_{i-1}, s_i] \times [t_{\sigma(i)-1}, t_{\sigma(i)}]$ is a square in which C distributes a mass $s_i - s_{i-1}$ uniformly spread along one of the diagonals.

An interesting probabilistic interpretation of this construction has been provided in terms of piece-wise continuous bijections [13, Corollary 2.1 and remark] where a function is *piece-wise continuous* if it is defined on a non-degenerate interval and has at most *finitely* many discontinuities, all of them being jumps.

Theorem 2. *Let (X, Y) be a random vector distributed according to the copula C . Then the following statements are equivalent*:

(a) *C is a shuffle of Min*;

(b) *a bijective piece-wise continuous function f exists such that*

$$
\mathbb{P}(Y = f \circ X) = 1.
$$

Besides this characterization, also a geometric and intuitive way of constructing a shuffle of Min has been formulated [13]. Namely, a shuffle of Min is a copula whose mass distribution can be obtained performing the following procedure:

 (1_{shM}) placing the mass for the minimum copula *M* on the unit square \mathbb{I}^2 ;

 (2_{ShM}) cutting the unit square into a finite number of strips;

 (3_{shM}) permuting ("shuffling") the strips with perhaps some of them flipped around their vertical axis of symmetry;

 (4_{ShM}) reassembling the strips to reform the unit square.

The resulting mass distribution generates a shuffle of Min.

In what follows we characterize shuffles of Min in terms of push-forwards and provide a natural generalization. To this end, we introduce the notion of *shuffling*, which formalizes the construction (1_{ShM}–4_{ShM}) presented in Section 1.

Given a mapping $T : \mathbb{I} \to \mathbb{I}$ we define a map $S_T : \mathbb{I}^2 \to \mathbb{I}^2$ via

$$
S_T(u, v) = (T(u), v)
$$

 (3.1)

for every $(u, v) \in \mathbb{I}^2$. Let *J* denote a (possibly degenerate) interval in \mathbb{I} . By the *vertical strip* (or simply *strip*) *with base J* we mean the set *J* × I. A *strip partition* is a partition of the unit square into, possibly infinitely many, vertical strips. A *shuffling* of a strip partition $\{J_i \times \mathbb{I}\}_{i \in \mathcal{I}}$ is any permutation *S* of the unit square that

 (1_{Sh}) admits the representation $S = S_T$ for some permutation $T : \mathbb{I} \to \mathbb{I}$;

(2_{Sh}) is measure-preserving on the space $(\mathbb{I}^2, \mathcal{B}(\mathbb{I}^2), \lambda_2)$;

 (3_{Sh}) the restriction $S|_{j_i\times\mathbb{I}}$ of *S* to every strip $j_i\times\mathbb{I}$ is continuous with respect to the standard product topology on \mathbb{I}^2 .

Intuitively, shuffling is just a reordering of the strips. This feature is captured by the condition (1_{Sh}) , which represents the shuffling by a single transformation *T* of the unit interval. Because of (2_{Sh}) the single strips maintain their measure after shuffling. Finally, condition (3_{Sh}) is just a technical tool for ensuring that, during shuffling, the integrity of strips is preserved.

Below in Theorem 4 we characterize shuffles of Min. A preliminary result will be needed first.

Lemma 3. Let $T : \mathbb{I} \to \mathbb{I}$ be a Borel measurable mapping. Consider the push-forward of a doubly stochastic measure μ under S_T . Then *the following statements are equivalent*:

(a) $S_T * \mu$ *is doubly stochastic,*

(b) *T is in* T *.*

Proof. The measure μ is doubly stochastic by assumption. For every Borel set $A \subseteq \mathbb{I}$ we have

$$
S_T * \mu(\mathbb{I} \times A) = \mu(S_T^{-1}(\mathbb{I} \times A)) = \mu(\mathbb{I} \times A) = \lambda(A),
$$

\n
$$
S_T * \mu(A \times \mathbb{I}) = \mu(S_T^{-1}(A \times \mathbb{I})) = \mu(T^{-1}(A) \times \mathbb{I}) = \lambda(T^{-1}(A)),
$$

proving that the push-forward $S_T * \mu$ is doubly stochastic if, and only if, *T* is in T . \Box

Theorem 4. *The following statements are equivalent*:

- (a) *a copula C is a shuffle of Min*;
- (b) *there exists a piece-wise continuous* $T \in \mathcal{T}_p$ *such that* $\mu_C = S_T * \mu_M$.

Proof. (b) \Rightarrow (a) Let *Y* be a random variable uniformly distributed on I. As mentioned in Section 1, $(Y, Y) \sim M$ or, using the push-forward notation, $(Y, Y) * \mathbb{P} = \mu_M$. Thus, invoking (3.1) and (2.2) one can derive

$$
(T \circ Y, Y) * \mathbb{P} = (S_T \circ (Y, Y)) * \mathbb{P} = S_T * ((Y, Y) * \mathbb{P}) = S_T * \mu_M
$$
\n(3.2)

for every measurable (but not necessarily measure-preserving) transformation *T* of the unit interval.

Now, let *T* be a piece-wise continuous function in T_p . By Lemma 3, the measure $S_T * \mu_M$ is doubly stochastic, and, hence, corresponds to a copula *C*. By (3.2) the random vector *(T* ◦ *Y , Y)* is distributed according to *C*. Finally, by Theorem 2, *C* is a shuffle of Min.

*(*a*)* [⇒] *(*b*)* Let *^C* be a shuffle of Min. Then there exists a probability space *(Ω,*F*,*P*)* and a random vector *(X, ^Y)* defined on it such that *(X, Y)* ∼ *C*. Moreover, by Theorem 2 there exists a bijective and piece-wise continuous function *T* for which $\mathbb{P}(X = T(Y)) = 1$. Such a *T* is easily seen to be Borel-measurable, and, as a consequence, also $(T \circ Y, Y)$ is a random vector. This random vector differs from (X, Y) on a set of zero P-measure, which proves that

$$
(T \circ Y, Y) * \mathbb{P} = (X, Y) * \mathbb{P} = \mu_C.
$$

Thus, invoking (3.2) allows to derive the representation $\mu_C = S_T * \mu_M$.

In order to conclude the proof, it is enough to note that *T* is measure-preserving as a consequence of Lemma 3. \Box

Theorem 4 suggests how to generalize the definition of a shuffle of Min.

Definition 5. A copula *C* is a *generalized shuffle of Min* if $\mu_C = S_T * \mu_M$ for some $T \in T_p$. Such a shuffle of Min is denoted by M_T .

In this definition, *T* is allowed to have *infinitely* many discontinuity points, which is a quite natural generalization of the original notion of shuffle of Min. We illustrate this fact by means of an example.

Example 6. For every $i \in \mathbb{N}$ define

$$
J_{1,i} = \left[\frac{1}{i+1}, \frac{1}{i}\right] \quad \text{and} \quad J_{2,i} = \left[1 - \frac{1}{i}, 1 - \frac{1}{i+1}\right].
$$

Clearly, the indexed collections $\{J_{1,i}\}_{i\in\mathbb{N}}$ and $\{J_{2,i}\}_{i\in\mathbb{N}}$ consist of nonoverlapping intervals and $\lambda(J_{1,i}) = \lambda(J_{2,i})$ for every natural *i*. Let \widetilde{T} be the interval exchange transformation given by (2.3). Also $T(x) = \widetilde{T}(1-x)$ belongs to T_p . Indeed, *T* is a composition of \overline{T} and $x \mapsto 1 - x$, which are both in \mathcal{T}_p . Clearly, T has countably many discontinuities. Therefore, M_T is a shuffle of Min in the sense of Definition 5. Closer inspection reveals that

$$
M_T = \left(\left\langle \frac{1}{i+1}, \frac{1}{i}, W \right\rangle \right)_{i \in \mathbb{N}},
$$

so that M_T is an ordinal sum of countably many copies of W, proving that M_T is not a shuffle of Min in the sense of Definition 1. \Box

Now, let $T \in \mathcal{T}_D$, and consider the shuffle $C = M_T$. Easy calculations show that, for every $(u, v) \in \mathbb{I}^2$

$$
C(u, v) = \mu_C([0, u] \times [0, v]) = S_T * \mu_M([0, u] \times [0, v]) = \mu_M(T^{-1}[0, u] \times [0, v]) = \lambda(T^{-1}[0, u] \cap [0, v]).
$$

Therefore, following the notation of (2.5), a copula *C* is a shuffle of Min if, and only if, $C = C_{T,\mathrm{id}_T}$ for some $T \in \mathcal{T}_p$.

4. Shuffling an arbitrary copula

By Lemma 3 not only shuffling of *μ^M* but in fact shuffling of *every* doubly stochastic measure leads again to a doubly stochastic measure. This suggests to generalize the idea of shuffle of Min by replacing *M* with an arbitrary copula *C*.

Definition 7. Let *C* be a copula. A copula *D* is a *shuffle of C* if there exists $T \in \mathcal{T}_D$ such that $\mu_D = S_T * \mu_C$. In this case, *D* is also called the T -shuffle of C and denoted by C_T .

In terms of measure-preserving transformations, a shuffle of a copula may be represented in the following way.

Theorem 8. Let $C_{f,g}$ be a copula as in (2.5) for f and g in T and let $T \in T_p$. Then

$$
(\mathcal{C}_{f,g})_T = \mathcal{C}_{T \circ f,g}.\tag{4.1}
$$

Proof. The proof will be carried out for the induced measures. One has

$$
S_T * \mu_{C_{f,g}} = S_T * ((f,g) * \lambda) = (S_T \circ (f,g)) * \lambda = (T \circ f,g) * \lambda = \mu_{C_{T \circ f,g}},
$$

which concludes the proof. \Box

Example 9. Let $T \in \mathcal{T}_p$ be the transformation given by (2.3) which interchanges the intervals $[0, \frac{1}{2}]$ and $[\frac{1}{2}, 1]$. Then, for every copula *C*,

$$
C_T(u, v) = C\left(\min\left\{u + \frac{1}{2}, 1\right\}, v\right) - C\left(\frac{1}{2}, v\right) + C\left(\max\left\{u - \frac{1}{2}, 0\right\}, v\right).
$$

For instance, if C is the arithmetic mean of *M* and *W*, its *T*-shuffle C_T is the copula of circular uniform distribution [16, Section 3.1.2]. This particular situation can be treated in a different way; it can be easily shown that the shuffle of a convex combination of two copulas is the convex combination of corresponding shuffles. Therefore the copula of the circular uniform distribution can be expressed as $\frac{1}{2}(M_T + W_T)$.

Observe that the mapping which assigns to every $T \in \mathcal{T}_p$ and to every copula *C* the corresponding shuffle C_T defines an *action* of the group \mathcal{T}_p on the set of all copulas. The *orbit* of a copula *C* with respect to this action is the set $\mathcal{T}_p(C)$ = ${C_T \mid T \in T_p}$ constituted by all shuffles of *C*. The general theory of group actions guarantees that the classes of type $T_p(C)$ form a partition of the set of all copulas. A particular interesting result holds for the orbit of *Π*.

Theorem 10. *For a copula C the following statements are equivalent*:

 $(a) C = \Pi$; (b) $T_p(C) = \{C\}.$

As a consequence, *Π* is the unique copula invariant under any shuffling. Before proving this result, the following technical lemma will be needed.

Lemma 11. Let $f : \mathbb{I} \to \mathbb{R}$ be a continuous function with $f(0) = 0$. If

$$
f(a_1) - f(a_2) = f(b_1) - f(b_2)
$$

holds for any a_1 , a_2 , b_1 , b_2 *in* II with $a_2 - a_1 = b_2 - b_1$, then there exists a positive constant v such that $f(x) = vx$.

Proof. It will be shown that *f* behaves like a linear function on the rationals of the unit interval. Since these are dense in I the assertion follows by the continuity of *f* .

Obviously

$$
f\left(\frac{m}{n}\right) = f\left(\frac{m}{n}\right) - f\left(\frac{0}{n}\right) = \sum_{k=1}^{m} \left[f\left(\frac{k}{n}\right) - f\left(\frac{k-1}{n}\right) \right]
$$
\n(4.2)

for all natural numbers *m* and *n* with $m \leq n$. By assumption, all the terms of the sum are equal and, since $f(0) = 0$, we have $f(\frac{m}{n}) = mf(\frac{1}{n})$. The choice $m = n$ yields $v = nf(\frac{1}{n})$ or $\frac{v}{n} = f(\frac{1}{n})$, so that $f(\frac{m}{n}) = v\frac{m}{n}$ where $v = f(1)$. \Box

Proof of Theorem 10. (a) \Rightarrow (b) Every shuffle preserves the restriction λ_2 to $\mathcal{B}(\mathbb{I}^2)$ of the 2-dimensional Lebesgue measure, which is μ_{Π} (recall (2_{Sh})). Therefore $S_T * \mu_{\Pi} = \mu_{\Pi}$ for every $T \in \mathcal{T}_p$.

(b) ⇒ (a) Let the copula *C* be invariant under every $T \in \mathcal{T}_p$. Then, for every $T \in \mathcal{T}_p$ and for every $R = [u_1, u_2] \times$ $[v_1, v_2] \subseteq \mathbb{I}^2$,

$$
S_T * \mu_C(R) = \mu_C(T^{-1}[u_1, u_2] \times [v_1, v_2]) = \mu_C(R).
$$

Now, fix $v \in [0, 1]$ and consider the v-horizontal section φ_v of C, that is $\varphi_v(t): [0, 1] \to [0, v]$ defined by $\varphi_v(t) = C(t, v)$. As a consequence of the properties of a copula, the function φ ^{*v*} is increasing, continuous and satisfies φ ^{*v*}(0*)* = 0 and φ ^{*v*}(1*)* = *v*. For all u_1 and u_2 in \mathbb{I} with $u_1 \leq u_2$, one has

$$
\mu_C([u_1, u_2] \times [0, v]) = \varphi_v(u_2) - \varphi_v(u_1).
$$

For every v_1 and v_2 in I such that $v_2 - v_1 = u_2 - u_1$, let *T* be an interval exchange transformation that sends $[v_1, v_2]$ into $[u_1, u_2]$ (for example, that one given by (2.3)). Thus, one has

$$
\varphi_v(u_2) - \varphi_v(u_1) = \mu_C([u_1, u_2] \times [0, v]) = \mu_C(T^{-1}[u_1, u_2] \times [0, v]) = \mu_C([v_1, v_2] \times [0, v]) = \varphi_v(v_2) - \varphi_v(v_1),
$$

whence, $\varphi_v(a_2) - \varphi_v(a_1) = \varphi_v(b_2) - \varphi_v(b_1)$ for all a_1 , a_2 , b_1 and b_2 in [0, 1] with $a_2 - a_1 = b_2 - b_1$. Therefore, in view of Lemma 11, $φ$ ^{*v*} is linear and satisfies $φ$ ^{*v*} y </sub>(*u*) = *uv*; as a consequence, $C = Π$. □

Notice that, in general, the orbit of an absolutely continuous copula contains just absolutely continuous elements, in view of the following result.

Proposition 12. *If C is absolutely continuous then so are all its shuffles.*

Proof. Let C be an absolutely continuous copula, let T belong to T_p and let A be a Borel set of the unit square with $λ_2(A) = 0$. Then

$$
\lambda_2(S_T^{-1}(A)) = S_T * \lambda_2(A) = \lambda_2(A) = 0
$$

and, by the absolute continuity of *C*,

$$
S_T * \mu_C(A) = \mu_C(S_T^{-1}(A)) = 0.
$$

Thus $S_T * \mu_C$ is absolutely continuous, as asserted. \Box

A copula is said to be symmetric if $C(u, v) = C(v, u)$ for every u, v in I. Several recent investigations have been concerned with the construction of (absolutely continuous) copulas that are not symmetric [5,6,9,15]. Clearly, one cannot expect that symmetry is preserved under shuffling. More can be said in this respect.

Theorem 13. *Every copula C other than Π has a non-symmetric shuffle.*

Proof. We define $\Delta : \mathbb{I}^2 \to \mathbb{I}^2$ to be the reflection of the unit square in its main diagonal, i.e., $\Delta(x, y) = (y, x)$. Observe, that the symmetry of a copula C is equivalent to $\mu_C(A) = \mu_C(\Delta(A))$ for every Borel set $A \subseteq \mathbb{I}^2$. Let $J_{1x}, J_{1y}, J_{2x}, J_{2y}$ be arbitrary but fixed intervals of type $[a, b] \subseteq \mathbb{I}$ with

$$
J_{1x} \cap J_{2x} = J_{1y} \cap J_{2y} = \emptyset
$$
 and $\lambda(J_{1x}) = \lambda(J_{1y}) = \lambda(J_{2x}) = \lambda(J_{2y}).$

Define the squares $R_1 = J_{2x} \times J_{1y}$, $R_2 = J_{1x} \times J_{2y}$, and $R_* = J_{2y} \times J_{1y}$. Further, let T be the interval exchange transformation defined by (2.3) which sends J_{ix} onto J_{iy} for $i = 1, 2$. Observe that

$$
S_T^{-1}(R_*) = R_1
$$
 and $S_T^{-1}(\Delta(R_*)) = R_2$.

Let *C* be a copula such that every shuffle of *C* is symmetric. Then, we have

$$
\mu_C(R_1) = S_T * \mu_C(R_*) = S_T * \mu_C(\Delta(R_*)) = \mu_C(R_2).
$$

To summarize it, if two squares of the same size have disjoint projections along the *x*- and the *y*-axis, then they are of the same *C*-measure.

Now, let us fix a natural number $n \geq 3$ and define, for *i*, $j \in \{0, 1, \ldots, n-1\}$,

$$
I_n = \left\{ \frac{m}{n} \mid m = 0, 1, 2, \dots, n \right\} \text{ and } R_{i,j} = \left[\frac{i}{n}, \frac{i+1}{n} \right] \times \left[\frac{j}{n}, \frac{j+1}{n} \right].
$$

According to the previous paragraph, $\mu_C(R_{i,j}) = \mu_C(R_{k,l})$ whenever $i \neq k$ and $j \neq l$. For $n \geq 3$, this is enough to conclude that all $R_{i,j}$ are of the same *C*-measure. Since the squares $R_{i,j}$ form a partition of the unit square, the *C*-measure of each of them is *n*[−]2. As a consequence

$$
C\left(\frac{i}{n},\frac{j}{n}\right) = \mu_C\left(\left[0,\frac{i}{n}\right]\times\left[0,\frac{j}{n}\right]\right) = \frac{ij}{n^2}
$$

which can be written alternatively as $C|_{I_n\times I_n} = \Pi|_{I_n\times I_n}$. As this can be proved for any arbitrary natural number $n \ge 3$, we have $C = \Pi$. \square

5. Approximation of copulas by means of shuffles

Shuffles of Min are dense in the space of all copulas, endowed with the sup norm, or, equivalently, with the L^{∞} norm [13]. We recall that pointwise and uniform convergence are equivalent in the class of all copulas. It follows at once that the joint distribution function of any pair of continuous random variables *(X, Y)* can be approximated uniformly (or, equivalently, in the L^∞ -norm), by the joint distribution function of another such pair (U, V) , for which $F_U = F_X$ and $F_V = F_V$, but where each of U, V is now almost surely an invertible function of the other. In particular, any pair of independent random variables can be approximated by a pair of random variables that are functionally dependent. This intriguing fact was discovered earlier by Kimeldorf and Sampson [8] and, with a different technique, by Vitale [22].

Now, contrary to the case of shuffles of Min, it cannot be expected that, given any two copulas C_1 and C_2 , $C_2 \neq M$, *C*₁ can be approximated by copulas in $\mathcal{T}_p(C_2)$; to this end, it suffices to consider the case $C_2 = \Pi$. However, the following remarkable fact can be proved.

Theorem 14. *For every copula C, the independence copula* Π *can be approximated uniformly by elements of* $T_p(C)$ *<i>.*

The proof of the next result is based on ergodic theory and uses the following Lemma (derived from a characterization provided by Walters [24, remark after Theorem 1.23]). For this, we recall that a subset *D* of \mathbb{Z}_+ is said to be of *zero density* when $\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \mathbf{1}_D(j) = 0.$

Lemma 15. Let (Ω, \mathcal{F}, v) be a measure space and let $T : \Omega \to \Omega$ be a measure-preserving transformation. Suppose that T is weakly mixing*, i.e.*

$$
\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} |\nu(T^{-j}A \cap B) - \nu(A)\nu(B)| = 0
$$

for all A, $B \in \mathcal{F}$ *. Then there exists a subset D of* \mathbb{Z}_+ *of density zero such that*

$$
\lim_{\substack{n \to \infty \\ n \notin D}} \int_{\Omega} (f \circ T^n)(x) g(x) \, dv = \int_{\Omega} f(x) \, dv \int_{\Omega} g(x) \, dv \tag{5.1}
$$

for all real functions f and g in $L^2(v)$ *.*

Proof of Theorem 14. Given a copula C and a Borel set $B\subseteq\mathbb{I}$, $\lambda(B)>0$, define a measure $\mu_C^B:\mathcal{B}(\mathbb{I})\to[0,\lambda(B)]$ via

$$
\mu_{\mathcal{C}}^B(A) = \mu_{\mathcal{C}}(A \times B)
$$

for every *A* ∈ *B*. Clearly, $μ_C^B$ is absolutely continuous with respect to *λ*, since $μ_C$ is doubly stochastic and, hence, $\mu_C^B(A)\leq \lambda(A)$ for every $A\in\mathcal{B}$. By the Radon–Nikodym theorem there exists a function $f_C^B\in L^1(\lambda)$ (unique up to equivalences) such that

$$
\mu_C^B(A) = \int_A f_C^B d\lambda
$$

for every Borel set $A \subseteq \mathbb{I}$. Moreover, one has

$$
\int_A f_C^B d\lambda = \mu_C^B(A) \leq \lambda(A) = \int_A d\lambda,
$$

from which

$$
\int\limits_A (1-f_C^B) d\lambda \geqslant 0
$$

for every $A \in \mathcal{B}$. The arbitrariness of $A \in \mathcal{B}$ implies $f_C^B \leq 1$ *λ*-a.e.; f_C^B is therefore bounded and, hence, in $L^2(\lambda)$, so that Lemma 15 can be applied.

Let *T* be a weakly mixing transformation in T_p (it is known that such a transformation exists [1]). Now, for all $A \in \mathcal{B}(\mathbb{I})$, one has

$$
((S_T)^n * \mu_C)(A \times B) = \mu_C^B(T^{-n}(A)) = \int_{T^{-n}(A)} f_C^B d\lambda = \int_{\mathbb{I}} f_C^B(T^n(x)) \mathbf{1}_A d\lambda,
$$

by a change of variables in the last equality. By Lemma 15, there exists a set *D* of zero density such that

$$
\lim_{\substack{n \to \infty \\ n \notin D}} \int_{\mathbb{I}} f_{\mathcal{C}}^{B} (T^{n}(x)) \mathbf{1}_{A} d\lambda = \int_{\mathbb{I}} f_{\mathcal{C}}^{B} d\lambda \int_{\mathbb{I}} \mathbf{1}_{A} d\lambda.
$$
\n(5.2)

The desired assertion follows by setting $A = [0, u]$ and $B = [0, v]$ with *u* and *v* in [0, 1]. \Box

Acknowledgment

We are grateful to an anonymous reviewer for her/his careful reading and useful suggestions that improved the paper.

References

- [1] A. Avila, G. Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007) 637–664.
- [2] I.P. Cornfeld, S.V. Fomin, Ya.G. Sinaĭ, Ergodic Theory, Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), vol. 245, Springer-Verlag, New York, 1982, translated from Russian by A.B. Sosinskiı̆.
- [3] W.F. Darsow, B. Nguyen, E.T. Olsen, Copulas and Markov processes, Illinois J. Math. 36 (1992) 600–642.
- [4] F. Durante, E.P. Klement, J.J. Quesada-Molina, P. Sarkoci, Remarks on two product-like constructions for copulas, Kybernetika (Prague) 43 (2007) 235– 244
- [5] F. Durante, E.P. Klement, C. Sempi, M. Úbeda-Flores, Measures of non-exchangeability for bivariate random vectors, Statist. Papers (2008), in press.
- [6] F. Durante, P. Sarkoci, S. Saminger-Platz, Rectangular patchwork for bivariate copulas and tail dependence, Comm. Statist. Theory Methods (2008), in press.
- [7] H.H. Edwards, P. Mikusiński, M.D. Taylor, Measures of concordance determined by D₄-invariant measures on $(0, 1)^2$, Proc. Amer. Math. Soc. 133 (2005) 1505–1513.
- [8] G. Kimeldorf, A.R. Sampson, Monotone dependence, Ann. Statist. 6 (1978) 895–903.
- [9] E.P. Klement, R. Mesiar, How non-symmetric can a copula be?, Comment. Math. Univ. Carolin. 47 (2006) 141–148.
- [10] A. Kolesárová, R. Mesiar, C. Sempi, Measure–preserving transformations, copulæ and compatibility, Mediterr. J. Math. 5 (2008) 325–339.
- [11] X. Li, P. Mikusiński, M.D. Taylor, Strong approximation of copulas, J. Math. Anal. Appl. 225 (1998) 608-623.
- [12] X. Li, P. Mikusinski, M.D. Taylor, Remarks on convergence of Markov operators, Houston J. Math. 28 (2002) 907–916. ´
- [13] P. Mikusiński, H. Sherwood, M.D. Taylor, Shuffles of Min, Stochastica 13 (1992) 61-74.
- [14] P. Mikusinski, H. Sherwood, M.D. Taylor, Łojasiewicz's support and doubly stochastic measures, Proc. Amer. Math. Soc. 109 (1990) 455–460. ´
- [15] R.B. Nelsen, Extremes of nonexchangeability, Statist. Papers 48 (2007) 329–336.
- [16] R.B. Nelsen, An Introduction to Copulas, second ed., Springer Ser. Statist., Springer, New York, 2006.
- [17] E.T. Olsen, W.F. Darsow, B. Nguyen, Copulas and Markov operators, in: Distributions with Fixed Marginals and Related Topics, Seattle, WA, 1993, in: IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 244–259.
- [18] S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. 1: Theory. Vol. 2: Applications, Probability and Its Applications, Springer, New York, 1998.
- [19] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover Publications, Mineola, NY, 2006.
- [20] K.F. Siburg, P.A. Stoimenov, A scalar product for copulas, J. Math. Anal. Appl. 344 (2008) 429–439.
- [21] A. Sklar, Fonctions de répartition à *n* dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231.
- [22] R.A. Vitale, On stochastic dependence and a class of degenerate distributions, in: Topics in Statistical Dependence, Somerset, PA, 1987, in: IMS Lecture Notes Monogr. Ser., vol. 16, Inst. Math. Statist., Hayward, CA, 1990, pp. 459–469.
- [23] R.A. Vitale, Parametrizing doubly stochastic measures, in: Distributions with Fixed Marginals and Related Topics, Seattle, WA, 1993, in: IMS Lecture Notes Monogr. Ser., vol. 28, Inst. Math. Statist., Hayward, CA, 1996, pp. 358–364.
- [24] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79, Springer-Verlag, New York, 1982.