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Departamento de Matemáticas, Universidad de Murcia,
30100 Espinardo-MU, Murcia, Spain

E-mail: msaorinc@um.es

Communicated by Kent R. Fuller

Received August 22, 2000

1. INTRODUCTION, TERMINOLOGY, AND BACKGROUND

Our investigation into the endo-structure of infinite direct sums
⊕

i∈ I Mi

of indecomposable modules Mi—over a ring R with identity—is centered
on the following question: If S = EndR�

⊕
i∈ I Mi�, how much pressure,

in terms of the S-structure of
⊕

i∈ I Mi, is required to force the Mi into
finitely many isomorphism classes? One of the consequences of our prin-
cipal result in this direction (Theorem H of Section 4) is as follows. If
all of the Mi are endofinite (think, for instance, of finitely generated or
generic modules over an Artin algebra) and if �Mt�t∈T is a transversal of
the isomorphism types of the Mi, then the following conditions (1)–(4)
are equivalent: (1) T is finite; (2)

⊕
i∈ I Mi is endo-artinian and �Mt�t∈T
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is left semi-T -nilpotent; (3)
⊕

i∈ I Mi is endo-noetherian and �Mt�t∈T is
right semi-T -nilpotent; (4) �Mt�t∈T is left and right semi-T -nilpotent and,
for any cofinite subset T ′ ⊆ T , the endosocle of

⊕
t∈T ′ Mt has finite sup-

port in T ′. Here we call a family �Mi�i∈I left semi-T -nilpotent in case,
for every sequence �in� of distinct indices in I, every sequence of non-
isomorphisms fn ∈ HomR�Min+1


 Min
�, and every finitely cogenerated fac-

tor module Mi1
/X of Mi1

, the image of f1 · · · fn is contained in X for
n 	 0. The familiar dual condition of right semi-T -nilpotence, going back
to Harada (see [11]), links our results to well-known theorems addressing
the exchange property of direct sums.

The mentioned equivalence applies with particular strength to Artin
algebras, one of the reasons for this being the following asset (Proposi-
tion L): Given any family �Mi� of finitely generated representations of an
Artin algebra, the direct sum

⊕
i∈ I Mi is endo-artinian if and only if it is


-algebraically compact (=
-pure injective).
Our study of 
-algebraically compact and, more restrictively, endo-

artinian direct sums hinges crucially on an analysis of endosocles. The
importance of this invariant in measuring the supply of maps among the
Mi emerges clearly in the following consequence of Theorem H: A
finite-dimensional algebra over an algebraically closed field has finite
representation type if and only if the endosocles of all direct sums of inde-
composable left representations of constant finite dimension have finite
supports (Corollary N).

Another point of independent interest lies in the general connections
between T -nilpotence conditions and the endo-structure of direct sums
exhibited in Proposition E of Section 3: A family �Mi�i∈ I of indecompos-
able modules is right T -nilpotent if and only if

⊕
i∈ I Mi has the descending

chain condition for finitely generated endo-submodules; moreover, these
conditions are equivalent to the requirement that the direct sum

⊕
i∈ I Mi

be semi-artinian over its endomorphism ring, i.e., that all endo-factor mod-
ules have essential socles. As a consequence, each 
-algebraically compact
module M is a direct sum of indecomposables Mi, i ∈ I, with the property
that the family �Mi�i∈ I is right T -nilpotent.

We add a few comments on the background of our project for motiva-
tion. It is well known that the structure of non-finitely generated represen-
tations of R, viewed as modules over their endomorphism rings, is decisive
in understanding the behavior of the finitely generated representations. We
point to a few specific instances of such connections. As was first observed
in [20, 17], finite representation type of R occurs precisely when all (left)
R-modules have finite lengths over their endomorphism rings. Moreover,
the rings with vanishing left pure global dimension are characterized by cer-
tain endo-chain conditions satisfied by their modules. Along a different line,
Crawley-Boevey proved that, for tame finite-dimensional algebras over an
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algebraically closed field, the generic modules (i.e., the infinite-dimensional
indecomposable endofinite modules) govern the one-parameter families of
finitely generated indecomposable representations in an extremely strong
sense [6, 7]. (It appears plausible that the endosocles of direct sums of
generic modules should reflect domestic versus non-domestic representa-
tion type; see, e.g., Example C(3), due to Ringel [21].) There is a common
skein tying the listed scenarios at least loosely together, namely the fact that

-algebraic compactness of an R-module is tantamount to the descending
chain condition for a selection of its endo-submodules. Other results in a
related vein link endo-chain conditions of infinite direct sums of finitely
generated representations of Artin algebras to the existence of preprojec-
tive or preinjective partitions, the existence of almost split maps, and the
structure of direct products (see, e.g., [3, 13, 18, 8, 1] and our concluding
remarks). These multiple bridges between endo-chain conditions on one
hand, and purely representation-theoretic assets of classes of modules on
the other, motivate our present investigation.

Section 2 is devoted to exploring endosocle series of direct sums. In Sec-
tion 3, we compare T -nilpotence conditions for families of modules with
endo-chain conditions for their direct sums, and in Section 4, we follow
with our main results, applications, and examples.

Prerequisites

Recall from [23, 24] that a p-functor on R-Mod is a subfunctor of the
forgetful functor R-Mod → �-Mod which commutes with direct products;
here R-Mod stands for the category of all left R-modules. Special instances
of p-functors can be described as follows: A pointed matrix over R con-
sists of a row-finite matrix � = �aij�i∈ I
 j∈ J of elements in R, paired with
a column index α ∈ J. Given a pointed matrix ��
 α�, we call the follow-
ing p-functor ��
 α� on R-Mod a matrix functor: For any R-module M , the
subgroup ��
 α�M is defined to be the αth projection of the solution set in
MJ of the homogeneous system∑

j∈ J

aijXj = 0 for all i ∈ I�

In other words,

��
 α�M = {m ∈M 
 ∃ a solution �mj� ∈MJ of the above system

with mα = m
}
�

Following [24], we call ��
 α�M a matrix subgroup of M , and a finite matrix
subgroup in case I and J are finite. We refer the reader to [24] or [14] for
more information on p-functors.
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One of the most salient reasons for our present interest in p-functors lies
in the following equivalent description of 
-algebraically compact modules,
i.e., of the modules M with the property that all direct sums of copies of M
are algebraically compact (=pure injective): Namely, M is 
-algebraically
compact if and only if every descending chain of p-functorial subgroups
of M becomes stationary, a condition which is in turn equivalent to the
DCC for finite matrix subgroups of M (see [23, 9, 24, 10]); here we call a
subgroup U of the abelian group underlying M p-functorial in case there
exists a p-functor P� R-Mod →�-Mod with P�M�=U . Since, clearly, every
p-functorial subgroup of M is an endo-submodule, this is a well-known
instance of a link between the R- and endo-structures of M . While it guar-
antees that endo-artinian modules are 
-algebraically compact, the con-
verse fails in general; see, e.g., [5] or [15, Theorem 5]. By contrast, M
is endo-noetherian if and only if M has the ascending chain condition for
p-functorial subgroups, since every finitely generated endo-submodule of M
is a matrix subgroup. In case M is a direct sum of finitely presented mod-
ules, the ACC for finite matrix subgroups—not equivalent to the ACC for
arbitrary matrix subgroups in general—already suffices to guarantee endo-
noetherianness (Observation 8 of [17]). In light of the fact that p-functors
automatically commute with direct sums (as arbitrary subfunctors of the
forgetful functor R-Mod →�-Mod do), one deduces the following obser-
vation which will prove useful in connection with dualities.

Observation. For any family �Mi�i∈ I of finitely presented modules, the
following conditions are equivalent:

(1)
⊕

i∈ I Mi is endo-noetherian.
(2)

⊕
i∈ I Mi satisfies the ACC for (finite) matrix subgroups.

(3)
∏

i∈ I Mi satisfies the ACC for (finite) matrix subgroups.
(4)

∏
i∈ I Mi is endo-noetherian.

2. ENDOSOCLE SERIES OF DIRECT SUMS OF
INDECOMPOSABLE MODULES

The following elementary observations will be very useful to us in the
rest of this paper.

Lemma A. Every 
-algebraically compact R-module M is semi-artinian
over its endomorphism ring S, meaning that every S-factor module of M has
essential socle.

Proof. Suppose that M is a 
-algebraically compact R-module. As we
pointed out above, M then satisfies the descending chain condition for
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matrix subgroups which, in particular, yields the DCC for finitely gen-
erated S-submodules of M . But this latter condition clearly entails our
claim: Indeed, given S-submodules U � V of M , there exists a minimal
S-submodule W of V not contained in U , and any such choice of W gives
rise to a simple submodule �W +U�/U ⊆ V/U .

The converse of Lemma A fails in general: Let R be any left perfect
ring which fails to be left 
-algebraically compact (for examples see [25]);
then all left Rop-modules have essential socles, and therefore the regular
left R-module is semi-artinian over its endomorphism ring.

Recall that the ascending socle series of an S-module M is defined as fol-
lows: soc0M = 0
 soc1M = socSM , and, if α = β+ 1 is a successor ordinal,
socαM is the preimage of socS�M/socβM� under the canonical epimor-
phism M → M/socβM; for a limit ordinal α, finally, socαM is defined to
be the union

⋃
β<α socβM . Accordingly, the socle length of M is the least

ordinal µ with the property that socµ+1M = socµM .
Given any left R-module M with endomorphism ring S, we will refer

to the S-socle of M as the endosocle, denoted by endosoc M , and to the
S-socle series as the endosocle series; a generic term of this series will be
labeled endosocαM . The endosocle length of M , finally, is the length of its
S-socle series. Whenever we speak of endosoc M as having a property �X�,
we are referring to the S-structure, not the R-structure.

Since indecomposable algebraically compact modules have local endo-
morphism rings [15], Lemma A yields

Corollary A′. Suppose that M is a 
-algebraically compact R-module
with endosocle length µ. Then endosocµM =M .

Hence, if the module M is moreover indecomposable with endomor-
phism ring S, it contains an exhaustive, well-ordered chain of S-submodules
with consecutive factors of the form �S/J�S���A� (i.e., a chain �Mα�α<τ of
S-submodules, where τ is an ordinal, with Mα ⊆ Mβ for α < β < τ such
that

⋃
α<τ Mα = M and all consecutive factors Mα+1/Mα are direct sums of

copies of S/J�S�).
In contrast to the preceding observation, direct sums of 
-algebraically

compact modules may have trivial endosocles—think of M =⊕n∈� �/�pn�,
for instance, where p is prime. This can be seen as a pronounced failure
of the direct sum of 
-algebraically compact modules to inherit crucial
properties implied by 
-algebraic compactness.

Recall that any 
-algebraically compact module M is a direct sum of sub-
modules with local endomorphism rings. Our main interest being in families
�Mi� of 
-algebraically compact or, more restrictively, endo-artinian mod-
ules, most of our discussion will therefore focus on the situation where all
of the Mi have local endomorphism rings. In this setting, we record how
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the endosocle of
⊕

i∈ I Mi relates to the endosocles of the individual Mi.
In case all of the Mi are pairwise isomorphic, the connection is straightfor-
ward; otherwise, it reflects the behavior of maps among the summands Mi

as follows.

Lemma B. Let �Mi�i∈ I be a family of modules with local endomorphism
rings and let S = EndR�

⊕
i∈ I Mi�.

(1) First suppose that Mi = N for all i ∈ I. Then:

• endosoc�N�I�� = �endosoc�N���I�, and the endosocle of N�I� con-
sists of a single homogeneous component.

• The endosocle of N�I� is finitely generated as an endo-submodule if
and only if the same is true for the endosocle of N .

(2) In general, endosoc�⊕i∈ I Mi� =
⊕

i∈ I Bi, where each Bi is the
EndR�Mi�-submodule of Mi consisting precisely of those elements of Mi which
are annihilated by all non-isomorphisms in

⋃
j∈ I HomR�Mi
 Mj�.

In particular, if Mi �∼=Mj for i �= j, then each Bi is a semisimple EndR�Mi�-
submodule of Mi, as well as a semisimple S-submodule of the direct sum⊕

i∈ I Mi.
(3) Whenever �Mn�n∈� is a family of pairwise non-isomorphic modules

with local endomorphism rings which permits a sequence of monomorphisms
M1 ↪→M2 ↪→M3 ↪→ · · ·, the direct sum

⊕
n∈� Mn has trivial endosocle.

Proof. Set M = ⊕i∈ I Mi and observe that each S-submodule U of M
is of the form U = ⊕

i∈ I�U ∩Mi�, where the intersection U ∩Mi is an
EndR�Mi�-submodule of Mi. We deduce that each simple S-submodule of
M can be written in the form Sxi for a nonzero element xi of some Mi.

Part (1) is immediate from these remarks.
(2) Set Bi = �endosoc M� ∩ Mi. To see that Bi is contained in the

annihilator of the set of non-isomorphisms in
⋃

j∈ I HomR�Mi
 Mj�, observe
that, due to the locality of the rings EndR�Mi�, each of the indicated non-
isomorphisms belongs to the Jacobson radical of S.

For the other inclusion, fix i ∈ I and set I�i� = �j ∈ I 
 Mj
∼= Mi� and

S�i� = EndR�
⊕

j∈ I�i�Mj�. If x ∈Mi is annihilated by all non-isomorphisms
in the above union, then x clearly belongs to the EndR�Mi�-socle of Mi,
and consequently S�i�x is contained in the S�i�-socle of

⊕
j∈ I�i�Mj by part

(1). Since Sx = S�i�x, this shows that Sx ⊆ endosoc M , which yields x ∈ Bi

as required.
The final assertion under (2) is now obvious, as is (3).

Examples C. (1) Let R = � and p a prime. The terms of the endoso-
cle series of M =⊕n∈� �/�pn� ⊕��p∞� are as follows: endosocαM equals
the copy of �/�pα� inside ��p∞� for α < ω, and endosocαM = ��p∞� for
α ≥ ω.
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(2) Let # be the Kronecker algebra. If �Mn�n∈� is the family of
all preprojective modules in R-ind, then endosoc�⊕n∈� Mn� = 0; in fact,
endosoc�⊕n≥m Mn� = 0 for all m. On the other hand, if M ′ = ⊕n∈� M ′

n

is the direct sum of all preinjective modules, with length�M ′
n� = 2n− 1,

the endosocle of M ′ equals M ′
1
⊕

soc#M ′
2, and, for m≥ 2, we have

endosoc�⊕n≥m M ′
n� =M ′

m.

(3) The following is due to Ringel [21]: If # is a string algebra (i.e.,
a finite-dimensional monomial relation algebra which is special biserial),
but fails to be of domestic representation type, then there exists a family
�Mn�n∈� of pairwise non-isomorphic generic #-modules allowing for con-
secutive embeddings M1 ↪→ M2 ↪→ · · · � by Lemma B(3), we infer that the
endosocle of the direct sum of the Mn’s is zero.

We continue to assume that M =⊕i∈ I Mi, where all Mi have local endo-
morphism rings. In exploring the endo-structure of M , a different sequence
of iterated endosocles—not forming an ascending chain—is frequently
more helpful than the series we just discussed. This is due to the fact
that the traditional endosocle series may be infinite and still get stalled
within a finite subsum of Mi’s (see Example C(1)). By contrast, any infinite
sequence of nonzero terms of the following relative endosocle series involves
infinitely many summands Mi. This often makes it a more effective tool in
studying homomorphisms among non-isomorphic Mi’s.

As usual, we start with endosoc′0M = 0; moreover, we set I0=�. Next, we
set endosoc′1M = endosoc M and denote by I1 the support of endosoc′1M
in I. Assume that the terms endosoc′βM have already been defined for all
ordinal numbers β < α. In case α is a limit ordinal, we set endosoc′αM = 0.
If, on the other hand, α is a successor ordinal, say α = β+ 1, we let Iβ be
the support of

∑
γ≤β endosoc′γM and define endosoc′αM to be the endoso-

cle of the trimmed direct sum
⊕

I\Iβ
Mi. In particular, we see that Iα is

defined for each ordinal α and equals the support of
∑

β≤α endosoc′βM =⊕
β≤α endosoc′βM . Finally, we refer to the least ordinal number µ such

that endosoc′µ+1M = 0 (or, equivalently, the least ordinal number µ with
Iµ+1 = Iµ) as the relative endosocle length of M .

Clearly, the isomorphism types of the R-submodules endosoc′αM are iso-
morphism invariants of M , and the sum

∑
α≤µ endosoc′αM is direct by con-

struction. The second of the following observations will be used repeatedly
in the next section. Both are straightforward from the definitions.

Lemma D. Let M = ⊕
i∈ I Mi, where each Mi has local endomorphism

ring.

(1) If each nontrivial subsum of Mi’s has nontrivial endosocle, then
Iµ = I, where µ is the relative endosocle length of M .
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(2) Let α be a successor ordinal, say α = β+ 1, such that
⊕

i∈ I\Iβ
Mi

has essential endosocle. If U is an endo-submodule of M which is not con-
tained in

⊕
i∈ Iα

Mi, then �J�S�U� ∩ endosoc′αM �= 0.

Observe that all hypotheses of Lemma D are satisfied if M is

-algebraically compact.

3. T -NILPOTENCE VERSUS ENDO-CHAIN CONDITIONS

Harada [11] called a family �Mi�i∈ I of indecomposable R-modules semi-
T -nilpotent in case, for any sequence �in�n∈� of distinct indices in I, any
family of non-isomorphisms fn ∈ HomR�Min


 Min+1
�, and any finitely gener-

ated R-submodule X of Mi1
, there exists n0 ∈ � with

fn0
fn0−1 · · · f1�X� = 0�

Obviously, this is a condition which can be tested “pointwise,” i.e., the
family �Mi� satisfies it precisely when, for each family of indices and non-
isomorphisms fn as above and any element x ∈ Mi1

, there exists a number
n0 with fn0

fn0−1 · · · f1�x� = 0. To make room for a dual concept, we will
refer to the described condition as right semi-T -nilpotence. The following
twin concept of left semi-T -nilpotence of a family �Mi�i∈I of indecompos-
ables requires that, for any sequence �in�n∈� of distinct indices in I, any
family of non-isomorphisms fn ∈ HomR�Min+1


 Min
�, and any finitely cogen-

erated factor module Mi1
/X of the R-module Mi1

, there exists a natural
number n0 such that

Im�f1f2 · · · fn0
� ⊆ X�

Left semi-T -nilpotence clearly implies the following elementwise condition:
For each family of indices and homomorphisms fn as specified above and
for each nonzero y ∈Mi1

, there exists n0 ∈ � such that y �∈ Im�f1f2 · · · fn0
�.

While the converse fails in general, it does hold if all of the Mi’s are
finitely cogenerated—so, in particular, if they have finite length—in which
case either condition is equivalent to the requirement that the family of
homomorphisms among the Mi’s be artinian in the sense of Auslander (see
below).

The stronger conditions of right/left T -nilpotence, finally, call for the same
conclusions as the corresponding semi-T -nilpotence conditions, but on
waiving the premise that the families of indices considered be free of
repetitions.

We point out that, for the special case of finitely generated indecom-
posable modules Mi over an Artin algebra, Auslander introduced alternate
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terms for these nilpotence conditions (see [2]). He labeled a family of mor-
phisms among such modules noetherian (resp., artinian) in case, for every
countable sequence of non-isomorphisms �fn� selected within the family—
consecutively composable in the appropriate sense—there exists an index
n0 with fn0

· · · f1 = 0 (resp., f1 · · · fn0
= 0). So, in this situation, the fam-

ily �Mi� is right semi-T -nilpotent if and only if it is right T -nilpotent, if
and only if the family of homomorphisms among the Mi is noetherian. (We
alert the reader to the fact that this condition automatically comes with
endo-artinianness of

⊕
i∈ I Mi—see Proposition E below—but may fail for

endo-noetherian direct sums
⊕

i∈ I Mi.)
The second of the following known characterizations of right semi-T -

nilpotent families of modules will be used freely in the rest of the paper,
while the third will enter into an application of our main theorem. The
implications �3� �⇒ �2� ⇐⇒ �1� are due to Harada [11], and the remaining
one was filled in by Huisgen-Zimmermann and Zimmermann [16]. Recall
that a module M is said to have the exchange property in case, for every
equality of the form M ′ ⊕A =⊕l∈L Al with M ′ ∼=M , there exist submod-
ules Bl ⊆ Al such that M ′ ⊕A =M ′ ⊕⊕l∈L Bl.

Known Facts. Suppose that all Mi have local endomorphism rings. Then
the following conditions are equivalent:

(1) The family �Mi�i∈ I is right semi-T -nilpotent.
(2) The Jacobson radical of EndR�

⊕
i∈ I Mi� coincides with the set

of those endomorphisms f which have the property that all compositions
prj · f · ini are non-isomorphisms (here prj and ini denote the canonical
projections and injections, respectively).

(3) The direct sum
⊕

i∈ I Mi has the exchange property.

We start by relating right semi-T -nilpotence to the endo-semi-artinian
condition we encountered in Lemma A. These connections will not only
feed into the proof of our main result, but are of interest as supplements.
Part (3) of the following proposition is a variant of [17, Proposition 4].
Moreover, we note that the implications (a) �⇒ (c) �⇒ (b) hold without
the blanket hypothesis under (2).

Proposition E. Suppose that �Mi�i∈ I is a family of indecomposable left
R-modules and set M =⊕i∈ I Mi.

(1) If �Mi� is a right T -nilpotent family, then all of the Mi have local
endomorphism rings.

(2) If all Mi have local endomorphism rings, the following conditions
are equivalent:

(a) The family �Mi� is right T -nilpotent.
(b) The direct sum M is semi-artinian over its endomorphism ring.
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(c) M satisfies the DCC for cyclic endo-submodules (or, equivalently,
the DCC for finitely generated endo-submodules).

As a consequence, every 
-algebraically compact R-module M is a direct
sum ranging over a right T -nilpotent family of indecomposable modules.

(3) The following condition is sufficient for right semi-T -nilpotence of
the family �Mi�: Each Mi has local endomorphism ring, and every descending
chain of matrix functors on R-Mod becomes uniformly stationary on almost
all of the Mi’s.

Proof. Set S = EndR�M�.
(1) Suppose that Mi belongs to a right T -nilpotent family and let

f ∈ EndR�Mi� be a non-isomorphism. Then f fails to be a monomorphism,
for, given any element x ∈ M , there exists m ∈ � with f m�x� = 0. To
see that, for any g ∈ EndR�Mi�, the map idMi

− gf is an isomorphism, it
thus suffices to check injectivity. To that end, we observe that x = gf �x)
implies x = �gf �n�x� for all n ∈ �, and hence x = 0 by our T -nilpotence
hypothesis.

(2) Start by recalling that the descending chain condition for cyclic
submodules is equivalent to that for finitely generated submodules, due to
Bjørk [4]. The canonical embeddings and projections coming with the direct
sum

⊕
i∈ I Mi will be denoted by ini and pri, respectively.

To back up (a) �⇒ (c), suppose (a) holds.
First we show that, for any element m=�mi�i∈ I ∈M , the cyclic S-module

Sm/J�S�m is semisimple. Indeed, right semi-T -nilpotence of �Mi� guar-
antees that the Jacobson radical J�S� of S contains all endomorphisms f
with the property that the compositions pri f inj are non-isomorphisms for
arbitrary i
 j ∈ I. We will make the assumption that Mi �∼= Mj whenever
i �= j; this does not affect the generality of our argument, for every endo-
submodule U of a direct sum of powers

⊕
i∈ I M

�Li�
i is of the form⊕

i∈ I U
�Li�
i for a suitable endo-submodule Ui of Mi. Consequently,

Sm/J�S�m = ⊕
finite

EndR�Mi�mi/J�EndR�Mi��mi


where each of the summands on the right is an S-module, the S-structure
of which coincides with the pertinent EndR�Mi�/J�EndR�Mi��-structure.

To the contrary of our claim, assume that M contains a strictly descend-
ing chain Sx1 � Sx2 � Sx3 � · · · of cyclic S-submodules. Now the induced
sequence in the semisimple factor module Sx1/J�S�x1 does become sta-
tionary, yielding an integer m such that Sxm ⊆ Sxm+1 + J�S�x1. By possibly
dropping some terms from our descending chain, we may assume that Sx2 ⊆
Sx3 + J�S�x1. We apply the same argument to Sx2/J�S�x2 and iterate,
whence an obvious induction permits us to thin out our original sequence of
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cyclics so as to assure Sxn ⊆ Sxn+1 + J�S�xn−1 for all n ≥ 2. For each n ≥ 2
we thus obtain an equality xn = fn+1�xn+1� + gn−1�xn−1� with fn+1 ∈ S
and gn−1 ∈ J�S�. By substituting x2 = f3�x3� + g1�x1� into the equality
x3 = f4�x4� + g2�x2�, we deduce that �1 − g2f3��x3� = f4�x4� + g2g1�x1�,
and multiplication by the inverse of 1− g2f3 yields an equality of the form
x3 = f ′4�x4�+h1�x1� with h1 ∈ J�S�. In a next step, we insert this expression
for x3 into x4 = f5�x5� + g3�x3�, thus obtaining an element h2 ∈ J�S� with
the property that x4 = f ′5�x5� + h2h1�x1� for a suitable f ′5 ∈ S. Again we
iterate and arrive at a sequence of elements h1
 h2
 h3
 � � � ∈ J�S� satisfying
xn = f ′n+1�xn+1� + hn−2 · · ·h2h1�x1� for suitable choices of f ′n ∈ S.

T -nilpotence of the family �Mi�i∈ I , combined with König’s graph
theorem, will now provide us with a natural number N such that
hN · · ·h2h1�x1� = 0. For, if we had hn · · ·h2h1�x1� �= 0 for all n, the fol-
lowing graph � would have paths of arbitrary length: The roots of � are
the nonzero components x1i ∈Mi of the element x1—finite in number, say
x1
 i�1�
 � � � 
 x1
 i�m�—and the edge paths of length l in � correspond to the
nonzero evaluations

�prj�l�hlinj�l−1���prj�l−1�hl−1inj�l−2�� · · · �prj�1�h1inj�0���x1
 j�0��
for suitable indices j�s� ∈ I such that j�0� ∈ �i�1�
 � � � 
 i�m��. König’s
graph theorem would then imply the existence of an infinite path. But
this is incompatible with our T -nilpotence condition, since each of the
maps prj�s�hsinj�s−1�� Mj�s−1� →Mj�s� is a non-isomorphism by our choice
of the hn.

Thus, we obtain a number N as described and infer xN+2 ∈ SxN+3, con-
trary to our assumption that the chain of Sxn be strictly descending.

To justify the implication (c) �⇒ (b), carry over the argument proving
Lemma A.

For (b) �⇒ (a), see [22, Chap. VIII].
(3) Suppose that �in�n∈� is a sequence of distinct elements of I and

fin
� Min

→Min+1
a non-isomorphism for n ∈ �. Given x ∈Mi1

, consider the
following chain of principal S-submodules of M:

Sfi1
x ⊇ Sfi2

fi1
x ⊇ Sfi3

fi2
fi1

x ⊇ · · · �
All terms of this chain are matrix subgroups of the R-module M (see
Section 1), say Sfin

· · · fi1
x = Pn�M�, where Pn is a matrix functor. Since

the class of matrix functors on R-Mod is closed under intersections, we
can normalize to the situation where P1 ⊇ P2 ⊇ P3 ⊇ · · ·. Assuming that
this chain becomes uniformly stationary on almost all of the Mi’s, we
obtain a natural number N , together with a finite subset I0 ⊆ I, such that
Pn�

⊕
i∈ I\I0

Mi� = PN�
⊕

i∈ I\I0
Mi� for all n≥N . Since the in are pair-

wise different, we can adjust N upward, if necessary, so as to guarantee
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that, moreover, fin
· · · fi1

x ∈ ⊕
i∈ I\I0

Mi for all n ≥ N . Denoting the
R-endomorphism ring of

⊕
i∈ I\I0

Mi by S′, we infer that the chain

S′fin
· · · fiN+1

�fiN
fiN−1
· · · fi1

x�
 n ≥ N


is stationary. We will deduce that fiN
· · · fi1

x = 0. Indeed, our setup yields a
map g ∈ S′ with gfiN+1

fiN
· · · fi1

x = fiN
· · · fi1

x. Clearly, we may assume that
g is a map from MiN+2

to MiN+1
. If fiN

· · · fi1
x were nonzero, Nakayama’s

Lemma would exclude gfiN+1
from the Jacobson radical of EndR�MiN

�, and
locality of this endomorphism ring would guarantee gfiN+1

to be a unit of
EndR�MiN

�. But this is impossible, since MiN+2
is indecomposable and fiN+1

a non-isomorphism. Hence fiN
· · · fi1

x = 0 as claimed, and the argument is
complete.

Part (2) of the preceding proposition can actually be de-specified from
the situation of direct sums regarded as modules over their endomorphism
rings: If S is any ring and M a left S-module, then the DCC for finitely
generated submodules forces M to be semi-artinian; the latter condition in
turn implies that, given any m ∈ M and any sequence �s1
 s2
 � � �� in J�S�,
we have sn · · · s1m = 0 for n 	 0. Moreover, these three conditions are
equivalent in case Sm/J�S�m is semisimple for every element m ∈M .

4. MAIN RESULTS AND EXAMPLES

Theorem H below will zero in on our primary concern: namely, to sig-
nificantly weaken conditions on the endo-structure of

⊕
i∈ I Mi which are

known to guarantee that the Mi fall into finitely many isomorphism classes.
An instance of such a condition is the endofiniteness of

⊕
i∈ I Mi; see [7].

Our result also provides background for the following well-known charac-
terization of the Artin algebras # having finite representation type, in terms
of morphisms among the indecomposable finitely generated left #-modules,
due to Auslander [2]: Namely, # has finite representation type precisely
when every countable family of non-isomorphisms is both artinian and
noetherian in the sense given at the beginning of Section 2. Related results
for families of finitely generated indecomposable modules were recently
obtained by Dung [8, Theorem 3.3 and Corollary 3.12]. We, too, are par-
ticularly interested in the situation where all of the Mi’s have finite length
over R—next to the case where the Mi’s are generic—and will address it in
subsequent corollaries and examples.

Lemma F. Let �Mi�i∈ I be a right semi-T -nilpotent family of pairwise non-
isomorphic modules with local endomorphism rings. If, for each cofinite subset
I ′ of I, the direct sum

⊕
i∈ I ′ Mi is finitely generated over its endomorphism

ring, then I is finite.
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Proof. Suppose that the endo-condition of our claim is satisfied and
set M = ⊕

i∈ I Mi. For any subset I ′ ⊆ I, we denote by prI ′ the canoni-
cal projection M →⊕

i∈ I ′ Mi along
⊕

i∈ I\I ′ Mi, preserving the convention
pri = pr�i� for i ∈ I. Moreover, we set S = EndR�

⊕
i∈ I Mi�. Keeping in

mind that every S-submodule U of M is of the form
⊕

i∈ I�Mi ∩U�, where
each Mi ∩ U is an EndR�Mi� submodule of Mi, we find that, given any
S-generating set G of such a module U , the collection �pri�x� 
 i ∈ I
 x ∈
G� of projections again belongs to U (and thus generates U).

By hypothesis, we can therefore pick a finite family of elements �xl1
�l1∈L1

in
⋃

i∈ I Mi with the property that M =∑l1∈L1
Sxl1

; by K1 ⊆ I we denote the
(finite) union of the supports of the xl1

. Setting S1 = EndR�
⊕

i∈ I\K1
Mi� and

applying our hypothesis to the pared-down direct sum, we see that each of
the modules S1prI\K1

�Sxl1
� can be written as a finite sum, S1prI\K1

�Sxl1
� =∑

l2∈L2
S1fl2l1

�xl1
�, where L2 is a finite index set disjoint from L1 and the

fl2l1
are homomorphisms from suitable summands Mi of

⊕
k∈K1

Mk to sum-
mands Mj of

⊕
k∈ I\K1

Mk; here the sources and targets of the fl2l1
may

appear repeatedly. By allowing zero maps among the fl1l2
, we can make the

same index set L2 work for all l1 ∈ L1 simultaneously. We thus obtain

M = ⊕
k∈K1

Mk +
∑

l1∈L1

S1prI\K1
�Sxl1
�

= ⊕
k∈K1

Mk +
∑

l1∈L1
 l2∈L2

S1fl2l1
�xl1
��

Next we let K2⊆ I be a finite set containing K1 and the supports
of the elements fl2l1

�xl1
� for all choices of l1
 l2. Now we set S2 =

EndR�
⊕

i∈ I\K2
Mi� and, using the same guidelines as for the choice of L1

and the fl2l1
’s, we choose a finite index set L3, disjoint from L1 ∪ L2, and

homomorphisms fl3l2
, each from a suitable summand Mi of

⊕
k∈K2

Mk to
a summand Mj of

⊕
k∈ I\K2

Mk, such that

S2prI\K2
�S1fl2l1

�xl1
�� = ∑

l3∈L3

S2fl3l2
fl2l1
�xl1
�

for all l1 ∈ L1 and l2 ∈ L2. This yields the equality

M = ⊕
k∈K2

Mk +
∑

l1∈L1
 l2∈L2
 l3∈L3

S2fl3l2
fl2l1
�xl1
��

We repeat the above procedure to inductively obtain pairwise disjoint
finite index sets L1
 L2
 L3
 � � �, finite subsets K1 ⊆ K2 ⊆ K3 ⊆ · · · of I, and
homomorphisms fln+1ln

—for ln ∈ Ln and ln+1 ∈ Ln+1—from summands Mi

of
⊕

k∈Kn
Mk to summands Mj of

⊕
i∈ I\Kn

Mi, respectively, such that, for
each n ∈ �,

M = ⊕
k∈Kn

Mk +
∑

lm∈Lm
 1≤m≤n+1

Snfln+1ln
· · · fl2l1

�xl1
�
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where Sn = EndR�
⊕

i∈ I\Kn
Mi�.

Let � be the graph having as vertices the indices in
⋃

i∈� Ki and as
edge paths those concatenations fln+1ln

· · · fl2l1
which have the property that

fln+1ln
· · · fl2l1

�xl1
� �= 0. Since all of the maps fli+1li

are non-isomorphisms by
construction, our T -nilpotence hypothesis excludes the occurrence of an
infinite path. Therefore, König’s graph theorem guarantees the existence
of an upper bound on the lengths of paths in �—N say—which shows that
M =⊕k∈KN

Mk. But this says that I = KN is finite as required.

We now come to our key lemma. In spite of the dual formats of Lem-
mas F and G, the latter cannot be obtained by dualizing the preceding
argument.

Lemma G. Let �Mi�i∈ I be a left semi-T -nilpotent family of modules with
local endomorphism rings. If, for each cofinite subset I ′ of I, the direct sum⊕

i∈ I ′ Mi is finitely cogenerated over its endomorphism ring, then I is finite.

Proof. Again suppose that the endo-condition of our claim is satisfied
and set M = ⊕i∈ I Mi, S = EndR�M�. Assume that I is infinite. In order
to deduce that the family �Mi�i∈ I then fails to be left semi-T -nilpotent, we
consider the relative endosocle series �endosoc′αM�α, as introduced at the
end of Section 2. As before, we denote the support of

⊕
β≤α endosoc′βM

by Iα. By hypothesis, endosoc M is finitely generated, whence the support
I1 is finite by Lemma B(2). An obvious induction, based on the hypothesis
that the endosocle of any cofinite subsum

⊕
i∈ I ′ Mi has finite support in I ′,

thus yields finiteness of Ik for all k ∈ �.
Our hypothesis moreover guarantees that each of the relative endoso-

cles endosoc′k+1M is essential in the corresponding direct sum
⊕

i∈ I\Ik
Mi

viewed as a module over its endomorphism ring Sk. Since, under the canon-
ical embedding of Sk into S, we have J�Sk� ⊆ J�S�, we deduce from
Lemma D(2) that, for any nonzero Sk-submodule U of

⊕
i∈ I\Ik

Mi, the
intersection �J�S�U� ∩ endosoc′kM is nonzero. For each k ∈ �, we now
consider a descending chain Ak1 ⊇ Ak2 ⊇ Ak3 ⊇ · · · of nonzero Sk-
submodules of endosoc′kM , where the Aki are inductively defined as
follows: Ak1 = �J�S� endosoc′k+1M� ∩ endosoc′kM for k ≥ 1 and

Ak
 i+1 =
(
J�S�Ak+1
 i

) ∩ endosoc′kM�

Being contained in the finitely generated semisimple Sk−1-module
endosoc′kM , the chain �Aki�i≥1 becomes stationary. Furthermore, by
Lemma D(2), it consists of nonzero terms. Therefore, it converges to a
nonzero Sk−1-submodule Ck ⊆ endosoc′kM . From the definition of the Aki,
we moreover derive Ck = �J�S�Ck+1� ∩ endosoc′kM for all k ∈ �, which
yields a sequence of inclusions

C1 ⊆ J�S�C2
 C2 ⊆ J�S�C3
 � � � �
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Since C1 is an S-module, we can pick i1 ∈ I1 so that Mi1
∩ C1 contains a

nonzero element x. The above string of inclusions then yields disjoint finite
sets Ln for n ∈ �, together with families of homomorphisms �fln

�ln∈Ln
in

J�S�, each of the form fln
= prv�ln� · fln

· inu�ln� ∈ HomR�Mu�ln�
 Mv�ln�� for
suitable indices u�ln� ∈ In+1\In, v�ln� ∈ In, and v�l1� = i1 for all l1 ∈ L1,
such that

x ∈ Im

( ∑
l1∈L1
���
ln∈Ln

fl1
fl2
· · · fln

)

for each n. Here all of the fln
’s are non-isomorphisms from Mu�ln� to Mv�ln�,

respectively, since they belong to J�S� (as usual, we identify homomor-
phisms Mi → Mj with elements of S). Note that the sets �u�ln� 
 ln ∈ Ln�
for n ∈ � are pairwise disjoint by construction; on the other hand, we per-
mit repetitions u�lk� = u�l′k� and v�lk� = v�l′k� for lk �= l′k. Next, we let
Y ⊂ Mi1

be a maximal R-submodule of Mi1
with x �∈ Y and consider the

tree having as root the index i1 and as branches all those concatenations
fl1

fl2
· · · fln

the image of which is not contained in Y . By construction, there
is no upper bound on the lengths of the edge paths in this graph, and there-
fore König’s graph theorem guarantees the existence of a path of infinite
length. But, since Mi1

/Y is a finitely cogenerated factor module of Mi1
,

this means that the family �Mi� fails to be left semi-T -nilpotent. Thus, our
hypothesis ensures finiteness of I.

This smooths the road to

Theorem H. Let �Mi�i∈ I be a family of indecomposable R-modules and
�Mt�t∈T a transversal of the isomorphism classes of the Mi.

(I) If all of the Mi have local endomorphism rings, the following state-
ments are equivalent:

(1)
⊕

i∈ I Mi is endo-noetherian, and �Mt�t∈T is right semi-T -
nilpotent.

(2) T is finite, and each Mt is endo-noetherian.

(II) The following statements are equivalent:

(1)
⊕

i∈ I Mi is endo-artinian, and �Mt�t∈T is left semi-T -nilpotent.
(2) T is finite, and each Mt is endo-artinian.

(III) Suppose that �Mt�t∈T is a left semi-T -nilpotent and right
T -nilpotent family satisfying the following additional finiteness condition:

�•� For any cofinite subset T ′ ⊆ T , the endosocle of
⊕

t∈T ′ Mt is
finitely generated.

Then T is finite.
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Proof. Start by observing that, in each of the first two parts, the impli-
cation (2) �⇒ (1) is trivial. Indeed, it suffices to note that both endo-
noetherianness and endo-artinianness are inherited by arbitrary powers and
finite direct sums. Moreover, note that, in proving the remaining implica-
tions, it is innocuous to assume that I = T , since the conditions involved are
stable under passage from

⊕
i∈ I Mi to

⊕
t∈T Mt . The implications (1) �⇒

(2) under (I) and (II) now follow from Lemmas F and G, respectively; note
that (II.1) guarantees all of the Mi to have local endomorphism rings, while
this is a blanket hypothesis for (I).

In order to prove (III), adopt all of the listed hypotheses. By part (1) of
Proposition E, the Mt again have local endomorphism rings. Moreover, for
each cofinite subset T ′ ⊆ T , the direct sum

⊕
t∈T ′ Mt is finitely cogener-

ated over its endomorphism ring: Indeed, in view of Proposition E(2), right
T -nilpotence of �Mt�t∈T ′ ensures that this direct sum has essential endoso-
cle and, by condition �•�, this endosocle is finitely generated. Thus, once
more, Lemma G yields finiteness of T .

The first part of the following corollary results from a combination of
Theorem H(I) and (II) with Proposition E; the second part is an immediate
consequence of that proposition and Theorem H(III).

Corollary I. Let �Mi�i∈ I be a family of indecomposable R-modules and
�Mt�t∈T a transversal of the isomorphism classes of the Mi.

(I) Then the following statements are equivalent:

(1)
⊕

i∈ I Mi is endo-noetherian, and �Mt�t∈T is right T -nilpotent.
(2) T is finite, and each Mt is endofinite.

(II) Suppose that
⊕

i∈ I Mi is 
-algebraically compact, �Mt�t∈T left
semi-T -nilpotent, and

�•� for each cofinite subset T ′ ⊆ T , the endosocle of
⊕

t∈T ′ Mt is
finitely generated.

Then T is finite.

Remarks. None of the semi-T -nilpotence conditions in the various parts
of Theorem H and Corollary I is redundant, not even when all of the
Mi are finitely generated over a finite-dimensional algebra—see Exam-
ples O below.

As for condition �•� in Theorem H(III) and Corollary I(II): Dropping it
means jeopardizing the conclusion in either case, as is illustrated by Exam-
ple J(a) below. In case the individual modules Mi have endosocles of finite
length, condition �•� can clearly be weakened to the requirement that, for
each cofinite subset T ′ ⊆ T , the endosocle of

⊕
t∈T ′ Mt has finite support.

We do not know whether, in the above statements, condition �•� can always
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be relaxed in this fashion, but point out that finitely generated endosocles
are not automatic in 
-algebraically compact modules (see Example J(b)).

Examples J. (a) The direct sum M = ⊕
p prime ��p∞� is a 
-

algebraically compact �-module having as endomorphism ring the direct
product of the rings of p-adic integers, where p runs through all primes.
Moreover, the family ���p∞��p prime is clearly left semi-T -nilpotent and
right T -nilpotent. However, the endosocle of M coincides with the �-socle
and thus has infinite support. This shows that the endosocle condition in
Theorem H(III) and Corollary I(II) is crucial.

(b) Set R = K�Xn 
 n ∈ ��/�Xn 
 n ∈ ��k, where K is a field and
k ≥ 2. Then the regular R-module is 
-algebraically compact by [15]. On
the other hand, its endosocle, endosoc R = socRR = Jk−1, fails to be finitely
generated.

Prime targets for applications of the following consequence of Theorem H
are families of generic or finitely generated modules over Artin algebras. In
light of the subsequent proposition addressing families of finitely generated
modules over Artin algebras, the picture can be sharpened in that situation.

Corollary K. For any family �Mi�i∈ I of indecomposable endofinite
modules, the following statements are equivalent:

(1) The number of isomorphism types of Mi is finite.

(2)
⊕

i∈I Mi is endo-noetherian, and the family �Mi� is right semi-T -
nilpotent.

(3)
⊕

i∈I Mi is endo-artinian, and the family �Mi� is left semi-T -
nilpotent.

(4) If �Mt�t∈T is a transversal of the isomorphism types of the Mi, then
�Mt� is left and right semi-T -nilpotent and, for any cofinite subset T ′ ⊆ T , the
endosocle of

⊕
t∈T ′ Mt has finite support in T .

Proof. In view of Theorem H, only the implication (4) �⇒ (1) requires
justification: Since the Mi are endofinite, each singleton family �Mi� is right
T -nilpotent by Proposition E(2), whence right T -nilpotence of the family
�Mi� follows from right semi-T -nilpotence.

The next result exhibits a simplification of the picture for Artin alge-
bras. Namely, a direct sum

⊕
i∈ I Mi of finitely generated modules Mi is


-algebraically compact precisely when it is endo-artinian. In other words,
for Artin algebras, Proposition L provides an “endo-artinian counterpart”
to the final observation of Section 1: Namely, this observation remains
true on replacing “endo-noetherian” by “endo-artinian” and substituting
the ACC for (finite) matrix subgroups by the corresponding DCC.
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Throughout our excursion to the narrowed setting, # will be an Artin
algebra with center C, and D� #-mod→ mod-# will denote the standard
duality from the category of finitely generated left to the category of finitely
generated right #-modules, i.e., D = HomC�−
 E�, where E is the C-
injective envelope of C/J�C�. Note that D induces a Morita duality on
C-mod as well; this obvious fact is useful, because endo-submodules of #-
modules are, of course, C-submodules.

Proposition L. If # is an Artin algebra and �Mi�i∈ I a family of finitely
generated left #-modules, the following conditions are equivalent:

(1)
⊕

i∈ I Mi is 
-algebraically compact.

(2)
⊕

i∈ I Mi is endo-artinian.

(3)
⊕

i∈ I D�Mi� is endo-noetherian.

Proof. To verify (1) �⇒ (3), we adopt (1). This means that M =⊕
i∈ I Mi satisfies the DCC for finite matrix subgroups, whence, by Proposi-

tion 3 of [17], the dual D�M� = ∏i∈ I D�Mi� has the ACC for finite matrix
subgroups. In view of the final observation of Section 1, this entails (3).

To prove (3) �⇒ (2), we assume that
⊕

i∈ I D�Mi� is endo-noetherian. We
begin by noting that a C-submodule U of

⊕
i∈ I Mi is an endo-submodule

of
⊕

i∈ I Mi if and only if U =⊕i∈ I Ui, where the Ui are subgroups of the
Mi with the property that, for all i
 j ∈ I and all f ∈ Hom#�Mi
 Mj�, the
image f �Ui� is contained in Uj . Now suppose that U is an endo-submodule
of
⊕

i∈ I Mi and, for i ∈ I, let ιi� Ui ↪→ Mi be the canonical embedding.
Moreover, let Vi ⊆ D�Mi� denote the kernel of the dual map D�ιi�; i.e.,
Vi = �ρ ∈ HomC�Mi
 E� 
 ρ
Ui

= 0�. We claim that V =⊕i∈ I Vi is an endo-
submodule of

⊕
i∈ I D�Mi�. Clearly, V is a C-submodule, whence it suffices

to check stability under homomorphisms g ∈ Hom#�D�Mi�
 D�Mj��. Sup-
pose g = D�f � with f ∈ Hom#�Mj
 Mi�. Dualizing the fact that f · ιj =
ιi · �f 
Uj

�, we obtain, for each ρ ∈ Vi, the equality g�ρ�
Uj
= �ρ · f �
Uj

=
�ρ
Ui
� · �f 
Uj

� = 0; in other words, g�ρ� belongs to Vj as required.
Let U1 ⊇ U2 ⊇ U3 ⊇ · · · be a descending chain of endo-submodules

of
⊕

i∈ I Mi and label the embedding Uk+1 ↪→ Uk by φk. Extending the
above notation, we moreover write the embedding Uki = Mi ∩ Uk ↪→ Mi

as ιki and the kernel of the C-module epimorphism D�ιki� as Vki. The
preceding paragraph shows that each of the direct sums Vk =

⊕
i∈ I Vki is in

fact an endo-submodule of
⊕

i∈ I D�Mi�. Clearly, the Vk form an ascending
chain which, by our hypothesis, becomes stationary. This means that the
ascending chains V1i ⊂ V2i ⊂ · · · become uniformly stationary on I, and, in
view of the exact sequences

0→ Vki → D�Mi� → D�Uki� → 0
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we see that it is again uniformly on I that the maps D�φk
Uki
�—and

hence also the φk
Uki
—become isomorphisms. This proves that our initial

descending chain �Uk�k∈� becomes stationary.
In view of the characterization of 
-algebraic compactness quoted in

Section 1, the implication (2) �⇒ (1) is clear.

The next corollary results from a combination of Corollary K and Propo-
sition L with the Harada–Sai Lemma [12].

Corollary M. Suppose # is an Artin algebra and �Mi�i∈ I a family of left
#-modules having uniformly bounded ( finite) composition lengths. Moreover,
let �M ′

t�t∈T be a transversal of the isomorphism types of the indecomposable
direct summands of the Mi. Then the following conditions are equivalent:

(1) T is finite.
(2)

⊕
i∈ I Mi is endo-noetherian.

(3)
⊕

i∈ I Mi is endo-artinian.
(4)

⊕
i∈ I Mi is 
-algebraically compact.

(5) For any cofinite subset T ′ ⊆ T , the endosocle of
⊕

t∈T ′ M
′
t has finite

support.

Proof. It suffices to observe that, due to the Harada–Sai Lemma,
our blanket hypothesis forces the family �M ′

t� to be both left and right
T -nilpotent.

The final corollary in this series highlights the role played by the endoso-
cles of direct sums of indecomposable representations. It is an immediate
consequence of Corollary M and the (confirmed) second Brauer–Thrall
conjecture.

Corollary N. For any finite-dimensional algebra # over an algebraically
closed field, the following conditions are equivalent:

(1) # has finite representation type.
(2) For every family �Mi�i∈ I of pairwise non-isomorphic indecompos-

able modules of fixed finite dimension, the endosocle of
⊕

i∈ I Mi has finite
support.

The following examples attest to the fact that none of the T -nilpotence
conditions in Theorem H and Corollaries I and K can be dropped without
penalty.

Examples O. Let # = K7 be the Kronecker algebra over a field K,
where 7 is the quiver

1 2

α

β
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(1) Moreover, let �Mn�n∈� be the family of all preinjective left
#-modules, i.e., M1 = #e1/J�#�e1, and, for n ≥ 2, Mn is the string module
with graph

1 1 · · · 1

2 2 · · · 2

β α β α

having n summands S1 in its top. Then the direct sum
⊕

n∈� Mn is

-algebraically compact by [19, Theorem 4.6], and Proposition L guaran-
tees that

⊕
n∈� Mn is even endo-artinian.

(2) Let # still be the Kronecker algebra, but this time consider the
family �Nn�n∈� of all preprojective left #-modules, i.e., Nn = D�M ′

n�, where
M ′

n is the preinjective right #-module with top dimension n. Since
⊕

n∈� M ′
n

is endo-artinian (see (1)), the direct sum
⊕

n∈� Nn of the duals of the M ′
n

is endo-noetherian, again by Proposition L.

At this point, we return to an arbitrary base ring. In light of our remarks
concerning the exchange property of direct sums (in Section 3), we finally
obtain the following consequence of Theorem H.

Corollary P. An endo-noetherian direct sum
⊕

i∈ I Mi of indecompos-
able modules Mi (over any ring R) has the exchange property if and only if
each Mi has local endomorphism ring and the Mi fall into finitely many iso-
morphism classes.

Viewing the Kronecker examples in light of this fact, we see that the
direct sum of the preprojective modules over the Kronecker algebra fails to
have the exchange property. On the other hand, the direct sum ranging over
the preinjective modules does enjoy this property, as do all algebraically
compact modules (see [16]).

Variants of the ACC and DCC for endo-submodules have made numer-
ous appearances in the representation theory of Artin algebras. Our con-
cluding remarks, relating ascending endo-chain conditions of direct sums
to preprojective partitions and left almost split morphisms, are merely the
“tip of the iceberg.” (Naturally, certain relaxed descending endo-chain con-
ditions are linked with preinjective partitions and the existence of right
almost split maps in a dual fashion.)

Remarks. Due to [3, 13], respectively, we have the following connections
between weakened endo-noetherian conditions for direct sums

⊕
i∈ I Mi of

finitely generated indecomposable modules, on the one hand, and the exis-
tence of preprojective partitions (resp. strong preprojective partitions) on
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the other: From now on, suppose that �Mi�i∈ I is a family of finitely gener-
ated indecomposable modules and �Mt�t∈T a transversal of its isomorphism
types. Recall from [3] that a preprojective partition of �Mi�i∈ I is a partition

�Mt 
 t ∈ T� = ⊔
n≤ω

�n

such that, for all n < ω, the set �n is a minimal finite generating set for⊔
n≤m≤ω �m. A strong preprojective partition extends this principle to arbi-

trary ordinals; i.e., it is a partition �Mt 
 t ∈ T� = ⊔
α≤γ �α, where γ

is an ordinal number and each �α is a minimal finite generating set for⊔
α≤β≤γ �β. If the Mi have perfect endomorphism rings, such a (strong)

preprojective partition is unique in the case of existence. The existence of
a preprojective partition of �Mi�, on the other hand, is equivalent to the fol-
lowing endo-condition for

⊕
i∈ I Mi: For each cofinite subset T1 ⊆ T , there

exists a cofinite subset T2 ⊆ T1 such that

⊕
t∈T1

Mt ⊆
(

EndR

(⊕
t∈T

Mt

))
·
( ⊕

t∈T1\T2

Mt

)
�

Moreover, the condition that
⊕

i∈ I Mi be endo-noetherian implies the exis-
tence of strong proprojective partitions for arbitrary subfamilies of �Mi�i∈ I .

The connection between endofiniteness conditions and strong preprojec-
tive partitions was recently refined by Dung [8, 3.9 and 3.11] for the case
where the Mi have perfect endomorphism rings. Namely, he established the
following bridges among the conditions labeled (a), (b), and (c) below:

(a) HomR�Mk

⊕

i∈ I Mi� is noetherian as a left module over
EndR�

⊕
i∈ I Mi� for all k ∈ I.

(b) For every subfamily � of �Mi�, the full subcategory add� of the
category of all finitely generated modules has left almost split morphisms.

(c) Every subfamily of �Mi� has a strong preprojective partition.

Under the given hypotheses for the Mi, condition (a) implies (b). If,
moreover, the direct sum

⊕
i∈ I Mi is finitely generated over its endomor-

phism ring, then (b) implies (c).
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