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Abstract In this paper, we compute the 1-gap sequences of 1-Weierstrass points of non-hyperelliptic

smooth projective curves of genus 10. Furthermore, the geometry of such points is classified as flexes,

sextactic and tentactic points. Also, upper bounds for their numbers are estimated.
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0. Introduction

Weierstrass points on curves have been extensively studied in
connection with many problems. For example, the moduli
space Mg has been stratified with subvarieties whose points

are isomorphism classes of curves with particular Weierstrass
points. For more deatails, we refer for example to [1,2].

At first, the theory of the Weierstrass points was developed

only for smooth curves and for their canonical divisors. In the
last decades, starting from some papers by Lax and Widland
[3–8], the theory has been reformulated for Gorenstein curves,

where the invertible dualizing sheaf substitutes the canonical
sheaf. In this context, the singular points of a Gorenstein curve
are always Weierstrass points.

In [9], Notari developed a technique to compute the
Weierstrass gap sequence at a given point, no matter it is
simple or singular, on a plane curve, with respect to any linear
system V#H0ðC;OCðnÞÞ. This technique can be useful to con-

struct examples of curves with Weierstrass points of a given
weight or to look for conditions for a sequence to be a Weierst-
rass gap sequence. He used this technique to compute the Wei-

erstrass gap sequence at a point of particular curves and of
families of quintic curves.

The aim of this paper is to compute the 1-gap sequence of

the 1-Weierstrass points on smooth non-hyperelliptic algebraic
curves of degree 6, which are genus 10 curves, to investigate the
geometry of such kind of points and to estimate an upper

bound for the numbers of flexes, sextactic and tentactic points
on such kind of algebraic curves.
icense.
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1. Preliminaries

Throughout this section, we use the following notations:

IðC1;C2; pÞ the intersection number of the curves C1 and C2 at the

point p [10],

GðqÞp ðQÞ the q-gap sequence of the point p with respect to the

linear system Q [11,12],

xðqÞðpÞ the q-weight of the point p [13],

NðqÞðCÞ the number of q-Weierstrass points on C [14],

Qð�ð‘ � pÞÞ the set of divisors in the linear system Q with

multiplicity at least ‘ at the point p [13].
Table 1 Geometry of flexes.

xð1Þp ðQÞ Gð1Þp ðQÞ Geometry

2 {1, 2, 3, . . . , 8, 10, 11} 1-Flex

15 {1, 2, 3, 5, 6, 7, 9, 10, 13, 14} 2-Flex

28 {1, 2, 3, 6, 7, 8, 11, 12, 16, 17} 3-Flex
Recall that a linear system Q is called a grd if dim Q ¼ r and

deg Q ¼ d. We have the following result.

Lemma 1.1 [13]. Let Q be a nonempty grd linear system on an
algebraic curve X, and fix a point p 2 X. Then:

� The set of gap numbers GpðQÞ is a finite set and
jGpðQÞj ¼ 1þ r.
� GpðQÞ � f1; 2; . . . ; 1þ dg.

Let X be a smooth projective plane curve of genus g P 2
and let D be a divisor on C with dimjDj ¼ r P 0. We denote
by LðDÞ the C-vector space of meromorphic functions f such

that divðfÞ þD P 0 and by lðDÞ the dimension of LðDÞ over
C. Then, the notion of D-Weierstrass points [13] can be defined
in the following way:

Definition 1.2. Let p 2 C. If n is a positive integer such that

lðD� ðn� 1Þ � pÞ > lðD� n � pÞ;

we call the integer n a D-gap number at p.

Lemma 1.3. Let p 2 C, then there are exactly rþ 1 D-gap

numbers fn1; n2; . . . ; nrþ1g such that n1 < n2 < � � � < nrþ1. The
sequence fn1; n2; . . . ; nrþ1g is called the D-gap sequence at p.

Definition 1.4. The integer xDðpÞ :¼
Prþ1

i¼1 ðni � iÞ is called
D-weight at p. If xDðpÞ > 0, we call the point p a D-Weierstrass

point on C. In particular, for the canonical divisor K, the qK-
Weierstrass points ðq P 1Þ are called q-Weierstrass points and
the qK-weight is called q-weight, denoted by xðqÞðpÞ.

Lemma 1.5. [13,15]. Let X be a smooth projective plane curve

of genus g. The number of q-Weierstrass points NðqÞðCÞ, counted
with their q-weights, is given by

NðqÞðCÞ ¼
gðg2 � 1Þ; if q ¼ 1

ð2q� 1Þ2ðg� 1Þ2g; if q P 2:

�

In particular, for smooth projective plane sextic (i.e. g ¼ 10),

the number of 1-Weierstrass points is 990 counted with their
weights.

Theorem 1.6 [13]. Let X be a non-hyperelliptic curve of genus

P 3. Write Gð1Þp ðQÞ ¼ fn1 < n2 < � � � < ngg, then
(1) n1 ¼ 1.

(2) nr 6 2r � 2 for every r P 2.

(3) xð1ÞðpÞ 6 ðg�1Þðg�2Þ
2

.

(4) There are at least 2g þ 6 1-Weierstrass points on X.
For more details on q-Weierstrass points on Riemann
surfaces, we refer for example to [13,16].

2. Main results

Let X be a smooth projective plane curve of degree 6 and

Q :¼ jKj the canonical linear system of X.

Proposition 2.1. The linear system Q is g918.

Proof. The result follows directly from

dim Q :¼ dim jKj ¼ g� 1 ¼ 9; and

deg ðQÞ :¼ deg ðKÞ ¼ 2ðg� 1Þ ¼ 18: �

Corollary 2.2. Let p 2 X, then ] Gð1Þp ðQÞ
� �

¼ 10 and
Gð1Þp ðQÞ � f1; 2; 3; . . . ; 19g.

Lemma 2.3. The set of cubic divisors on X form a linear system
which is g918.
2.1. Flexes

Definition 2.4. [11,17]. A point p on a smooth plane curve C is

said to be a flex point if the tangent line Lp meets C at p with
contact order IpðC;Lp; pÞ at least three. We say that p is i-flex,
if IpðC;LpÞ � 2 ¼ i. The positive integer i is called the flex

order of p.

Our main results for this part are the following.

Theorem 2.5. Let p be a flex point on a smooth projective non-
hyperelliptic plane curve X of degree 6. Let Lp be the tangent lint
to X at p such that IðX;EpÞ ¼ lf. Then Gð1Þp ðQÞ
¼ f1; 2; 3; 1þ lf; 2þ lf; 3þ lf; 2lf þ 1; 2lf þ 2; 3lf þ 1; 3l
fþ 2g. Moreover, the geometry of such points is given by
Table 1:

Proof. The dimension of Qð�1 � pÞ and Qð�2 � pÞ does not

depend on whether p is 1-Weierstrass point or not, i.e.,
1; 2 2 Gð1Þp ðQÞ. The spaces Qð�3 � pÞ ¼ . . . ¼ Qð�lf � pÞ consist
of divisors of cubic curves of the form LpR, where R is an arbi-

trary conic. Hence, dim Qð�‘ � pÞ ¼ 6 for ‘ ¼ 3; . . . ; lf. That is,
3 2 Gð1Þp ðQÞ.

The space Qð�ð1þ lfÞ � pÞ consists of divisors of cubic
curves of the form LpR, where R is a conic passing through p.
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Hence, dim Qð�ð1þ lfÞ � pÞ ¼ 5. That is, 1þ lf 2 Gð1Þp ðQÞ.
The space Qð�ð2þ lfÞ � pÞ consists of divisors of cubic curves

of the form LpR, where R is a conic passing through p with

contact order at least 2. Hence, dim Qð�ð2þ lfÞ � pÞ ¼ 4. That

is, 2þ lf 2 Gð1Þp ðQÞ. The spaces Qð�ð3þ lfÞ � pÞ ¼ � � � ¼ Q

ð�2lf � pÞ consist of divisors of cubic curves of the form

L2
pH, where H is an arbitrary hyperplane. Hence,

dim Qð�‘ � pÞ ¼ 3 for ‘ ¼ 3þ lf; . . . ; 2lf. That is, 3þ lf 2
Gð1Þp ðQÞ. The space Qð�ð2lf þ 1Þ � pÞ consists of divisors of

cubic curves of the form L2
pH, whereH is a hyperplane through

p. Hence, dim Qð�ð2lf þ 1Þ � pÞ ¼ 2. That is, 2lf þ 1 2 Gð1Þp

ðQÞ. The spaces Qð�ð2lf þ 2Þ � pÞ ¼ � � � ¼ Q ð�3lf � pÞ consist
of divisors of cubic curves of the form L2

pH, where H is a

hyperplane through p with contact order at least 2. Hence,

dim Qð�ð2lf þ 2Þ � pÞ ¼ 1. That is, 2lf þ 2 2 Gð1Þp ðQÞ. The

space Qð�ð3lf þ 1Þ � pÞ consists of the divisor of the cubed

tangent line L3
p. Hence, dim Qð�ð3lf þ 1Þ � pÞ ¼ 0. That is,

3lf þ 1 2 Gð1Þp ðQÞ. The spaces Qð�‘ � pÞ ¼ / for ‘ P 3lf þ 2.

That is, 3lf þ 2 2 Gð1Þp ðQÞ. Consequently,

Gð1Þp ðQÞ ¼ f1; 2; 3; 1þ lf; 2þ lf; 3þ lf; 2lf þ 1; 2lf þ 2; 3lf

þ 1; 3lf þ 2g:

Finally, by the famous Bezout’s theorem, the tangent line

meets X at the flex point p with 3 6 lf 6 6. On the other hand,
by Theorem 1.6, it follows that n10 :¼ 3lf þ 2 6 18, hence
lf–6. h

Corollary 2.6. If a smooth projective curve X of degree 6 has

4-flex points, then X is hyperelliptic.

Corollary 2.7. On a smooth non-hyperelliptics projective plane
curve X of degree 6, the 1-weight of a flex point is given by

xð1Þp ðQÞ ¼ 13lf � 37, where lf is the multiplicity of the tangent
line Lp to X at p.

Proof. Let p be a flex point on X, then, by Theorem 2.5,

Gð1Þp ðQÞ¼ f1;2;3;1þlf;2þlf;3þlf;2lfþ1;2lfþ2;3lfþ1;3lfþ2g:

Consequently,

xð1Þp ðQÞ : ¼ Rg
r¼0ðnr � rÞ ¼ ð1þ lf � 4Þ þ ð2þ lf � 5Þ
þ ð3þ lf � 6Þ þ ð2lf þ 1� 7Þ þ ð2lf þ 2� 8Þ
þ ð3lf þ 1� 9Þ þ ð3lf þ 2� 10Þ ¼ 13lf � 37: �

Notation. F
ðqÞ
i ðXÞ will denote the set of i-flex points which are

q-Weierstrass points on X and NF
ðqÞ
i ðXÞ will denote the cardi-

nality of F
ðqÞ
i ðXÞ.

Corollary 2.8. For a smooth non-hyperelliptic projective plane
curve X of degree 6, the maximal cardinality of F

ð1Þ
i ðXÞ is given

by the inequality

NF
ð1Þ
i ðXÞ 6

990

13ðiþ 2Þ � 37

� �
;

where i ¼ 1; 2; 3 and ½m� is the greatest integer less than or equal

to m.
2.2. Sextactic points

In analogy with tangent lines and flexes of projective plane
curves, one can consider osculating conics and sextactic points

in the following way:

Lemma 2.9 [12]. Let p be a non-flex point on a smooth
projective plane curve X of degree d P 3. Then there is an
unique irreducible conic Dp with IpðX;Dp; pÞP 5. This unique

irreducible conic Dp is called the osculating conic of X at p.

Definition 2.10 [11]. A non-flex point p on a smooth projective
plane curve X is said to be a sextactic point if the osculating
conic Dp meets X at p with contact order at least six. A sextac-

tic point p is said to be i-sextactic, if IpðX;Dp; pÞ � 5 ¼ i. The
positive integer i is called the sextactic order.

Now, the main results for this part are the following.

Theorem 2.11. Let p be a sextactic point on a smooth projective
non-hyperelliptic curve X of degree 6. Let Dp be the osculating

conic to X at p such that IðX;Dp; pÞ ¼ ls. Then,
Gð1Þp ðQÞ ¼ f1; 2; 3; . . . ; 7; 1þ ls; 2þ ls; 3þ lsg.

Proof. The idea of the proof is to investigate the existence
of a curve H through p with multiplicity ‘ so that its divisor

is in Qð�‘ � pÞ �Qð�ð‘þ 1Þ � pÞ, consequently, the integer

‘ 2 Gð1Þp ðQÞ. Now, the dimension of Qð�1 � pÞ and Qð�2 � pÞ
does not depend on whether p is a 1-Weierstrass point or

not, i.e., 1; 2 2 Gð1Þp ðQÞ. Moreover, let Lp be the tangent line

to X at p, then the divisor divðLpR0Þ 2 Qð�2 � pÞ �Qð�3 � pÞ,
where R0 is a conic not through p. That is, 3 2 Gð1Þp ðQÞ. Fur-
thermore, div LpR1

� �
2 Qð�3 � pÞ �Qð�4 � pÞ, where R1 is a

conic passing through p with multiplicity 1. That is,

4 2 Gð1Þp ðQÞ. Also, div L2
pH0

� �
2 Qð�4 � pÞ �Qð�5 � pÞ, where

H0 is a hyperplane not through p. That is, 5 2 Gð1Þp ðQÞ. Simi-

larly, div L2
pH1

� �
2 Qð�5 � pÞ �Qð�6 � pÞ, whereH1 is a hyper-

plane passing through p with multiplicity 1. That is,

6 2 Gð1Þp ðQÞ.

Now, the spaces Qð�7 � pÞ ¼ . . . ¼ Qð�ls � pÞ consist of
divisors of cubic curves of the formDPH, whereH is an arbitrary

line. Hence, 7 2 Gð1Þp ðQÞ. On the other hand, the space

Qð�ð1þ lsÞ � pÞ consists of divisors of cubic curves of the form
DPH, where H is a hyperplane through p. Consequently,

1þ ls 2 Gð1Þp ðQÞ. Also, the spaceQð�ð2þ lsÞ � pÞ contains only
the cubic divisor DPLp. Then, 2þ ls 2 Gð1Þp ðQÞ. Finally,

Qð�‘:pÞ ¼ /, for ‘ P 3þ ls. That is, 3þ ls 2 Gð1Þp ðQÞ. h

Corollary 2.12. Let p be a sextactic point on a smooth projective
non-hyperelliptic curve X of degree 6. Then, the geometry of such
points is given by Table 2:



Table 2 Geometry of sextactic points.

xð1Þp ðQÞ Gð1Þp ðQÞ Geometry

3 {1, 2, 3, . . . , 7, 9, 10, 11} 3-Sextactic

6 {1, 2, 3, . . . , 7, 10, 11, 12} 4-Sextactic

9 {1, 2, 3, . . . , 7, 11, 12, 13} 5-Sextactic

12 {1, 2, 3, . . . , 7, 12, 13, 14} 6-Sextactic

15 {1, 2, 3, . . . , 7, 13, 14, 15} 7-Sextactic
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Proof. It follows, by Theorem 2.11 and Bezout’s theorem, that
Dp meets X at p with 8 6 ls 6 12. Hence, varying ls produces
the last table. h

Corollary 2.13. If a smooth projective curve X of degree 6 has 1-

sextactic or 2-sextactic points, then X is hyperelliptic.

Corollary 2.14. On a smooth non-hyperelliptic projective curve
X of degree 6, the 1-weight of a sextactic point is given by
xð1Þp ðQÞ ¼ 3ls � 21, where ls is the multiplicity of the osculating

conic Dp at p.

Proof. If p is a sextactic point on C, then
Gð1Þp ðQÞ ¼ f1; 2; 3; . . . ; 7; 1þ ls; 2þ ls; 3þ lsg. Consequently,

xð1Þp ðQÞ :¼ Rg
r¼0ðnr � rÞ

¼ ð1þ ls � 8Þ þ ð2þ ls � 9Þ þ ð3þ ls � 10Þ
¼ 3ls � 21: �

Notation. S
ðqÞ
i ðXÞ will denote the set of i-sextactic points which

are q-Weierstrass points on X and NS
ðqÞ
i ðXÞ will denote the car-

dinality of the set S
ðqÞ
i ðXÞ.

Corollary 2.15. For a smooth non-hyperelliptic projective
curve X of degree 6, the maximal cardinality of S

ð1Þ
i ðXÞ is

given by

NS
ð1Þ
i ðXÞ 6

990

3ðiþ 5Þ � 21

� �
;

where i ¼ 3; 4; 5; 6; 7 and ½m� is the greatest integer less than or
equal to m.
2.3. Tentactic points

Definition 2.16 (11,18). A point p on a smooth plane curve C of
genus g P 2, which is neither flex nor sextactic point, is said to
be a tentactic point, if there a cubic Ep which meets C at p with

contact order at least 10. The positive integer t such that
i :¼ IðC;Ep; pÞ � 9 is called the tentactic order of p. Moreover,
the point p is said to be i-tentactic.

Theorem 2.17. Let p be a tentactic point on a smooth projective

non-hyperelliptic curve X of degree 6 and let Ep be its osculating
cubic curve such that IðX;Ep; pÞ ¼ lt. Then Gð1Þp ðQÞ ¼
f1; 2; 3; . . . ; 9; 1þ ltg. Moreover, the geometry of such points

is given by the table:
xð1Þp ðQÞ Gð1Þp ðQÞ Geometry

1 {1,2,3,. . .,9,11} 1-tentactic

2 {1,2,3,. . .,9,12} 2-tentactic

3 {1,2,3,. . .,9,13} 3-tentactic

4 {1,2,3,. . .,9,14} 4-tentactic

5 {1,2,3,. . .,9,15} 5-tentactic

6 {1,2,3,. . .,9,16} 6-tentactic

7 {1,2,3,. . .,9,17} 7-tentactic

8 {1,2,3,. . .,9,18} 8-tentactic
Proof. Since the point p is neither flex nor sextactic, then

dim Qð�‘ � pÞ ¼ 9� ‘ for ‘ ¼ 1; 2; 3; . . . ; 9:

Hence, 1; 2; 3; . . . ; 9 2 Gð1Þp ðQÞ. Moreover, assuming that
IðX;EpÞ ¼ lt, then

div ðEpÞ 2 Qð�lt � pÞ �Qð�ð1þ ltÞ � pÞ:

Therefore, 1þ lt 2 Gð1Þp ðQÞ. Consequently, GpðQÞ ¼ f1; 2;
3; . . . ; 9; 1þ ltg. Finally, 19 R Gð1Þp ðQÞ as n10 6 18. h

Corollary 2.18. If a smooth projective curve X of degree 6 has 9-
tentactic points, then X is hyperelliptic.

Notation. T
ðqÞ
i ðCÞ will denote the set of i-tentactic points which

are q-Weierstrass points on X and NT
ðqÞ
i ðXÞ will denote the

cardinality of the set T
ðqÞ
i ðXÞ.

Corollary 2.19. For a smooth projective non-hyperelliptic curve
C of degree 6, the maximal cardinality of T

ð1Þ
i ðXÞ is given by the

following inequality

NT
ð1Þ
i 6

990

i

� �
;

where i ¼ 1; 2; 3; . . . ; 8 and ½m� is the greatest integer less than or
equal to m.
3. Concluding remarks

We conclude the paper by the following remarks and

comments.

� In this article, the 1-gap sequence of the 1-Weierstrass

points on smooth non-hyperelliptic algebraic curves of
degree 6 is computed. Furthermore, the geometry of Wei-
erstrass points is classified as flexes, sextactic and tentactic
points. On the other hand, we show that a smooth non-

hyperelliptic curve of degree 6 has no 4-flex, no 1-sextactic,
no 2-sextactic and no 9-tentactic points. Also, an upper
bound for the numbers of flexes, sextactic and tentactic

points on such curves is estimated.
� The main theorems constitute a motivation to solve more
general problems. One of these problems is the investigation

of the geometry of higher order and multiple Weierstrass
points on non-hyperelliptic degree 6 curves.Another
problem is combining the main results together with the

classification of degree 6 non-hyperelliptic curves in [19]
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to study the orbits and fixed points of cyclic automorphisms

and its interrelation with q-Weierstrass points. However,
these problems will be the object of a forthcoming work.
� The idea of the proof of Theorems 2.5, 2.11 and 2.17 may

be applied for general non-singular plane curves of degree
d in order to obtain a general statement covering the plane
curves of any degree.
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