
H
i
t
h
b
b
p
s
o
i
H
r
e
r
t
c
o
a
o

S

W
“
l

F
m
T
B
f
D

a

Journal of the American College of Cardiology Vol. 52, No. 12, 2008
© 2008 by the American College of Cardiology Foundation ISSN 0735-1097/08/$34.00
P

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
STATE-OF-THE-ART PAPER

Hemoxygenase-1 in Cardiovascular Disease

Naglaa K. Idriss, MSC, Andrew D. Blann, PHD, Gregory Y. H. Lip, MD

Birmingham, United Kingdom

Hemoxygenase (HO)-1 is an inducible isoform of the first and rate-controlling enzyme of the degradation of
heme into iron, carbon monoxide, and biliverdin, the latter being subsequently converted into bilirubin. Sev-
eral positive biological effects exerted by this enzyme have gained attention, as anti-inflammatory, anti-
apoptotic, angiogenic, and cytoprotective functions are attributable to carbon monoxide and/or bilirubin.
Thus, the physiological induction of HO-1 may be an adaptive and beneficial response to several possibly
noxious stimuli, including heme itself, suggesting a potentially autoprotective and autodefensive role in sev-
eral pathophysiological states including acute coronary syndromes and stroke. This review article provides a
comprehensive overview of the biochemistry, physiology, and pathophysiology of HO-1 in relation to cardio-
vascular disease (CVD). Furthermore, we present some of the emerging evidence in support of the view that
the induction of the HO-1 gene may be a new opportunity to target the pathophysiology of CVD, with thera-
peutic implications for management. (J Am Coll Cardiol 2008;52:971–8) © 2008 by the American College
of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2008.06.019
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emoxygenase (HO)-1, which is inducible by factors that
nclude heavy metals and reactive oxygen species, catalyzes
he first and rate-controlling step of the degradation of
eme into ferrous (Fe2�) iron, carbon monoxide (CO), and
iliverdin, the latter being subsequently converted into
ilirubin (1). These products may have physiological and
athological functions, such as in protection from oxidative
tress, a process that may be important in the pathophysi-
logy of several cardiovascular diseases (2,3). The growing
nterest in HO-1 is now such that the induction of the

O-1 gene has been proposed as a new therapy (4). In this
eview article, we provide a comprehensive overview of
nzymatic and biological aspects of HO-1, as well as its
eaction products (chiefly, CO and bilirubin) that illustrate
he significance of this molecule in the pathophysiology of
ardiovascular disease (CVD). In addition, we present some
f the salient lines of evidence in support of the therapeutic
nd clinical implications of the modification of the activity
f this enzyme.

earch Strategy

e performed a literature search (1966 to May 2008) on
haemoxygenase-1” and “heme-oxygenase-1” using Med-
ine, EMBASE, PubMed, and Cochrane electronic biblio-

rom the Haemostasis, Thrombosis and Vascular Biology Unit, University Depart-
ent of Medicine, City Hospital, Birmingham, United Kingdom. The Haemostasis
hrombosis and Vascular Biology Unit is supported by the Sandwell and West
irmingham Hospitals NHS Trust Research and Development Unit. Dr. Idriss was

unded by the Egyptian Government and is currently an Assistant Lecturer at the
epartment of Biochemistry, Faculty of Medicine, Assiut University, Egypt.
t
Manuscript received March 28, 2008; revised manuscript received June 5, 2008,

ccepted June 9, 2008.
raphic databases, as well as scanned relevant reference lists
rom included articles.

iochemistry and Genetics of HO-1

emoxygenase, originally identified by Tenhunen et al. (5),
as 3 isoforms. The first, HO-1, is a 32-kDa protein,

nducible by numerous stimuli, that catalyzes the first and
ate-limiting step in the degradation of the protoporphyrin
ing of tetrapyrrole heme from effete red blood cells,
ielding equimolar quantities of biliverdin IXa, CO, and
ron (5,6). Biliverdin (through the action of biliverdin
eductase) is converted to bilirubin, and iron is sequestered
nto ferritin. Interestingly, HO-1 utilizes heme as both a
rosthetic group and a substrate (1). The second isoform of
emoxygenase, HO-2, a constitutively synthesized 36-kDa
rotein, is generally unresponsive to any of the inducers of
O-1. The third isoform, HO-3, also catalyzes heme

egradation, but much less so when compared with HO-2
7,8). Although heme is the typical HO-1 inducer, others
nclude endotoxin, heavy metals, oxidants, and hypoxia
Table 1). A common feature of several of these inducers is
heir ability to generate reactive oxygen species, suggesting
hat HO-1 provides potent cytoprotective effects (9–16)
Table 1).
ilirubin. Several lines of evidence suggest that biliverdin

nd bilirubin may be part of a cell defense strategy in
esponse to oxidative stress. Both molecules are natural
ntioxidants, and high-normal serum levels of bilirubin are
nversely related to the atherogenic risk, possibly by inhib-
tory effects against low-density lipoprotein oxidation and

he scavenging of oxygen radicals (17,18). Additionally, an

https://core.ac.uk/display/82448948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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inhibitory effect on protein ki-
nase C and protein phosphoryla-
tion activity has been shown,
both of which lead to inhibition
of proatherogenic factors (19,
20). Bilirubin also provides car-
dioprotection against reperfusion
injury, such as by the suppression
of the oxidation of lipid mem-
branes (21,22). The hypothesis
that the protection provided by
bilirubin in the ischemic myocar-
dium could be clinically signifi-
cant is supported by an inverse
correlation between plasma bili-
rubin and the risk of coronary
artery disease (CAD) and de-

reased antioxidant activity of bilirubin in atherosclerotic
esions (23–25). The increased intracellular bilirubin as a
onsequence of HO-1 induction also implies that CO
roduction may be enhanced. Indeed, Morita et al. (17)
ave suggested that stimuli that amplify the generation of
ilirubin also act in an adaptive reaction against oxidative
nsults, so that the action of the HO-1 pathway in raising
ndogenous bilirubin levels may represent an additional
ption in frustrating oxidative stress that may, eventually,
ave relevant clinical impact.
arbon monoxide. Morita et al. (17) also summarized the

vidence that CO has a physiological role in the regulation
f vascular tone similar to that of nitric oxide (NO), one
echanism for which may be increased intracellular cyclic

uanine monophosphate (cGMP) (26). However, the pre-
ise physiological significance of CO in relation to NO as a
asodilator is contentious. For example, the increase in
GMP is induced in vitro by perhaps 130-fold by NO,
hereas it is only induced 4-fold by CO. Rodent models

uggest that overproduction of CO might impair NO-
licited generation of soluble guanylate cyclase, resulting in
nhibition of the cGMP increase in the aortas of transgenic

ice that over-expressed HO-1, suggesting that CO may

Abbreviations
and Acronyms

CAD � coronary artery
disease

cGMP � cyclic guanine
monophosphate

CO � carbon monoxide

CVD � cardiovascular
disease

GT � glutathione thymidine
dinucleotide

HO � hemoxygenase

NO � nitric oxide

VEGF � vascular
endothelial growth factor

nducers/Stimulators of HO-1 Activity

Table 1 Inducers/Stimulators of HO-1 Activity

Cytokines (IL-10, IL-13, IL-18)

Endotoxin*

Growth factors (TGF-beta, PDGF, VEGF)

Heme

Heavy metals (e.g., sodium arsenite, cadmium, tin, lead)

Hypoxia* and hyperoxia*

Nitric oxide

Oxidants (e.g., hydrogen peroxide,* peroxynitrile*)

Oxidized LDL

Thiol scavengers

Ultraviolet radiation*

ooled from references 9–17, 70, 71, and elsewhere. *Also promotors of oxidative stress.
t
HO � hemoxygenase; IL � interleukin; LDL � low-density lipoprotein; PDGF � platelet-derived

rowth factor; TGF � transforming growth factor; VEGF � vascular endothelial growth factor.
esult in protection from acute hypertension (27,28). Car-
on monoxide may also limit the development of vascular
iseases because of an effect on smooth muscle cell prolif-
ration and death, whereas lack of HO-1 in (�/�) KO
ice leads to pulmonary hypertension (29–31).

ron. Ferrous iron, a possible electron donor with cyto-
oxic potential in generating reactive oxygen species is an
dditional regulator of HO-1 (32). Thus ferritin, primar-
ly a liver-derived, iron-binding protein, may act as an
ndirect antioxidant by sequestering iron. The augmen-
ation of intracellular ferritin through HO-1 reduces the
ytotoxic effects of heme and hydrogen peroxide in
ascular endothelial cells (33), and may protect against
schemia-reperfusion injury through its cytoprotective
ffects on the endothelium and its ability to keep labile
ron pools low and thereby reduce oxidant-induced lipid
eroxidation (34). However, one hesitates to leap to the
onclusion that these relationships are causal. Neverthe-
ess, the weight of published data suggests that, of the 3
roducts of HO-1, the potentially protective effects of
ilirubin and/or CO seem likely to exceed the potentially
armful effects of iron.

athophysiological Processes of HO-1

he previous section provided evidence to suggest that
O-1 can (through its products CO and bilirubin) function

s a potentially important cytoprotective molecule. Many
orkers assume that the up-regulation of HO-1 by stress-

ausing agents could mediate cytoprotection against subse-
uent noxious stimuli and that this can be an important
hysiological process. However, although physiologically

ow concentrations of heme are cytoprotective as they
nduce the rapid up-regulation of HO-1, excess pathological
mounts of heme out-strip the ability of HO-1 to metab-
lize it so that residual heme (librating free iron) may act
eleteriously on tissue by pro-oxidative and proinflamma-
ory effects (35–37). Mechanisms by which HO-1 provides
rotection against cardiopathology include antioxidant ac-
ivity of bilirubin (22–25), sequestration of iron by ferritin
33), and an antifibrinolytic and vasodilative effect of CO
26–31,38) (Fig. 1).
nflammation and antioxidant function. The mecha-
isms by which HO-1 is anti-inflammatory generate con-
iderable research activity but remain unclear, although
nimal model clues exist, such as a relationship between
O-1 and cytokines (39–41). A rat model of hepatic

schemic and reperfusion injury (which activates toll-like
eceptor-4 signaling) has been used as evidence of a novel
echanism by which HO-1 exerts adaptive cytoprotective

nd anti-inflammatory functions (41,42). In the latter,
obalt-protoporphyrin–induced HO-1 over-expression re-
uced liver damage and down-regulated activation of signal

ransducers and activator of transcription 1 by the type-1
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nterferon pathway downstream of toll-like receptor-4,
hich in turn decreased CXCL-10 production. The anti-
xidant activity of bilirubin may feed through to antiathero-
enic properties—possibly by protecting low density li-
oprotein cholesterol from oxidation (22,43,44).
poptosis. Hemoxygenase-1 appears to have a role in

educing the proapoptotic effects of tumor necrosis factor
TNF), hyperglycemia, and iron, some of which could
nvolve CO (45–48). At the intracellular level, this may

tudies Reporting the Association Between HO-1 and CAD in Huma

Table 2 Studies Reporting the Association Between HO-1 and

Author (Ref. #) Year n Disease

Chen et al. (80) 2005 135 AMI, UAP, SAP

Gulesserian et al. (76) 2005 199 CAD

Kaneda et al. (75) 2002 577 CAD

Li et al. (79) 2006 110 CAD

Figure 1 Schematic of
Hemoxygenase-1–Catalyzed Biochemical Reactions

Hem released from red blood cells is enzymatically converted into carbon mon-
oxide, bilirubin, and iron. The former is a vasodilator and promoter of angiogen-
esis. Bilirubin has potential antioxidant activity. Free ferrous iron has potential
pro-oxidant activity, although this may be limited by its sequestration by ferritin.
MI � acute myocardial infarction; CAD � coronary artery disease; GT � glutathione thymidine dinucleo
nvolve expression of p38 mitogen-activated protein kinase
nzymes and possibly the activation of nuclear factor kappa

(49,50). Adenovirus-mediated transfection of the HO-1
ene into rat hearts resulted in a reduction in infarct size
hat was accompanied by decreases in lipid peroxidation and
n proapoptotic Bax and proinflammatory interleukin-1-
eta protein abundance, with a parallel increase in antiapop-
otic Bcl-2 protein level (51). Various models of transplan-
ation, hyperglycemia, and tissue culture suggest HO-1
nhibits apoptosis by suppressing cytotoxic, inflammatory,
nd signaling cytokines (52–55).

ypoxia and ischemia/reperfusion injury. Hypoxia is
hought to be a key determinant in clinical pathology, and
hus several lines of research have linked it (albeit indirectly)
ith HO-1. For example, the HO-1–bilirubin pathway can
efend cells from reoxygenation injury, and restricting
ascular smooth muscle cell growth by increasing the release
f CO may represent a route to limiting pulmonary hyper-
ension (56,57). Interestingly, in a rat model, monotherapy
ith either CO or biliverdin did not alter the survival of
eart grafts, and dual treatment increased survival from 0%
o 80%, with a significant decrease of myocardial injury and
mproved cardiac function (58). This provides tantalizing
ata that may conceivably translate into a human therapy, as
s implied by various reviewers, for example, Chen et al. (59)
nd Immenschuh and Schroder (60).
ngiogenesis. A link between HO-1 and angiogenesis is

elatively recent. Transfection of rabbit cells with the human
O-1 gene resulted in a 2-fold increase in blood vessel

ormation (61); other investigators used a transfection
odel to show increased blood flow and, crucially, a

elationship with the angiogenic stimulant vascular endo-
helial growth factor (VEGF) (62,63). Jozkowicz et al. (64)
howed that CO could drive VEGF expression, and Bus-
olati et al. (65) linked inflammation with angiogenesis by
roposing a dual action of HO-1 in an anti-inflammatory
ction and in the promotion of VEGF-driven angiogenesis.
he role of HO-1 in angiogenesis has been recently

eviewed (66,67).
Thus, interest in HO-1 in cardiology may be justified by

spects such as inflammation, antioxidant functions, apo-
tosis, hypoxia, and ischemia/reperfusion injury, and angio-
enesis (Fig. 1).

in Humans

Key Findings

expression in patients with CAD significantly higher than in patients without CAD.

HO-1 level inducibility, may represent an independent prognostic marker for
stenosis after angioplasty.

ents with shorter GT (�25 repeats) less likely to have CAD than patients with long
T (�29 repeats).

ificantly higher HO-1 protein leukocyte expression in patients with CAD than in
atients without CAD.
ns

CAD

HO-1

Low
re

Pati
G

Sign
p

tide; HO � hemoxygenase; SAP � stable angina pectoris; UAP � unstable angina pectoris.
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linical Aspects of HO-1 in CVDs

he evidence for the protective role of HO-1 in clinical
VD is not only supported by experimental findings in cell

ulture and animal models (as discussed) but also by clinical
tudies in humans (Tables 2 and 3).

enetics of HO-1. Exner et al. (68) reported that the
umber of glutathione thymidine dinucleotide (GT) repeats

n the promoter region of the HO-1 gene modulates the
evel of gene transcription. The presence/absence of short/
ong GT repeats had a bearing on 6-month restenosis after
emoropopliteal balloon dilatation, possibly associated with
ifferences in levels of inflammatory marker C-reactive
rotein (69). They also reported that this polymorphism
ay be important in abdominal aortic aneurysm and renal

but not cardiac) allografting (70 –72). A 21-month
ollow-up of 472 patients with peripheral artery disease
ndicated that the HO-1 genotype is potentially protective
gainst adverse coronary events (73). Others (74,75) have
lso looked at this polymorphism in CAD and/or diabetes
ellitus, speculating that diabetic persons carrying longer

GT) repeats might have higher oxidative stress and in-
reased susceptibility to the development of CAD (i.e., the
atients with fewer GT repeats were less likely to have
AD). The long (�29 repeats) polymorphic allele of the
O-1 gene promoter, which leads to low HO-1 inducibil-

ty, may be an independent prognostic marker for restenosis
fter percutaneous coronary intervention and stent implan-
ation (76). Another polymorphism [the T(�413)A (AA/
A�TT) variant] of the HO-1 gene is associated with an

ncreased incidence of hypertension in women (77). Other
olymorphisms and a microsatellite marker seem to have no
ignificant role on outcome of kidney transplantation (78).
AD. Considerable animal data justify interest in HO-1 in
uman CAD, where the clear implication is that increased
ctivity of the HO-1 gene (and therefore its products) is
eneficial. Expression of the HO-1 protein was assessed in
onocytes and lymphocytes from patients with acute myo-

ardial infarction, patients with unstable angina pectoris,
nd patients with stable angina pectoris (79,80). There were
ignificant differences of HO-1 expression—highest for the
roup with acute myocardial infarction, followed by the
roup with unstable angina pectoris, and finally by the

tudies Reporting the Association of HO-1 With PVDs and DM

Table 3 Studies Reporting the Association of HO-1 With PVDs

Author (Ref. #) Year n Disease

Chen et al. (74) 2002 474 DM

Schillinger et al. (70) 2002 271 CAD, AAA, PAD

Schillinger et al. (69) 2004 381 PVD

Dick et al. (73) 2005 472 PVD

AA � abdominal aortic aneurysms; DM � diabetes mellitus; GT � glutathione thymidine dinucle
ther abbreviations as in Table 2.
roup with stable angina pectoris. Within the patients with a
ngiographically-defined CAD, HO-1 was highest in those
ith a greater disease burden. One interpretation of these
ata is that higher HO-1 expression is a consequence of the
isease process and so may be a defense (self-limiting)
echanism. Morsi et al. (81) provided insightful data by

btaining endothelial cells from patients with advanced or
arly lesions and from coronary arteries free of disease. The
O-1 expression and (crucially) its biological activity (in

erms of bilirubin release per mg of protein) were only
resent in cells from advanced atherosclerotic lesions. In-
erestingly, there also is a strong correlation between HO-1
nd VEGF, although one hesitates before leaping to the
onclusion that this raised VEGF may have been driven by
O-1 and/or its products.
iabetes mellitus. In humans, the (GT)n HO-1 gene

romoter polymorphism may influence clinical outcome, a
utative mechanism being resistance/susceptibility to oxida-
ive stress (74–76). De Silva et al. (82), examining retinal
igment epithelium, found significantly decreased levels of
O-1 messenger ribonucleic acid (mRNA), namely, 340 to

50 HO-1 mRNA copies/ng of total ribonucleic acid, in
issue from diabetic patients as compared with 425 to 8,000

O-1 mRNA copies/ng of total ribonucleic acid in retinal
igment epithelium from normal donors and 460 to 7,605
opies/ng in hypertensive donor eyes. Increased monocyte
O-1 gene expression in diabetic patients falls upon met-

bolic improvement, possibly related to oxidative stress,
lthough others found lower HO-1 skeletal muscle cell
xpression (83,84). Leukocyte HO-1 gene expression is
ignificantly lower in patients with and without diabetic
icroangiopathy compared with control subjects, correlates

egatively with a marker of oxidative stress, glycosylated
emoglobin, and diabetes duration, and normalization of
lood glucose results in a reduction in HO-1 antigen in the
ytoplasm of mononuclear leukocytes (85,86). Arredondo et
l. (87) assessed the length of (GT)n repeats in the HO-1
ene promoter and also HO-1 enzymatic activity in mono-
uclear cells from diabetic patients. Although patients had
ignificantly greater iron stores and HO activity than did
ontrol subjects, with a positive association between serum
ron and HO activity in the diabetic patients, allelic fre-
uency did not differ significantly between diabetic patients

M

Key Findings

r expression of long GT repeats (�32), thus might have higher oxidative stress and
eased risk for CAD.

ant differences of HO-1 expression among 3 groups of patients: group with AAA
lower risk than other groups; thus up-regulation of HO-1 may be a protective anti-
mmatory factor against development of AAA.

ant short (�25 GT) repeats in HO-1 gene expression confer a reduced risk for
enosis after balloon angioplasty.

ant short (�25 GT) repeats in HO-1 gene expression confer a reduced risk for MI.

I � myocardial infarction; PAD � peripheral artery disease; PVD � peripheral vascular disease;
and D
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nd control subjects.
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erebrovascular disease. Beschorner et al. (88) demon-
trated increased accumulation of HO-1� microglia/
acrophages at hemorrhagic lesions as early as 6 h after

raumatic brain injury trauma that was still pronounced after
months. In contrast, after focal cerebral infarctions,

O-1� microglia/macrophages accumulated within focal
emorrhages only and were absent in nonhemorrhagic
egions. They speculated that prolonged expression of

O-1 in glial cells in human brains after traumatic brain
njury and cerebral infarction helps in the recovery of
euronal tissue after these insults. Morgan et al. (89)
ssessed the role of GT repeats in the HO-1 promotor in 69
atients with cerebral aneurysms and 230 age-matched
ontrol subjects, and found that patients were more likely to
ave more than 36 repeats than were control subjects. The
uthors speculate that facilitated up-regulation of HO-1
ay be protective against the development of intracranial

neurysms. They wisely point out, however, that because of
he relatively small sample size and modest statistical sig-
ificance, the data must be interpreted with caution and the
ssociation needs to be confirmed in large studies. For
xample, follow-up of 472 patients with advanced periph-
ral artery disease found that the status of the short/long
T genotype failed to identify 40 patients who had a

erebrovascular event but did instead associate with 48
atients who had a coronary event (73).

Role for HO-1 in CVD?

aturally, a caveat for the association(s) between greater
ctivity of the HO-1 gene, its enzyme product, and the
roducts of the enzyme relate to “cause or effect” phenom-
non. It could be argued that raised levels and activity
imply reflect more serious disease and an attempt by the
ody to limit the disease. Although data point to the
ikelihood that the activity of HO-1 leads to an active
rotection against the disease process, that may be one
peculation too far. Perhaps the disease process effectively
wamps the ability of HO-1 to limit cell damage that could
ead to clinical disease (Tables 2 and 3). Possible mecha-
isms by which HO-1 contributes to pathogenesis are
ummarized in Figure 1.

Unsurprisingly, the combination of tissue protective and
mooth muscle relaxing properties makes HO-1 an inter-
sting objective for the drug treatment of CVD (4). Im-
enschuh and Ramadori (90) speculated that the therapeu-

ic approaches intended at moderately increasing HO-1
xpression in tissue might be beneficial in a number of
isease states that probably relate to vascular disorders.
eaving aside the potential of gene therapy as being distant

rom the clinic (91), some current pharmacological agents
ct to induce HO-1. Some statins seem able to increase
ndothelial HO-1 mRNA levels in a concentration- and
ime-dependent fashion, although, whereas atorvastatin en-
ances the expression of endothelial nitric oxide synthase,

O-1 is not significantly affected (92–94). However, other w
tudies show that simvastatin activates HO-1 in vascular
mooth muscle cells in vitro and in vivo (95). Aspirin (30 to
00 �M) increased human umbilical vein endothelial cell
O-1 protein levels in a concentration-dependent fashion up

o 5-fold over basal levels (96), and more recent evidence points
o a possible role for a peroxisome proliferators-activated
eceptors system (97).

onclusions

everal of the numerous pathophysiological processes in
therosclerosis are, in theory, amenable to the action of 2 of
he products of HO-1 (i.e., CO and bilirubin), whereas the
hird (i.e., iron) may be toxic. However, iron may be
equested by ferritin, and the vast weight of published
eports focuses on possible benefits of CO and bilirubin. For
xample, oxidative injury (such as to low-density lipoprotein
holesterol), which is thought to be a common feature of
any pathophysiological processes, may be attenuated by
O-1. Thus, CO and bilirubin may play an important

eneficial role in conditions such as hypertension, acute
enal injury, and lung injury (17,37), and may well operate
hrough the up-regulation of HO-1 in endothelial cells by
arious stimuli (such as hypoxia).

In addition, HO-1 is induced by some of the well-
stablished cardiovascular risk factors, and appears to have a
rotective role in the vascular wall against atherogenesis
hrough several pathways. However, in contrast to the
mplication of intracellular and pericellular activity of

O-1, little is known about plasma levels of this enzyme
nd, in particular, whether raised or lowered levels are
resent in CVD, and if such levels correlate with bilirubin
nd other plasma biomarkers. For example, if there is raised
lasma HO-1 in CVD, is this indicative of potential or
resent protection (possibly driven by the pathology) or
ould it simply reflect leakage from damaged cells?
A number of therapeutic agents that are able to
anipulate HO-1 gene expression have been recognized,

uggesting that manipulation of the HO-1 gene might be
new avenue in the prevention and/or treatment of CVD

5,90). However, the more direct gene therapy approach,
roven in animals, remains an intriguing opportunity to
reat cardiovascular (and other) diseases. Nevertheless,
hether these preliminary but promising reports come to

ruition in the clinical setting is unknown, and a continu-
ng weakness in the study of HO-1 is the lack of good
linical data. One example is a fascinating case report of

6-year-old boy with severe HO-1 deficiency (98).
onsistent with the cell biology and animal models
escribed above (Fig. 1), he exhibited hematuria, pro-
einuria, a microcytic hemolytic anemia, increased iron-
inding capacity, ferritin, and iron deposition alongside
aised von Willebrand factor (marking endothelial cell
amage). Crucially, serum bilirubin was constantly low

hereas serum heme was extremely high. Undoubtedly,
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ore attention to HO-1 biology may provide novel
nsights into the pathophysiology of CVD.
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