Bounds for the generalized repetition threshold

Francesca Fiorenzi ${ }^{\text {a,* }}$, Pascal Ochem ${ }^{\text {a,b }}$, Elise Vaslet ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire de Recherche en Informatique, UMR 8623, Université Paris-Sud, 91405 Orsay, France
${ }^{\mathrm{b}}$ CNRS - Laboratoire J.-V.Poncelet, UMI 2615, Moscow, Russian Federation
${ }^{\text {c }}$ Institut de Mathématiques de Luminy, UMR 6206, Université Aix-Marseille II, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France

ARTICLE INFO

Keywords:
Generalized repetition threshold

Abstract

The notion of the repetition threshold, which is the object of Dejean's conjecture (1972), was generalized by Ilie et al. (2005) [8] to include the lengths of the avoided words. We give a lower and an upper bound on this generalized repetition threshold.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study of repetitions in words has been one of the main topics in combinatorics on words. Thue [13] showed the existence of an infinite square-free word on three letters, that is without concatenated occurrences of the same non-empty factor. This fact was actually implied by the existence of an infinite binary overlap-free word (i.e., without factors of the form uvuvu with u non empty).

A natural extension of this problem takes into account repetitions of fractional exponent, where the exponent of a non-empty finite word is the ratio between its length and its period. This notion has been introduced by Dejean [7] and Brandenburg [1]. Dejean proved the existence of an infinite word over a three-letter alphabet without repetitions of exponent strictly greater than $7 / 4$. This bound is the best possible because every sufficiently long word over a three-letter alphabet contains a repetition of exponent at least 7/4. The least real number $\alpha>1$ such that there exists an infinite word on k letters avoiding repetitions of exponent strictly greater than α is called the repetition threshold on k letters. Thus Thue's result implies that the repetition threshold on two letters is 2 , while Dejean's result means that the repetition threshold on three letters is $7 / 4$.

Dejean observed that for $k \geq 5$, the repetition threshold is not smaller than $\frac{k}{k-1}$, while for $k=4$ it is not smaller than $7 / 5$. She conjectured that these are the actual values of the repetition thresholds. This conjecture has been proved true for $k=4$ by Pansiot [11]. For $k \geq 5$, the conjecture has been solved thanks to the contribution of many authors: Moulin-Ollagnier [10], Currie and Mohammad-Noori [3], Rao [12], Currie and Rampersad [6,4,5], and Carpi [2].

In [8] the authors generalize the repetition threshold of Dejean to handle avoidance of repetitions with sufficiently long period. They define $R(k, \ell)$ as the least real number $\alpha>1$ such that there exists an infinite word on k letters avoiding repetitions of exponent strictly greater than α and of period not smaller than ℓ. This naturally extends the classical notion of the repetition threshold. Moreover, in [8] its value has been calculated in some particular cases and general lower and upper bounds have been given. In this paper we improve these bounds by studying the asymptotics of the generalized repetition threshold. Part of this paper was presented at the conference WORDS 2009.

2. Definitions

Let $\alpha>1$ be a rational number, and let $\ell \geq 1$ be an integer. A word w is an (α, ℓ)-repetition if $w=(u v)^{n} u$, where $|u v|=\ell$ and $\alpha=\frac{|w|}{\ell}$. In this case α is called exponent of the repetition and ℓ its period. Notice that in our definitions,

[^0]exponent and period of a repetition are not univocally defined. For instance, the word aabcaabcaa on the alphabet $\{a, b, c\}$ is a $\left(\frac{5}{2}, 4\right)$-repetition, a $\left(\frac{5}{4}, 8\right)$-repetition and a $\left(\frac{10}{9}, 9\right)$-repetition. We say a word that (α, ℓ)-free if it contains no factor that is an ($\alpha^{\prime}, \ell^{\prime}$)-repetition with $\alpha^{\prime} \geq \alpha$ and $\ell^{\prime} \geq \ell$. We say a word that (α^{+}, ℓ)-free if it is (α^{\prime}, ℓ)-free for all $\alpha^{\prime}>\alpha$. Finally, a word is α-free if it does not contain a repetition with exponent $\geq \alpha$ and is α^{+}-free if it is α^{\prime}-free for all $\alpha^{\prime}>\alpha$.

Let Σ_{k} denote the k-letter alphabet $\{0,1, \ldots, k-1\}$. For integers $k \geq 2$ and $\ell \geq 1$, the generalized repetition threshold $R(k, \ell)$ is defined as the smallest real number α such that there exists an infinite $\left(\alpha^{+}, \ell\right)$-free word over Σ_{k}. Indeed, there always exists an infinite $\left(R(k, \ell)^{+}, \ell\right)$-free word over Σ_{k}. Nevertheless, as pointed out in [8], there is no known instance of $\mathrm{a}(R(k, \ell), \ell)$-free infinite word. Finally, notice that by definition, $R(k+1, \ell) \leq R(k, \ell)$ and $R(k, \ell+1) \leq R(k, \ell)$.

The finiteness of $R(k, \ell)$ is due to the existence of an infinite binary overlap-free word. Ilie et al. [8] also obtained a lower bound on $R(k, \ell)$, namely

$$
1+\frac{\ell}{k^{\ell}} \leq R(k, \ell) \leq 2
$$

The aim of the paper is to improve the above inequalities.
The case $\ell=1$ corresponds to the classical repetition threshold and the values of $R(k, 1)$ are now all determined. Moreover, the proof of our upper bound explicitly uses the fact that $R(k, 1)=\frac{k}{k-1}$ for $k \geq 5$.

3. Lower bound

A natural way of obtaining a bound of the form $R(k, \ell) \geq \alpha$ is to show that there is no infinite word over Σ_{k}^{*} which is (α, ℓ)-free. In this section we give lower bounds on $R(k, \ell)$. We treat separately the cases $k=2, \ell \geq 2$ (Theorem 1), $k \geq 2, \ell=2$ (Theorem 4) and $k, \ell \geq 3$ (Theorem 14).
Theorem 1. $R(2, \ell) \geq 1+\frac{2}{\ell+2}$.
Proof. Suppose for the sake of contradiction that $R(2, \ell)<1+\frac{2}{\ell+2}$. That is, there exists an infinite binary word w with no repetition of period $\geq \ell$ and exponent $\geq 1+\frac{2}{\ell+2}$. In particular, repetitions uvu such that $|u|=2$ and $\ell \leq|u v| \leq \ell+2$ cannot appear in w. Moreover, we can assume without loss of generality that w is double-infinite, that is, infinite in both directions. We say that a factor is forbidden if it cannot appear in w.

First, we check that the factor 0010 is forbidden. Indeed, if 0010 was a factor of w, then w would have a factor of the form $u_{1} u_{2} 0010 v_{1} v_{2}$, with $\left|u_{1}\right|=\left|v_{2}\right|=4,\left|u_{2}\right|=\ell-3$ and $\left|v_{1}\right|=\ell-2$. The following picture illustrates the situation.

By previous considerations about the distances, we have that the blocks u_{1} and v_{2} coincide necessarily with 1111 . This creates a repetition of period $2 \ell+3$ and exponent $1+\frac{4}{2 \ell+3}>1+\frac{2}{\ell+2}$. Hence the factor 0010 and, by symmetry, the factors 0100,1101 , and 1011 , are forbidden.

Similarly, we check that the factor 0011 is forbidden. Otherwise we had a factor of the form $u_{1} u_{2} 0011 v_{1} v_{2}$, with $\left|u_{1}\right|=\left|v_{2}\right|=4$ and $\left|u_{2}\right|=\left|v_{1}\right|=\ell-3$.

The block u_{1} on the left of the factor 0011 must be of the form $\bullet 10 \bullet$, then $110 \bullet$, and finally 1100 since 1101 is forbidden. The block v_{2} on the right of the factor 0011 must be of the form $\bullet 10 \bullet$, then $\bullet 100$, and finally 1100 since 0100 is forbidden. This creates a repetition of period $2 \ell+2$ and exponent $1+\frac{2}{\ell+1}>1+\frac{2}{\ell+2}$.

The factor 001 is forbidden because 0010 and 0011 are forbidden. By symmetry, 100, 110, and 011 are also forbidden. Thus, the only remaining possibilities for w are the words ${ }^{\omega} 0^{\omega},{ }^{\omega} 1^{\omega}$, and ${ }^{\omega}(01)^{\omega}$, which obviously contain repetitions of an arbitrarily great exponent and period.

Theorem 1 is certainly not optimal, since numerical evidences suggest that $R(2, \ell)=1+\frac{1}{\ell / 3+1}$ for $\ell \geq 6, \ell=0(\bmod 3)$. We also mention that Kolpakov and Rao [9] have proved that $R(3, \ell) \geq 1+\frac{1}{\ell}$, which would be a tight lower bound for the conjecture in [8] that $R(3, \ell)=1+\frac{1}{\ell}$ for $\ell \geq 2$.

We now consider the problem for a general k. The (α, ℓ)-freeness of a word imposes conditions on the length of some of its factors. Such conditions are described in the following, and will be used in the proof of Theorems 4 and 14.

Definition 2. Let k, ℓ be integers, let $m \geq \ell$ be a real number, and let a be a letter in Σ_{k}. We denote by $\mathfrak{L}(k, \ell, m, a)$ the language of the words w over Σ_{k} such that the following conditions $\left(C_{i}^{\ell, m}\right)$ hold for $1 \leq i \leq \ell$
$\left(C_{i}^{\ell, m}\right):$ if $a^{i} x a^{i}$ is a subword of w, then $\left|a^{i} x\right|>i m$ or $\left|a^{i} x\right|<\ell$.
We denote by $\mathfrak{L}(k, \ell, m)$ the language $\bigcap_{a \in \Sigma_{k}} \mathfrak{L}(k, \ell, m, a)$.
Proposition 3. Let k, ℓ be integers, $m \geq \ell$ be a real number, and $w \in \Sigma_{k}^{*}$. If w is $\left(1+\frac{1}{m}, \ell\right)$-free, then, $w \in \mathfrak{L}(k, \ell, m)$.
Proof. Let a be a letter in Σ_{k}. Let $i \in\{1, \ldots, \ell\}$ be an integer. Suppose that w does not satisfy condition $\left(C_{i}^{\ell, m}\right)$, i.e., there exists a subword $a^{i} x a^{i}$ of w such that $\ell \leq\left|a^{i} x\right| \leq i m$. Then, $a^{i} x a^{i}$ is a repetition with period $\left|a^{i} x\right| \geq \ell$, and exponent

$$
\frac{\left|a^{i} x a^{i}\right|}{\left|a^{i} x\right|}=1+\frac{i}{\left|a^{i} x\right|} \geq 1+\frac{1}{m}
$$

Hence w is not $\left(1+\frac{1}{m}, \ell\right)$-free.
First we consider the case $\ell=2$, and look for a lower bound of $R(k, 2)$.
Theorem 4. Let $k \geq 2$. We have

$$
R(k, 2) \geq 1+\frac{1}{m}
$$

where $m=1+\left\lfloor\frac{3}{2}(k-1)\right\rfloor$.
Proof. As $m=1+\left\lfloor\frac{3}{2}(k-1)\right\rfloor$, we observe that $2 m+3 \geq 3 k+1$. Hence we have $(2 m+3) k>3 k^{2}+(k-1)$. Consider $r=3 k+1$ and a word $w \in \Sigma_{k}^{*}$ such that $|w|=r k+1$. Then, there exists a letter $a \in \Sigma_{k}$ such that

$$
|w|_{a} \geq r+1=3 k+2
$$

Suppose that w is $\left(1+\frac{1}{m}, 2\right)$-free. Then, as $m=1+\left\lfloor\frac{3}{2}(k-1)\right\rfloor \geq 2$, by Proposition 3, the word $w \in \mathfrak{L}(k, 2, m, a)$.
Conditions $\left(C_{1}^{2, m}\right)$ and $\left(C_{2}^{2, m}\right)$ imply that in w there are at least m letters between two non-consecutive occurrences of the letter a and at least $2 m-1$ letters between two occurrences of the factor $a a$.

We prove by induction on $s \in \mathbb{N}$ that any word in $\mathfrak{L}(k, 2, m, a)$ containing $3 s+2$ occurrences of the letter a is not shorter than $(2 m+3) s+2$.

This is evident for $s=0$. If the statement is true up to s, consider a word $v \in \mathfrak{L}(k, 2, m, a)$ containing $3(s+1)+2$ occurrences of the letter a. Then v can be written as

$$
v=v_{1} v_{2} \ldots v_{s+2}
$$

where v_{1} contains exactly two occurrences of a and for each $i \geq 2$, the factor v_{i} begins with a letter a and contains exactly three occurrences of this letter. Clearly we have that $\left|v_{s+2}\right| \geq 2 m+2$.

If the last letter of v_{s+1} is different from a, we have that the last m letters of v_{s+1} are different from a and we apply the inductive hypothesis on the prefix of v of length $\left|v_{1} v_{2} \ldots v_{s+1}\right|-m$. Thus $|v| \geq(2 m+3) s+2+m+2 m+2 \geq$ $(2 m+3)(s+1)+2$.

Otherwise, suppose that the last letter of v_{s+1} is a. If for each $2 \leq i \leq s+1$, the last letter of the factor v_{i} is a, then this factor v_{i} has the form $a x_{i} a y_{i} a$ with $\left|x_{i}\right|_{a}=\left|y_{i}\right|_{a}=0$. Thus

$$
v=v_{1} a x_{2} \text { a } y_{2} \text { aa } x_{3} \text { a } y_{3} a \ldots \text { a } \ldots x_{s} \text { a } y_{s} \text { aa } x_{s+1} \text { a } y_{s+1} \text { a } v_{s+2}
$$

and for each $i \geq 3$ we have $\left|x_{i}\right| \geq m$ and $\left|y_{i}\right| \geq m$. Moreover $\left|v_{1}\right| \geq m+2$ and $\left|x_{2}\right|+\left|y_{2}\right| \geq 2 m-1$. This implies $|v| \geq m+2+3+2 m-1+(2 m+3)(s-1)+2 m+2 \geq(2 m+3)(s+1)+2$.

Finally, if for some $2 \leq i \leq s$ the factor v_{i} does not end with a, we can apply the induction hypothesis on a proper prefix of v, and similar arguments on the lengths as before, to conclude that $|v| \geq(2 m+3)(s+1)+2$.

Hence

$$
\begin{aligned}
|w| & \geq(2 m+3) k+2 \\
& >3 k^{2}+k+1=r k+1
\end{aligned}
$$

which is a contradiction since $|w|=r k+1$. Thus, there is no infinite $\left(1+\frac{1}{m}, 2\right)$-free word over Σ_{k}, and

$$
R(k, 2) \geq 1+\frac{1}{m}
$$

In Theorem 14, the result of Theorem 4 is generalized to any $\ell \geq 3$. The proof also uses considerations on letter frequencies in the words of $\mathfrak{L}(k, \ell, m)$. In the following, ℓ is a fixed integer greater than 2 .

Definition 5. Let $a \in \Sigma_{k}$. A word $w=w_{1} \ldots w_{|w|} \in \Sigma_{k}^{*}$ is of type S_{a} if $1 \leq|w| \leq \ell, w_{1}=w_{|w|}=a$, and if $b_{1} b_{2} \notin \operatorname{Fact}(w)$ for each $b_{1}, b_{2} \in \Sigma_{k} \backslash\{a\}$.

Notice that any word of type S_{a} is in $\mathfrak{L}(k, \ell, m, a)$, for any real number $m \geq \ell$.
Definition 6. Let $a \in \Sigma_{k}$. Let w be a word of type S_{a}. The weight $p_{a}(w)$ of w is defined by

$$
p_{a}(w)=\max \left\{j \in \mathbb{N} \mid a^{j} \in \operatorname{Fact}(w)\right\}
$$

Notice that $1 \leq p_{a}(w) \leq \ell$ for each word w.
Proposition 7. Let $a \in \Sigma_{k}$. Let w be a word of type S_{a}. We have

$$
|w|_{a} \leq \ell-\left\lfloor\frac{\ell}{p_{a}(w)+1}\right\rfloor=\left\lceil\frac{\ell \cdot p_{a}(w)}{p_{a}(w)+1}\right\rceil
$$

Proof. Let us denote $p=p_{a}(w)$, and write w as

$$
w=z_{1} z_{2} \ldots z_{n} z
$$

where $n \in \mathbb{N},\left|z_{i}\right|=p+1$, for $1 \leq i \leq n$, and $|z|=r \leq p$. For each i, we have $\left|z_{i}\right|_{a} \leq p$ (because $a^{p+1} \notin \operatorname{Fact}(w)$), and $|z|_{a} \leq|z|$. Hence

$$
|w|_{a} \leq n p+r=|w|-\left\lfloor\frac{|w|}{p+1}\right\rfloor \leq \ell-\left\lfloor\frac{\ell}{p+1}\right\rfloor=\left\lceil\frac{\ell p}{p+1}\right\rceil
$$

Definition 8. Let $a \in \Sigma_{k}$. A word $w=w_{1} \ldots w_{|w|} \in \Sigma_{k}^{*}$ is of type S_{a}^{\prime} if $|w| \leq \ell, w_{1}=w_{|w|}=a$.
Definition 9. Let $a \in \Sigma_{k}$ and $m \geq \ell$ be a real number. A word $w \in \Sigma_{k}^{*}$ is of type L_{a} if $|w|>m-1$ and $|w|_{a}=0$.
Notice that any word of type L_{a} is in $\mathfrak{L}(k, \ell, m, a)$.
Lemma 10. Let k, ℓ be integers, let $m \geq 2 \ell-2$ be a real number, $a \in \Sigma_{k}$, and $w \in \mathfrak{L}(k, \ell, m, a)$. Then w can be written as

$$
w=x s_{1}^{\prime} l_{1} s_{2}^{\prime} l_{2} \ldots l_{r-1} s_{r}^{\prime} y
$$

where $r \in \mathbb{N}$ (if $r=0$ then $w=x$), each word s_{i}^{\prime} is of type S_{a}^{\prime}, each word l_{i} is of type L_{a} and $|x|_{a}=|y|_{a}=0$.
Proof. As $w \in \mathfrak{L}(k, \ell, m, a), w$ satisfies condition $\left(C_{1}^{\ell, m}\right)$: if axa is a subword of w, then, $|a x a|>m+1$ or $|a x a|<\ell+1$.
If $|w|_{a}=0$, we have the result with $x=w$ and $r=0$.
Now, if $\left|w_{a}\right|>0$, let us write $w=x w^{\prime} y$, where w^{\prime} begins and ends with a, while x and y do not contain a. The maximal factors without a 's in w^{\prime} either have length $<\ell-1$, or length $>m-1$. Take the latter factors as l_{1}, \ldots, l_{r-1} to get the factorization $w=x s_{1}^{\prime} l_{1} s_{2}^{\prime} \ldots l_{r-1} s_{r}^{\prime} y$. Each s_{i}^{\prime} begins and ends with a, all other blocks do not contain a, and by definition, $\left|l_{i}\right|>m-1$ for all i. Thus, to prove the lemma, it suffices to show that $\left|s_{i}^{\prime}\right| \leq \ell$ for any i. If it is not the case, then for some $s_{i}^{\prime}=a u a$, we have $\left|s_{i}^{\prime}\right|>m+1$. Then $|u|>m-1$, and u contains the letter a by construction. So we have $s_{i}^{\prime}=a u_{1} a u_{2} a$. At least one of the words $a u_{1} a$ and $a u_{2} a$ has length $>m+1$, because if both have length $>\ell-1$, then $\left|s_{i}^{\prime}\right|<2 \ell-3 \leq m+1$. Thus, u_{1} also contains a, and we repeat the argument to get a contradiction after a finite number of steps.

Proposition 11. Let k, ℓ be integers, let $m \geq 2 \ell-2$ be a real number, $a \in \Sigma_{k}$ and $w \in \mathfrak{L}(k, \ell, m, a)$. There exists a word \tilde{w} in $\mathfrak{L}(k, \ell, m, a)$, such that $|\tilde{w}|=|w|,|\tilde{w}|_{a}=|w|_{a}$ and \tilde{w} can be written as

$$
\tilde{w}=x s_{1} l_{1} s_{2} l_{2} \ldots l_{r-1} s_{r} y
$$

where $r \in \mathbb{N}$ (if $r=0$ then $\tilde{w}=x$), each word s_{i} is of type S_{a}, each word l_{i} is of type L_{a}, and $|x|_{a}=|y|_{a}=0$.
Proof. By Lemma 10, w is of the form:

$$
w=x^{\prime} s_{1}^{\prime} l_{1}^{\prime} s_{2}^{\prime} \ldots l_{r-1}^{\prime} s_{r}^{\prime} y^{\prime}
$$

where $r \in \mathbb{N},\left|x^{\prime}\right|_{a}=\left|y^{\prime}\right|_{a}=0, s_{i}^{\prime}$ are words of type S_{a}^{\prime}, and l_{i}^{\prime} are words of type L_{a}. For each $1 \leq i \leq r$, let us consider the factor s_{i}^{\prime}, and iterate the rewriting rules $b_{1} b_{2} a \mapsto b_{1} a b_{2}, \forall b_{1}, b_{2} \in \Sigma_{k} \backslash\{a\}$, on it. After each iteration, with regard to the lexicographic order (where $a \prec b, \forall b \in \Sigma_{k} \backslash\{a\}$), we get a smaller word, because $b_{1} a b_{2} \prec b_{1} b_{2} a$. So the iteration finishes, and we get a word of the form $s_{i} x_{i}$, where s_{i} is a word of type S_{a}, and where $\left|x_{i}\right|_{a}=0$. We remark that $\left|s_{i}\right| \leq\left|s_{i}^{\prime}\right|,\left|s_{i} x_{i}\right|=\left|s_{i}^{\prime}\right|$, $\left|s_{i}\right|_{a}=\left|s_{i}^{\prime}\right|_{a}$, and $\left|s_{i} x_{i}\right|_{a}=\left|s_{i}^{\prime}\right|_{a}$, since the iteration conserves the number of occurrences of each letter in s_{i}^{\prime}.

Finally, let $\tilde{w}=x s_{1} l_{1} s_{2} l_{2} \ldots l_{r-1} s_{r} y$, where $x=x^{\prime}, y=x_{r} y^{\prime}$, and $l_{i}=x_{i} l_{i}^{\prime}$. It is clear that $|\tilde{w}|=|w|$ and $|\tilde{w}|_{a}=|w|_{a}$. It is then sufficient to prove that $\tilde{w} \in \mathfrak{L}(k, \ell, m, a)$. Condition $\left(C_{1}^{\ell, m}\right)$ is clearly satisfied by definition of the types S_{a} and L_{a}. Let now $j \in[2, \ldots, \ell]$ and $z \in \Sigma_{k}^{*}$ be such that $a^{j} z a^{j} \in \operatorname{Fact}(\tilde{w})$.

Then, as $w \in \mathfrak{L}(k, \ell, m, a)$, we have $\left|a^{j} z\right|=\left|a^{j} z^{\prime}\right|>j m+1$, and condition $\left(C_{j}^{\ell, m}\right)$ holds.

The letter a moved by the iteration of the rewriting rules always has some letter b on its immediate left. Hence the iteration cannot result in a new factor a^{j}. So, if \tilde{w} contains $a^{j} z a^{j}$, then w contains $a^{j} z^{\prime} a^{j}$, where $\left|z^{\prime}\right|=|z|$. Then, as $w \in \mathfrak{L}(k, \ell, m, a)$, we have $\left|a^{j} z\right|=\left|a^{j} z^{\prime}\right|>j m$, and condition $\left(C_{j}^{\ell, m}\right)$ holds.
Lemma 12. Let $p \geq 1$ be an integer. Let v be a word in $\mathfrak{L}(k, \ell, m, a)$, of the form described in Proposition 11:

$$
v=x s_{1} l_{1} s_{2} l_{2} \ldots l_{r-1} s_{r} y
$$

and where the words s_{i} of type S_{a} are such that $p_{a}\left(s_{i}\right)=p$ for each $i=1, \ldots, r$. Then,

$$
r<\left\{\begin{array}{l}
1+\frac{|v|-1}{m} \text { if } p=1 \\
1+\frac{|v|-p}{p(m+1)-\ell} \text { if } p>1
\end{array}\right.
$$

Proof. Consider two consecutive blocks s_{i} and s_{i+1}, with $1 \leq i \leq r-1$. As they have weight p, they both contain a^{p} as a factor. So, $s_{i} l_{i} s_{i+1}$ has a factor $a^{p} u a^{p}$, and by condition $\left(C_{p}^{\ell, m}\right)$, we have $\left|a^{p} u a^{p}\right|>p(m+1)$. So $\left|s_{i} l_{i} s_{i+1}\right|>p(m+1)$. But $\left|s_{i+1}\right| \leq \ell$, by definition of the type S_{a}. Thus, $\forall 1 \leq i \leq r-1$,

$$
\left|s_{i} l_{i}\right|>p(m+1)-\ell
$$

Moreover, $|s-r| \geq p$. Then,

$$
|v| \geq \sum_{i=1}^{r-1}\left|s_{i} l_{i}\right|+|s-r|>(r-1)(p(m+1)-\ell)+p
$$

and we deduce that

$$
r<1+\frac{|v|-p}{p(m+1)-\ell}
$$

In the case $p=1$, we can have a better bound: as $\left|l_{i}\right|>m-1$ and $\left|s_{i}\right| \geq 1$, we have

$$
\left|s_{i} l_{i}\right|>m,
$$

hence

$$
r<1+\frac{|v|-1}{m}
$$

Proposition 13. Let k, ℓ be integers, let $\xi \geq 2$ be a real number, let $m \geq \xi(\ell-1)$ be a real number, $a \in \Sigma_{k}$, and $w \in \mathfrak{L}(k, \ell, m, a)$. We have

$$
\frac{|w|_{a}}{|w|}<\left\{\begin{array}{l}
\frac{2}{|w|}+\frac{1}{m} \cdot \frac{3 \xi-1}{2 \xi-1} \text { if } \ell=2 \\
\frac{\ell}{|w|}+\frac{1}{m}\left(\ell-\frac{(\xi-1)(\ell-1)}{2(2 \xi-1)}-\frac{\xi^{2}(\ell-2)}{(\xi \ell-1)(2 \xi-1)}\right) \text { if } \ell \geq 3
\end{array}\right.
$$

Proof. By Proposition 11, we can assume without loss of generality that

$$
w=x s_{1} l_{1} s_{2} l_{2} \ldots l_{r-1} s_{r} y
$$

where $r \in \mathbb{N}$, each word s_{i} is of type S_{a}, each word l_{i} is of type L_{a}, and $|x|_{a}=|y|_{a}=0$. Words of type L_{a} contain no occurrences of a thus, by Proposition 7,

$$
|w|_{a}=\sum_{i=1}^{r}\left|s_{i}\right|_{a} \leq \sum_{p=1}^{\ell} n_{p}(w)\left\lceil\frac{\ell p}{p+1}\right\rceil
$$

where

$$
n_{p}(w)=\#\left\{i \in[1, \ldots, r] \mid p_{a}\left(s_{i}\right)=p\right\}
$$

For any $1 \leq j \leq \ell$, we denote

$$
q_{j}(w)=\sum_{p \geq j} n_{p}(w)=\#\left\{i \in[1, \ldots, r] \mid p_{a}\left(s_{i}\right) \geq j\right\} .
$$

For any $1 \leq p \leq \ell-1$, we have $n_{p}(w)=q_{p}(w)-q_{p+1}(w)$, and $n_{\ell}(w)=q_{\ell}(w)$. Hence

$$
\begin{aligned}
|w|_{a} & \leq \sum_{p=1}^{\ell-1}\left(q_{p}(w)-q_{p+1}(w)\right)\left\lceil\frac{\ell p}{p+1}\right\rceil+q_{\ell}(w)\left\lceil\frac{\ell^{2}}{\ell+1}\right\rceil \\
& =\sum_{p=1}^{\ell} q_{p}(w)\left(\left\lceil\frac{\ell p}{p+1}\right\rceil-\left\lceil\frac{\ell(p-1)}{p}\right\rceil\right) .
\end{aligned}
$$

Let $n=|w|$. Because of Proposition 11, it makes sense to speak of $q_{p}(v)$ for any word $v \in \mathfrak{L}(k, \ell, m, a)$. Thus for any $1 \leq p \leq \ell$, we have

$$
q_{p}(w) \leq \max \left\{q_{p}(v) \mid v \in \mathfrak{L}(k, \ell, m, a), \text { and }|v|=n\right\}
$$

If v reaches this maximum, by replacing some occurrences of a by any other letter, we construct a word v^{\prime} such that $\left|v^{\prime}\right|=|v|$ and $n_{i}\left(v^{\prime}\right)=0$ for each $i \neq p$. So,

$$
q_{p}(w) \leq \max \left\{q_{p}(v)\left|v \in \mathfrak{L}(k, \ell, m, a),|v|=n, \text { and } n_{i}(v)=0, \forall i \neq p\right\}\right.
$$

Finally, if $n_{i}(v)=0$ for each $i \neq p$, then $q_{p}(v)=n_{p}(v)$, and we obtain

$$
\begin{aligned}
q_{p}(w) & \leq \max \left\{n_{p}(v)\left|v \in \mathfrak{L}(k, \ell, m, a),|v|=n, \text { and } n_{i}(v)=0, \forall i \neq p\right\}\right. \\
& <\left\{\begin{array}{l}
1+\frac{n-1}{m} \text { if } p=1 \\
1+\frac{n-p}{p(m+1)-\ell} \text { if } p>1
\end{array}\right.
\end{aligned}
$$

by Lemma 12. Hence

$$
\begin{aligned}
|w|_{a} & <\sum_{p=1}^{\ell}\left(\left\lceil\frac{\ell p}{p+1}\right\rceil-\left\lceil\frac{\ell(p-1)}{p}\right\rceil\right)+\frac{(n-1)\left\lceil\frac{\ell}{2}\right\rceil}{m}+\sum_{p=2}^{\ell} \frac{(n-p)\left(\left\lceil\frac{\ell p}{p+1}\right\rceil-\left\lceil\frac{\ell(p-1)}{p}\right\rceil\right)}{p(m+1)-\ell} \\
& \leq \ell+\frac{n\left(\ell-\left\lfloor\frac{\ell}{2}\right\rfloor\right)}{m}+\sum_{p=2}^{\ell} \frac{n\left(\left\lfloor\frac{\ell}{p}\right\rfloor-\left\lfloor\frac{\ell}{p+1}\right\rfloor\right)}{p(m+1)-\ell} \\
& \leq \ell+\frac{n}{m}\left(\ell-\left\lfloor\frac{\ell}{2}\right\rfloor+\sum_{p=2}^{\ell} \frac{\left\lfloor\frac{\ell}{p}\right\rfloor-\left\lfloor\frac{\ell}{p+1}\right\rfloor}{p-\frac{1}{\xi}}\right) .
\end{aligned}
$$

Indeed, from $m \geq \xi(\ell-1)$ follows $p(m+1)-\ell \geq\left(p-\frac{1}{\xi}\right) m$. Then, if $\ell=2$,

$$
\frac{|w|_{a}}{|w|}<\frac{2}{n}+\frac{1}{m} \cdot \frac{3 \xi-1}{2 \xi-1}
$$

and if $\ell \geq 3$ we have

$$
|w|_{a}<\ell+\frac{n}{m}\left(\ell-\left\lfloor\frac{\ell}{2}\right\rfloor \cdot \frac{\xi-1}{2 \xi-1}-\sum_{p=3}^{\ell}\left\lfloor\frac{\ell}{p}\right\rfloor \frac{1}{\left(p-\frac{1}{\xi}\right)\left(p-1-\frac{1}{\xi}\right)}\right)
$$

Since

$$
\begin{aligned}
\sum_{p=3}^{\ell}\left\lfloor\frac{\ell}{p}\right\rfloor \frac{1}{\left(p-\frac{1}{\xi}\right)\left(p-1-\frac{1}{\xi}\right)} & \geq \sum_{p=3}^{\ell} \frac{1}{\left(p-\frac{1}{\xi}\right)\left(p-1-\frac{1}{\xi}\right)} \\
& =\frac{\xi^{2}(\ell-2)}{(\xi \ell-1)(2 \xi-1)}
\end{aligned}
$$

we obtain

$$
\frac{|w|_{a}}{|w|}<\frac{\ell}{n}+\frac{1}{m}\left(\ell-\frac{(\xi-1)(\ell-1)}{2(2 \xi-1)}-\frac{\xi^{2}(\ell-2)}{(\xi \ell-1)(2 \xi-1)}\right) .
$$

Theorem 14. For any $k \geq 3, \ell \geq 3$, we have $R(k, \ell) \geq 1+\frac{1}{m}$, where

$$
m=\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}\right) k
$$

Proof. Let $N>0$ be an integer and $m_{N}=\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}+\frac{1}{N}\right) k$. Let $v \in \Sigma_{k}^{*}$. Suppose v is $\left(1+\frac{1}{m_{N}}, \ell\right)$-free, and $|v| \geq N \cdot \ell \cdot m_{N}$.
$\overline{\text { As }} k \geq 3$, we have $m_{N} \geq \frac{5}{2} \ell-\frac{3}{2} \geq \ell$. Thus, by Proposition $3, v \in \mathfrak{L}\left(k, \ell, m_{N}\right)$. Moreover, as Σ_{k} is the k-letter alphabet, there exists a letter a in Σ_{k} such that $\frac{|v|_{a}}{|v|} \geq \frac{1}{k}$. Then, by Proposition 13 with $\xi=2$ (notice that $m_{N} \geq \frac{5}{2} \ell-\frac{3}{2} \geq 2 \ell-2$),
and since $|v| \geq N \cdot \ell \cdot m_{N}$, we have

$$
\frac{1}{k} \leq \frac{|v|_{a}}{|v|}<\frac{\ell}{|v|}+\frac{1}{m_{N}}\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}\right) \leq \frac{1}{m_{N}}\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}+\frac{1}{N}\right)
$$

Then, we have

$$
m_{N}<\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}+\frac{1}{N}\right) k
$$

Hence we have a contradiction because $m_{N}=\left(\frac{5}{6} \ell-\frac{1}{2}+\frac{2}{2 \ell-1}+\frac{1}{N}\right) k$, and

$$
R(k, \ell) \geq 1+\frac{1}{m_{N}}
$$

Finally, as $m=\lim _{N \rightarrow+\infty} m_{N}$, we have

$$
R(k, \ell) \geq 1+\frac{1}{m}
$$

Remark 15. For $\ell=2$, the result of Proposition 13 and the same arguments as in the proof of Theorem 14 give $R(k, 2) \geq$ $1+\frac{1}{m}$ with $m=\frac{5 k}{3}$, which is not as good as the bound of Theorem 4.
Remark 16. Theorem 14 gives a general result and its proof is based on estimations used in Proposition 13. In order to have better results in some particular cases, one could improve these estimations as follows.

- For small values of ℓ, we can explicitly compute the value of the sum

$$
\sum_{p=3}^{\ell}\left\lfloor\frac{\ell}{p}\right\rfloor \frac{1}{\left(p-\frac{1}{\xi}\right)\left(p-1-\frac{1}{\xi}\right)}
$$

in Proposition 13, instead of taking a lower bound for it. For example, for $\ell=6$, we get $R(k, 6) \geq 1+\frac{1}{m}$, with $m=\frac{1457 k}{330}$.

- In the proof of Theorem 14, we choose $\xi=2$ in applying Proposition 13. As it appears clear from the statement of this latter proposition, a greater ξ would give a better upper bound on the frequency $\frac{|w| a}{|w|}$. Though, we need $\xi \leq \frac{m}{\ell-1}$ and this implies a constraint on k. For example, if $k \geq 5$ one can choose $\xi=3$ and get $m=\left(\frac{4}{5} \ell-\frac{2}{5}+\frac{3}{3 \ell-1}\right) k$.

4. Upper bound

In this section we explicitly use the fact that Dejean's conjecture is proved for $K \geq 5$. We describe a morphism from a K-letter alphabet to a k-letter one that transforms an infinite $\left(\frac{K}{K-1}\right)^{+}$-free word into a word in which the sufficiently large repetitions are of exponent not much greater than $\frac{K}{K-1}$.

Let $S_{k, t}$ be the set of words of length t over Σ_{k} of the form $0^{e} w$ where $e \geq 2,|w| \geq 1$, the first and the last letter of w are different from 0 , and w does not contain 00 as a factor. For example, we have $S_{2,5}=\{00001,00011,00101,00111\}$. Let $K=\left|S_{k, t}\right|$ and let h be a t-uniform morphism $h: \Sigma_{K}^{*} \rightarrow \Sigma_{k}^{*}$ such that the set of h-images of letters in Σ_{K} is $S_{k, t}$. Now, if $K \geq 5$, we consider the h-image of some infinite $\left(\frac{K}{K-1}\right)^{+}$-free word over Σ_{K}.

A uniform morphism $h: \mathcal{A}^{*} \rightarrow \mathscr{B}^{*}$ is said to be comma-free if for any $a, b, c \in \mathcal{A}$ and $s, r \in \mathscr{B}^{*}, h(a b)=r h(c) s$ implies that either $r=\varepsilon$ and $a=c$ or $s=\varepsilon$ and $b=c$.

Remark 17. A comma-free morphism h is always injective (actually it is injective on the set \mathcal{A} of monoid generators). Moreover, if it is t-uniform, then for each factor u of a word in $h\left(\mathcal{A}^{*}\right)$ such that $|u| \geq 2 t-1$, there exists a unique factorization $u=x h\left(u^{\prime}\right) y$ where $u^{\prime} \in \mathcal{A}^{*}$ and $0 \leq|x|,|y|<t$.

Lemma 18. The t-uniform morphism $h: \Sigma_{K}^{*} \rightarrow \Sigma_{k}^{*}$ defined above is comma-free.
Proof. Suppose that the h is not comma-free. Then there exist $a, b, c \in \Sigma_{K}$ and $s, r \in \Sigma_{k}^{*}$ such that $h(a b)=r h(c) s=$ $w[1, \ldots, 2 t]$ with $0<|r|<t$. We obtain a contradiction for every possible value of $|r|$:

- if $|r|=1$ or $|r|=2$, then the letter $w[t+|r|]$ is 0 in $h(a b)$ and is not 0 in $r h(c) s$,
- if $|r|=t-1$ or $|r|=t-2$, then the letter $w[t]$ is not 0 in $h(a b)$ and is 0 in $r h(c) s$,
- if $2<|r|<t-2$, then $h(c)$ contains the factor $w[t, \ldots, t+2]$. In $h(a b)$, this factor is of the form $x 00$ with $x \neq 0$, whereas factors of this form do not exist in $h(c)$.
In order to get the mentioned repetition-freeness property in $h\left(\Sigma_{K}^{*}\right)$, we use the following lemma. For any real number $\ell \geq 1$, we write $\left(\alpha^{+}, \ell\right)$-free to mean $\left(\alpha^{+},\lceil\ell\rceil\right)$-free and hence $R(k, \ell)$ to mean $R(k,\lceil\ell\rceil)$.

Lemma 19. Let $\alpha, \beta \in \mathbb{R}, 1<\alpha<\beta<2$. Let $h: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ be a comma-free t-uniform morphism. If $w \in \mathcal{A}^{*}$ is α^{+}-free, then $h(w)$ is $\left(\beta^{+}, \frac{2 t-2}{\beta-\alpha}\right)$-free.
Proof. Let $u v u$ be a β^{\prime}-repetition in $h(w)$ with $\beta^{\prime}>\beta$. Suppose $|u| \geq 2 t-1$. Hence u contains an h-image and it can be uniquely written as $x h\left(u^{\prime}\right) y$ with $0 \leq|x|,|y|<t$. Thus this h-image $\bar{u}=h\left(u^{\prime}\right)$ appears at the same position of u in $u v u$.

The factor $\bar{v}=y v x$ is an h-image. We have that $\bar{u} \bar{v} \bar{u}$ is the h-image of a repetition in w and hence $\frac{|\bar{u} \bar{u} \bar{u}|}{|\bar{u} \bar{v}|} \leq \alpha$. Moreover, $\beta^{\prime}=\frac{|\bar{u} \bar{v} \bar{u}|}{|\bar{u}|}+\frac{|x|+|y|}{|u v|}$ and $\beta^{\prime}>\beta$ implies that $\frac{|x|+|y|}{|u v|}>\beta-\alpha$. Hence

$$
|u v|<\frac{|x y|}{\beta-\alpha} \leq \frac{2 t-2}{\beta-\alpha} .
$$

Suppose now that $|u| \leq 2 t-2$. Hence $\beta^{\prime}>\beta$ implies that $\frac{|u|}{|u v|}>\beta-1$. Thus $\frac{|u v|}{|u|}<\frac{1}{\beta-1}$ and

$$
|u v|<\frac{|u|}{\beta-1} \leq \frac{2 t-2}{\beta-1}<\frac{2 t-2}{\beta-\alpha}
$$

Recall that, by definition, if there exists a (β^{+}, ℓ)-free infinite word over Σ_{k} then $R(k, \ell) \leq \beta$.
Corollary 20. Let $h: \Sigma_{K}^{*} \rightarrow \Sigma_{k}^{*}$ be a comma-free t-uniform morphism as above. If $\beta \in \mathbb{R}, \frac{K}{K-1}<\beta<2$, and $K \geq 5$, then $R\left(k, \frac{2 t-2}{\beta-\frac{K}{K-1}}\right) \leq \beta$.

We now compute $K=K_{k, t}$. Consider the prefixes of length $(t-1)$ of the words in $S_{k, t}$:

- $K_{k, t-1}$ of them are such that the last letter is not 0 ,
- $K_{k, t-2}$ of them are such that the last letter is 0 and the penultimate letter is not 0 ,
- one them is the word 0^{t-1}.

Each prefix can be extended by one of the $(k-1)$ letters distinct from 0 to get a word in $S_{k, t}$, so $K_{k, t}$ satisfies the recurrence relation

$$
K_{k, 1}=K_{k, 2}=0, K_{k, t}=(k-1)\left(K_{k, t-1}+K_{k, t-2}+1\right) .
$$

Solving this relation, we obtain that

$$
K_{k, t}=\frac{k-1}{(2 k-3) \sqrt{(k-1)(k+3)}}\left(\lambda^{t}-\mu^{t}-(k-2)\left(\lambda^{t-1}-\mu^{t-1}\right)\right)-\frac{k-1}{2 k-3},
$$

where $\lambda=\frac{(k-1)+\sqrt{(k-1)(k+3)}}{2}$ and $\mu=\frac{(k-1)-\sqrt{(k-1)(k+3)}}{2}$.
We thus have

$$
K_{k, t}=C_{k} \lambda^{t-1}-O(1), \text { where } C_{k}=\frac{(k-1)(\sqrt{(k-1)(k+3)}-k+3)}{2(2 k-3) \sqrt{(k-1)(k+3)}} .
$$

For each real number $\alpha,\lfloor\alpha\rceil$ denotes the nearest integer to α.
Theorem 21. $R(k, \ell) \leq 1+\frac{2 \ln \ell}{\ell \ln \lambda}+O\left(\frac{1}{\ell}\right)$ if k is fixed and ℓ tends to infinity.
Proof. Let us fix $t=\left\lfloor\frac{\ln \ell}{\ln \lambda}\right\rceil+1$ and $\beta=1+\frac{2 t-2}{\ell}+\frac{1}{K-1}$. For ℓ sufficiently large, we have $t \geq 6$ which ensures that $K \geq 5$, and we also have $\beta<2$. We can thus use Corollary 20, which gives

$$
R(k, \ell)=R\left(k, \frac{2 t-2}{\beta-\frac{K}{K-1}}\right) \leq \beta=1+\frac{2 t-2}{\ell}+\frac{1}{K-1} .
$$

Since

$$
\frac{2 t-2}{\ell}=\frac{2\left\lfloor\frac{\ln \ell}{\ln \lambda}\right\rceil}{\ell}=\frac{2 \ln \ell}{\ell \ln \lambda}+O\left(\frac{1}{\ell}\right)
$$

and

$$
\frac{1}{K-1}=\frac{1}{C_{k} \lambda^{t-1}-O(1)}=\frac{1}{C_{k} \lambda^{\left\lfloor\frac{\ln \ell}{\ln \lambda}\right\rceil}-O(1)}=O\left(\frac{1}{\ell}\right)
$$

the result follows.

5. An example

Let us illustrate our results with a concrete example: $k=8$ and $\ell=100$. Theorem 14 gives $R(8,100) \geq 1+$ $\left(\left(\frac{5}{6} \times 100-\frac{1}{2}+\frac{2}{199}\right) \times 8\right)^{-1}=1.001508871 \ldots$. For the upper bound, we have to decide which morphism h will be used, or equivalently to choose the value of the parameter t. For a given t, we can compute $K=K_{k, t}$ and then the bound $\beta=1+\frac{2 t-2}{\ell}+\frac{1}{K-1}$. So, we have to choose t so that β is minimized. The choice of $t=\left\lfloor\frac{\ln \ell}{\ln \lambda}\right\rceil+1$ in Theorem 21 is well-suited to get such an asymptotic result, but for a given pair (k, ℓ) like this example, it is better to make a specific case study.

- If $t=3$, then $K=7$ and $\beta=\frac{181}{150}=1.20666666 \ldots$
- If $t=4$, then $K=56$ and $\beta=\frac{593}{550}=1.07818181 \ldots$.
- If $t=5$, then $K=448$ and $\beta=\frac{12094}{11175}=1.08223713 \ldots$.

Since β gets bigger if $t>5$, the minimum is reached at $t=4$, whereas $\left\lfloor\frac{\ln \ell}{\ln \lambda}\right\rceil+1=3$. We thus obtain $R(8,100) \leq \frac{593}{550} \leq$ 1.078182.

6. Conclusion

For k fixed and ℓ tending to infinity, we know now in particular that the asymptotics of the generalized repetition threshold $R(k, \ell)$ is between $1+\Omega(1 / \ell)$ and $1+O(\ln \ell / \ell)$. New ideas are needed to settle this and other questions about $R(k, \ell)$, such as good estimates for $R(k, 2)$ or $R(k, k)$. The case $1.001848<R(8,100)<1.078182$ suggests that there is still room for improvement.

References

[1] F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoret. Comput. Sci. 23 (1983) 69-82.
[2] A. Carpi, On Dejean's conjecture over large alphabets, Theoret. Comput. Sci. 35 (2007) 137-151.
[3] J.D. Currie, M. Mohammad-Noori, Dejean's conjecture and Sturmian words, European J. Combin. 28 (3) (2007) 876-890.
[4] J.D. Currie, N. Rampersad, Dejean's conjecture holds for $n \geq 27$, Theor. Inform. Appl. 43 (4) (2009) 775-778.
[5] J.D. Currie, N. Rampersad, Dejean's conjecture holds for $n \geq 30$, Theoret. Comput. Sci. 345 (2005) 359-369.
[6] J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, Math. Comp. 80 (2011) 1063-1070.
[7] F. Dejean, Sur un théorème de Thue, J. Combin. Theory. Ser. A 13 (1972) 90-99.
[8] L. Ilie, P. Ochem, J.O. Shallit, A generalization of repetition threshold, Theoret. Comput. Sci. 345 (2005) 359-369.
[9] R. Kolpakov, M. Rao, Personal communication.
[10] J. Moulin-Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95 (1992) $187-205$.
[11] J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Discrete Appl. Math. 7 (1984) $297-311$.
[12] M. Rao, Last cases of Dejean's conjecture, Theoret. Comput. Sci. 412 (2011) 3010-3018.
[13] A. Thue, Über unendliche Zeichenreihen, Christiania Vidensk.-Selsk, Skrifter. I. Mat. Nat. Kl 7 (1906) 1-22. Reprinted in: T. Nagell (Ed.), Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 139-158.

[^0]: * Corresponding author. Tel.: +33 169153219.

 E-mail addresses: fiorenzi@lri.fr (F. Fiorenzi), ochem@lri.fr (P. Ochem), vaslet@iml.univ-mrs.fr (E. Vaslet).

