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The novel adipokine chemerin, encoded by the RARRES2 gene, has been suggested to be linked to insulin resis-
tance and to the metabolic syndrome (MetS). However, no well-defined cardiovascular profile has been reported
and the association with coronary artery disease (CAD) is a matter of debate. Because there is a relation between
renal dysfunction and CAD, we analyzed plasma chemerin levels and the estimated glomerular filtration rate
(eGFR) in 495 patients undergoing coronary angiography for the evaluation of established or suspected stable
CAD.

Keywords:
Ch}e,‘:/nerin Chemerin levels were higher in patients with Type 2 diabetes mellitus (T2DM, n = 111) and the metabolic syn-
Adipokine drome (MetS, n = 147) than in subjects without T2DM (191.5 4 72.9 vs. 169.7 4 64.7 ng/ml, p = 0.001) or the

MetS (201.2 & 71.0 vs. 163,1 ng/ml, p < 0.001), but did not differ significantly between patients with significant
CAD (n = 247) and those without significant CAD (177.1 4 67.0 vs. 171.7 4 67.2 ng/ml, p = 0.193).
Analysis of covariance using age, sex, and BMI as covariates showed that chemerin was significantly and indepen-
dently associated with eGFR (F = 49.6, p <0.001). After an 8-year follow-up period, patients with high chemerin
levels were more often affected by cardiovascular events (HR = 1.72 [95% CI 1.19-2.47], p = 0.004), even after
appropriate adjustment for age, gender, BMI, as well as eGFR (adjusted HR 1.51 [95% CI 1.03-2.23], p = 0.037).
Given the cardiometabolic role of chemerin, we also applied a Cardio-Metabo Chip analysis and revealed a
genome-wide significant association with SNPs (rs55709438, rs2444030, and rs3098423) located at chromo-
somal region 15q15-23, which were associated with metabolic traits and eGFR.
This study for the first time demonstrates that high chemerin concentrations are significantly associated with
renal impairment and predictive of cardiovascular events and that 15q15-23 might have an impact on chemerin
levels beyond common genetic variations in RARRES2.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chemerin is an adipokine that mediates (i) MAPK activation by
G-protein coupled receptor (GPCR-signaling) [1,2], (ii) insulin resis-
tance [3], and (iii) angiogenesis [4]. It is a protein with a large scope. It
features anti-microbial [5] as well as chemotactic and inflammatory
properties, plays a regulatory role for immune response [6,2,7], and
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has been suggested to induce contraction of the vasculature [8].
Chemerin is predominantly expressed in adipocytes [9] and important
for adipocyte differentiation and metabolism [10].

Chemerin gene expression is elevated in psoriasis development [11]
and further inflammatory diseases including ulcerative colitis and
Crohn disease [12]. It is upregulated in Type 2 diabetes mellitus
(T2DM) and obesity [1,13,14] and meta-analysis data link elevated plas-
ma levels of chemerin to the metabolic syndrome (MetS) [15]. In addi-
tion, retinoic acid receptor responder-2 (RARRES2), encoding chemerin,
is a genetic determinant of disproportionate regional body fat distribu-
tion [16].

In studies with Asian patients who underwent elective coronary an-
giography for suspected coronary artery disease (CAD), elevated levels
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of chemerin were shown to be significantly associated with the
presence [17,18] or severity [19] of CAD. In contrast, no association be-
tween chemerin and coronary atherosclerotic plaque burden or mor-
phology was found in a study with Caucasian patients [20]. Apart from
that, chemerin, in contrast to other adipokines, has a relatively poor car-
diovascular profile [21].

Of interest, it has been reported previously that kidney function is in-
versely related to circulating chemerin in dialysis patients [22,23] and
that kidney transplantation decreased chemerin levels in patients with
end stage renal disease [24]. In previous studies, we found a significant
relation between renal function and coronary atherosclerosis as well as
vascular events [25,26].

However, data addressing the links of chemerin with both, renal func-
tion and future cardiovascular risk in coronary patients, are still lacking.

For these reasons, we aimed at investigating the role of chemerin as a
predictor for cardiovascular risk and renal malfunction in a high risk co-
hort of patients undergoing coronary angiography for the evaluation of
suspected or established stable CAD. Furthermore, we investigated the
association of cardiometabolic polymorphisms using the Cardio-
Metabo Chip with circulating chemerin concentrations and aimed to rep-
licate previously reported RARRES2 polymorphisms in that population.

2. Results
2.1. Patient characteristics

The characteristics of our patients (n = 495) were typical for patients
undergoing coronary angiography for the evaluation of stable CAD, with

Table 1

a high prevalence of T2DM (22.5%) hypertension (77.2%) and smoking
(53.5%). Plasma chemerin on average was 174.4 + 67.1 ng/ml
(mean 4+ SD). It was elevated in women compared with men
(183.7 £ 67.3 ng/ml vs. 165.1 &+ 65.7 ng/ml, p < 0.001) and patients
with hypertension had also significantly higher circulating chemerin
concentrations than those without hypertension (180.2 + 70.9 vs.
154.8 4+ 47.4 ng/ml, p = 0.001). With respect to T2DM and MetS, we
saw a significant discrepancy between affected and unaffected subjects
(1915 + 72.9 vs. 169.7 4+ 64.7, p = 0.001, and 201.2 + 71.0 vs.
163.1 £ 62.1 ng/ml p < 0.001 respectively). In this context, patients
treated and untreated with ASA (172.0 4 61.1 vs. 179.0 & 77.5 ng/ml,
p = 0.710), beta blocker (177.3 4 68.8 vs. 171.2 & 65.2 ng/ml, p =
0.464), or statins (177.2 £ 69.3 vs. 172.2 + 65.4 ng/ml, p = 0.786) did
not differ in terms of their chemerin concentration, whereas increased
chemerin levels were observed in patients taking ACE blocker
(185.2 4+ 71.5 vs. 169.9 + 64.8 ng/ml, p = 0.005) or AT-2 antagonists
(202.0 £ 85.2 vs. 171.6 £ 64.5 ng/ml, p = 0.034).

We did not find a significantly raised chemerin concentration in pa-
tients with CAD compared with those without CAD (177.1 £ 67.0 vs.
171.7 £ 67.2 ng/ml, p = 0.193). Comparing patient characteristics
with respect to tertiles of chemerin concentration (Table 1), we also re-
vealed an association between chemerin on the one hand and metabolic
as well as kidney traits on the other hand.

2.2. Association with obesity and renal function

Our study demonstrated that obese patients had significantly higher
chemerin concentrations than non-obese subjects (195.6 + 78.5 vs.

Patient characteristics according to tertiles of plasma chemerin. Tertiles 1 through 3 of plasma chemerin range from 12 ng/ml to 145 ng/ml, from 145 ng/ml to 191 ng/ml, and from 191
ng/ml to 497 ng/ml, respectively. Data are means + standard deviations as indicated. BMI denotes body mass index, CAD coronary artery disease, which is defined by an angiographically
determined coronary artery stenosis with lumen narrowing >50%. T2DM denotes Type 2 diabetes mellitus, MetS the metabolic syndrome, eGFR the estimated glomerular filtration rate,
CKD denotes chronic kidney disease and is defined by an eGFR smaller than 90 ml/min/1.73 m? CRP denotes C-reactive protein, NT-proBNP N-terminal pro brain natriuretic peptide, LDL
low density lipoprotein, HDL high density lipoprotein, HbA1c hemoglobin A1c, HOMA-IR homeostasis model assessment of insulin resistance, ASA acetylsalicylic acid, ACE angiotensin

converting enzyme, and AT-2 angiotensin 2. p-Values are given for trend.

Total 1st 2nd 3rd tertile p-Value
tertile tertile

Age (years) 65+ 11 63 + 12 65+ 11 68 + 10 0.001
Male sex (%) 50.1 61.8 45,5 43.0 0.001
Waist circumference (cm) 98.5 4+ 12.0 952 £ 11.2 995+ 114 1009 + 12.8 <0.001
BMI (kg/m?) 27.6 £ 46 26.5 £ 4.0 278 £ 4.1 285 +£5.2 <0.001
Hypertension (%) 77.2 70.3 75.8 85.5 0.001
Smoking (%) 53.5 56.4 55.2 49.1 0.186
sig. CAD (%) 49.9 46.1 49.7 53.9 0.153
Extent of >50% stenoses 1.2+ 16 1.0+ 1.6 1.2+ 16 13+16 0.091
T2DM (%) 22.5 14.1 23.0 303 <0.001
MetS (%) 29.7 12.7 32.7 43.6 <0.001
eGFR (ml/min/1.73 m?) 95.0 £ 17.6 1009 + 15.3 96.1 £ 15.1 87.8 £19.5 <0.001
ACR 68.9 £ 235.1 36.7 &+ 86.7 65.9 + 269.0 104.2 +289.4 0.003
CKD (%) 376 25.5 37.6 49.7 <0.001
CRP (mg/dl) 0.39 + 0.61 0.25 £ 0.31 0.36 + 0.48 0.56 + 0.86 <0.001
Fibrinogen (mg/dl) 328 +£ 72 302 + 59 327+ 71 355+ 75 <0.001
NT-proBNP (pg/ml) 659 + 1603 699 + 1978 380 + 871 916 + 1693 0.382
LDL cholesterol (mg/dl) 129 4 42 125 4+ 42 135 £+ 43 129 4+ 40 0.446
HDL cholesterol (mg/dl) 59 + 18 62 + 17 59 £ 19 56 + 18 0.001
Total cholesterol (mg/dl) 200 + 47 195 + 46 205 + 47 200 + 48 0.483
Triglycerides (mg/dl) 137 +£ 90 112+ 70 139 +£ 78 160 + 109 <0.001
Apolipoprotein A-1 (mg/dl) 158 4+ 30 159 £+ 29 161 £ 32 153 4+ 28 0.032
Apolipoprotein B (mg/dl) 84 £23 78 + 23 86 + 23 87 + 22 <0.001
Fasting glucose (mg/dl) 104 + 30 99 + 25 102 + 27 110 & 37 <0.001
HbAlc (%) 6.0 + 0.9 58 +0.8 6.0+ 0.8 62+ 1.0 <0.001
HOMA-IR 424+ 196 25+29 5.9 + 325 42470 <0.001
Systolic blood pressure (mm Hg) 135+ 17 132+ 16 135+ 18 138 + 18 0.002
Diastolioc blood pressure (mm Hg) 81+ 10 80 + 10 82+ 10 82+ 10 0.268
ASA treatment (%) 66.3 66.1 67.9 64.8 0.816
Beta blocker treatment (%) 51.9 53.3 47.9 54.5 0.826
ACE inhibitor treatment (%) 29.3 23.6 23.6 40.6 0.001
AT-2 antagonist treatment (%) 9.1 6.1 103 109 0.126
Statin treatment (%) 438 45.5 40.0 46.1 0.912
Plasma chemerin (ng/ml) 1744 4+ 67.1 112.0 + 27.6 166.0 + 134 2452 £ 59.8 <0.001
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Table 2

Correlation analysis. Correlation is given as the non-parametric Spearman rank correlation
with the corresponding p-values. BMI denotes body mass index, CRP C-reactive protein,
LDL low density lipoprotein, HDL high density lipoprotein, HbA1c hemoglobin Alc,
HOMA-IR homeostasis model assessment of insulin resistance, eGFR estimated glomerular
filtration rate, and ACR albumin/creatinine ratio.

Correlation of chemerin with r p-Value n

Age 0171 <0.001 495
BMI 0.185 <0.001 495
Waist circumference 0.194 <0.001 467
CRP 0.240 <0.001 495
Fibrinogen 0.310 <0.001 492
NT-proBNP 0.087 0.089 386
Total cholesterol 0.065 0.152 493
LDL cholesterol 0.067 0.140 492
HDL cholesterol —0.154 0.001 492
Triglycerides 0.298 <0.001 493
Apolipoprotein A-2 —0.087 0.054 491
Apolipoprotein B 0.205 <0.001 491
Fasting glucose 0.146 0.001 495
HbA1C, 0.283 <0.001 494
HOMA-IR 0.239 <0.001 464
Systolic blood pressure 0.157 <0.001 488
Diastolic blood pressure 0.063 0.166 488
Extent of >50% stenoses 0.074 0.098 495
ACR 0.115 0.015 444
eGFR —0.331 <0.001 495

167.1 £ 61.1 ng/ml, p < 0.001). The link between chemerin concentra-
tion and body composition (Table 1) was further supported by signifi-
cant associations with waist circumference, BMI, and triglycerides, as
summarized in Table 2. We also found a clear correlation with
diabetes-, and inflammation-related markers and those connected
with the MetS, but we did not see a correlation between chemerin
and the extent of CAD or the cardiac marker NT-proBNP.

We observed that the circulating chemerin concentration was in-
versely correlated with the estimated glomerular filtration rate (eGFR)
at baseline (r = —0.331, p<0.001). In line with univariate results, anal-
ysis of covariance adjusting for age, gender, and BMI revealed that
chemerin is significantly and independently associated with eGFR.
That association was observed in patients affected by hypertension
(F = 43.0, p < 0.001), CAD (F = 21.7, p < 0.001), T2DM (F7.4, p =
0.008), or the MetS (F = 5.2, p = 0.024) as well as in those who were
unaffected by hypertension (F = 3.9, p = 0.05), CAD (F = 29.2,p <
0.001), T2DM (F = 42.0, p < 0.001), or the MetS (F = 50.5, p < 0.001).
Further adjustment models including cardiometabolic traits, hyperten-
sion, inflammation markers, and medical treatment proved the signifi-
cant association between chemerin and eGFR (Table S1).

2.2.1. Chemerin as an indicator for prevalence and progression of renal
dysfunction

Monitoring renal function of our study patients over a prolonged
time, we assessed eGFR at baseline (95.0 & 17.6 ml/min/1.72 m?) and
reassessed it after 3.5 &+ 1.1 years of follow-up (92.2 4 18.5 ml/min/
1.73 m?). Similar to baseline measurement, plasma chemerin and
eGFR at follow-up inversely correlated significantly (r = —0.319, p <
0.001). We thus revealed that 49.7% of all subjects with high chemerin
concentrations (high tertile) had chronic kidney disease (CKD) stage
>2 at baseline, whereas at the follow-up, the percentage of subjects
with CKD stage >2 significantly increased to 63.9 (p < 0.001). In con-
trast, for those with lower chemerin concentrations (medium and low
tertiles), the percentage with CKD (stage >2) only increased from 31.5
to 34.1 (p = 0.004). With regard to patients who did not have any
CKD at baseline, 36.5% of patients with high chemerin concentration de-
veloped CKD (stage >2) during the follow-up, whereas in the group
with low chemerin concentrations only 15.4% were positively diag-
nosed for CKD at the follow-up visit after 3.5 years (p = 0.001). For

comparison, 24.8% of patients with hypertension at baseline developed
CKD (stage >2) and only 11.1% without hypertension (p = 0.025),
whereas the percentage of patients with and without CAD was not sig-
nificantly different with respect to CKD progression (24.2 vs. 17.9%,p =
0.271). In addition, the mentioned chemerin status predicted that pro-
gression to CKD univariately (OR = 3.17 [1.55-6.46], p = 0.002) and
remained significant after adjustment for age, gender, BMI, and the
presence of hypertension, CAD, and T2DM (OR = 2.61 [1.13-6.04],
p = 0.025).

Similarly, comparing baseline to follow-up data, we noticed that in
subjects with high chemerin concentrations the urine albumin/creatinine
ratio (ACR) increased from 48.3 4= 139.4 to 116.5 & 260.6 pg albumin/mg
creatinine within 3.5 years, whereas those with low chemerin concentra-
tions had comparable results at baseline (29.1 4 78.0 pg albumin/mg cre-
atinine) and follow-up (25.0 + 75.7 pg albumin/mg creatinine) and that
change of ACR was significantly higher in patients with high chemerin
levels than in those with low chemerin (p = 0.014).

2.2.2. Chemerin as a predictor of cardiovascular events

With respect to cardiovascular risk during the follow-up time of up
to 8 years (6.9 + 0.7 years, mean + SD), 117 patients of our study pop-
ulation had at least one vascular event. Hence, first vascular events oc-
curred in 23.6% of the study population. In total, we recorded 186
vascular events, encompassing 54 cardiovascular deaths, 26 non-fatal
myocardial infarctions, 24 non-fatal ischemic strokes, 10 CABGs, 44
PCIs, and 28 non-coronary revascularizations at the carotid and periph-
eral arteries.

Although there was no association between plasma chemerin and
baseline angiographic CAD status, the incidence of future cardiovascular
events was significantly higher (log Rank p-value = 0.003) in the high
chemerin tertile group than in people with medium or low chemerin
levels as shown in Fig. 1.

Concordantly, the chemerin status proved significantly predictive of
cardiovascular events with a standardized hazard ratio of 1.72 (95% CI
1.19-2.47, p = 0.004) for the full follow-up time of 6.9 years. After ad-
justment for age, gender, and BMI it still significantly predicted these
events (adjusted HR 1.65 [95% CI 1.133-2.39], p = 0.009) and that
predictive power remained significant after adjustment for eGFR
(adjusted HR 1.51 [95% CI 1.03-2.23], p = 0.037) and for baseline CAD
status (adjusted HR 1.49 [95% CI 1.01-2.19], p = 0.043; Fig. 2).

100

80

60

40+

Survival without cardiovascular events (%)

T T T
0 1000 2000 3000
follow up period in days

Fig. 1. Event-free survival with respect to chemerin levels. The Kaplan-Meier plot indi-
cates the event-free survival of the total study population according to plasma chemerin
high tertile cut-off (191.1 ng/ml) with a log rank p-value of 0.003. The high chemerin
group is represented by a dashed line and the group with lower chemerin concentrations
by a solid line. Events have been defined as vascular deaths, non-fatal myocardial infarc-
tions, non-fatal strokes, and the necessity of intervention (coronary artery bypass
graftings, percutaneous coronary interventions, and non-coronary revascularization).
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Model
1 univariate analysis ——
2 +age, gender, BMI | —4—
3 +eGFR ——
4 +CAD ——
1 2 3 a4
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Fig. 2. Hazard ratios for event-free survival with respect to chemerin levels. Hazard ratio
(HR) and adjusted HR of Cox regression analysis are given for consecutive models of ad-
justment. Model 1 represents a univariate analysis for chemerin; model 2 includes covar-
iate age, gender, and BMI; model 3 includes all parameters of model 2 including eGFR; and
model 4 includes all parameters of model 3 and in addition presence of significant CAD at
baseline.

Similarly, the chemerin status was also predictive if only the first
follow-up (3.5 years) was considered (HR 1.83 [95% CI 1.19-2.83],
p = 0.006) and remained predictive after adjustment for age, gender,
and BMI (adj. HR 1.84 [1.18-2.87], p = 0.007), as well as for eGFR
(adj. HR 1.77 [1.12-2.80], p = 0.015) and CAD (adj. HR 1.69 [1.07-
2.67], p = 0.024).

2.2.3. Association between cis- and trans-acting SNPs and plasma chemerin
Results from tagging analysis showed that under predefined
selection criteria, the RARRES2 gene is completely tagged by SNP
rs3735167 and SNP rs4721. Genotyping revealed that plasma
chemerin concentration was significantly associated with rs3735167
(B = —0.157, p = 0.001). In contrast, no association between chemerin
concentration and rs4721 was found (3 = 0.009, p = 0.839).

To identify trans-regulatory SNPs, we analyzed the mentioned 495
individual patient samples for the association between 130,909 cardio-
metabolic single nucleotide polymorphisms (SNPs) and circulating
chemerin using the Cardio-Metabo Chip. Results of the Cardio-Metabo
Chip analysis are presented in Fig. 3. We revealed significant genome-
wide associations between SNP rs55709438 (nominal p-value = 5.2

—10g10lP)
6
|

T T T T 1T

8 9 M

Chromosome

13 16 20

Fig. 3. Manhattan plot of genome-wide association study of plasma chemerin. SNPs were
characterized using the Illumina Cardio-Metabo Chip. After frequency and genotyping
pruning, there were 130,909 SNPs left. The red line indicates genome-wide significant as-
sociations (4.02e —7).

e—11), rs2444030 (nominal p-value = 5.2 e—9), and rs3098423
(nominal p-value = 9.6 e —8) and plasma chemerin concentrations
even if applying stringent criteria (Bonferroni corrected p-value = 6.8
e—6, 6.8 e —4, and 1.3 e —2 respectively). Of note, all identified trans-
acting SNPs are located at chromosomal locus 15q15-23. Polymorphism
rs55709438 is located within the mitogen-activated protein kinase ki-
nase 5 (MAP2KS5, 15g23) gene and was the top hit in the GWA. The sec-
ond SNP 152444030 lies within tumor protein p53 binding protein 1
(TP53BP1, 15q15-21) gene. Close to rs2444030, the third SNP
153098423 (pairwise linkage disequilibrium D’ = 1.0; r? = 0.492) is lo-
cated within calpain 3 (CAPN3, 15q15.1) gene. Chemerin levels of cis-
and trans-acting SNPs are given in Table 3.

2.24. Association between cis- and trans-acting SNPs and eGFR in a larger
population

To test the relevance of these SNPs for a larger population at vascular
risk, we used data from all 1049 enrolled coronary patients. Applying a
linear regression model revealed a significant association between eGFR
and SNP rs2444030 (F = 4.42, p = 0.036) as well as SNP rs3098423
(F = 7.03, p = 0.008, Table 3). Concordantly, including age, gender,
and BMI into the model, both SNPs were still significant predictors of
eGFR (F=6.09, p = 0.014 and F = 6.29, p = 0.012, respectively). How-
ever, no significant association between eGFR and rs55709438 or
RARRES2 SNP rs3735167 and SNP rs4721 was found.

2.2.5. Association between cis- and trans-acting SNPs and cardiometabolic
traits

Having revealed a link of plasma chemerin with obesity and the car-
diometabolic traits, we applied logistic regression analysis to test the as-
sociation of the respective polymorphisms with those parameters.
Concordantly we did not observe any significant interaction between
SNPs rs55709438, 152444030, rs3098423, rs3735167, and rs4721 and
CAD, and there was also no association with T2DM or the MetS
(p>0.05, Table S2).

Nonetheless, we revealed significant associations with lipid markers
triglycerides, LDL cholesterol, as well as total cholesterol (Table 3). Fur-
thermore, we ascertained a significant association between rs55709438
and obesity (p = 0.025) and could corroborate the previously described
association between rs10278590 (=rs4721) and visceral fat in non-
obese subjects [16] by demonstrating an association for 1s4721 (Perend =
0.020) as well as 153735167 (perena = 0.003) in our non-obese subjects.

Neither rs3735167 nor rs4721 proved to predict cardiovascular
events (HR = 1.014 [95% C1 0.837-1.014] p = 0.885 and HR = 1.004
[95% C10.843-1.196] p = 0.963) with respect to the follow-up time of
6.9 years. Similarly, none of the SNPs revealed by GWA (rs55709438,
152444030 and rs3098423) predicted cardiovascular events (HR =
0.37 [95% C1 0.05-2.65] p = 0.323, HR = 0.90 [95% CI 0.42-1.90] p =
0.773, and HR 1.32 [95% CI 0.72-2.41] p = 0.372). In accordance,
those five SNPs did also not have predictive power for the first
3.5 years of follow-up.

3. Discussion

In the present study, we found a strong association between circulat-
ing chemerin and metabolic traits as well as kidney function. In addi-
tion, plasma chemerin is predictive of renal impairment and patients
with high plasma chemerin levels are at a significantly higher cardiovas-
cular risk, independent from their renal function.

We were able to demonstrate that patients with elevated chemerin
levels are more prone to impaired eGFR. A lower eGFR was linked to
high chemerin levels, independent from CAD, the MetS or T2DM status.
These data are in accordance with previous reports for patients with di-
abetes or severe kidney disease, but also for control subjects [22,24,27].

The present study also suggests a connection between high
chemerin concentrations and a progression of impaired kidney func-
tion. This is of particular interest and strengthened by the finding in
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Table 3

Overview of trans- and cis-acting SNPs. Trans- and cis-acting polymorphisms are summarized with A denoting the major, and B the minor allele. Chemerin concentrations in ng/ml (means with standard deviation) are shown for the wt (AA) and the
dominant (BX) model. p-Values are given for the association between chemerin and the dominant variant model according to linear regression. Estimated GFR is given in ml/min/1.72 m?, triglycerides, LDL cholesterol and total cholesterol in mg/dl.

LDL cholesterol HDL cholesterol

Total cholesterol

Triglycerides

eGFR

Chemerin

B

A

Acting

Variant

P

beta

p

Beta

p

Beta

p

Beta

P

Beta

BX

0.869
0.567

0.005

0.027

0.109
0.039

0.053

2.573
4.270

0.098

0.054
0.106

0.062

2.739
11.064

0.626
0.001

0.016

0.238
11.279

0.466

0.024
—0.067
—0.084

0.532
4417

6.8e —6

356.8 + 151.1
252.8 +128.7
2454 + 1315
181.6 + 68.8
172.6 £ 654

171.8 + 66.0
170.1 + 62.3
170.3 + 62.1
164.8 + 65.3
173.5 + 69.0

A
C
C
A
G

C
G
T

Trans
Trans
Trans

Cis

rs55709438
1s2444030

0.018

0.329

0.066
0.020
0.050
—0.065

0.001

0.107
0.084
—0.001

0.036

6.8e —4

1.006 0.032 0316
—0.060

0.032

0.537
0.122

3.777 0.052 0.381
0.042

0.183
0.907

0.008

6.973

0.008

7.034
0.181

1.3e—2

rs3098423

0.857

0.669  2.391

0.341

0.014
—0.031

0.670 0.001 0.974
0.860

0.014

23e—3

G
T

rs3735167
1s4721

0.034 0.296

1.093

4.129

0.006

0.913 0.031

0.012 0.003

89e—1

Cis
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patients with end stage renal disease by Rutkowski et al. that after kid-
ney transplantation the eGFR increased and reached a value higher than
50 ml/min and the serum chemerin concentrations decreased to the
values observed in healthy subjects [24].

With regard to the progression of renal dysfunction in our study, it
was observed more frequently in patients with high chemerin concen-
tration, but also to a smaller but significant degree in subjects with
lower chemerin levels. Hypertension is the most important factor in
progression of renal dysfunction and may be influencing the outcome
as patients with hypertension had higher chemerin levels than normo-
tensive subjects. Nevertheless, adjusting for hypertension did not abro-
gate the association between chemerin and renal function. Within the
context of CKD, it has been reviewed that peptide hormone levels rise
significantly but the consequences of their accumulation remain unclear
[28]. Thus, future mechanistic studies should evaluate the possible pre-
dictive and therapeutic values of these findings.

Apart from that, it has been demonstrated quite recently that a high
chemerin concentration is also a predictor for T2DM [29]. From a clinical
point of view, the treatment of excessive chemerin levels to prevent the
onset of diabetes or renal diseases might be a future task to be addressed
as it has been demonstrated that rosiglitazone administration amelio-
rates diabetic nephropathy in rats by decreasing the expression of
chemerin [30]. RARRES2 is a target gene of peroxisome proliferator-
activated receptor y (PPARY) [31], which is activated by glitazones,
but the respective effect on adipocytes switches with respect to the cel-
lular differentiation state and thus may be ambiguous in vivo [31]. Given
the complex role of PPARY in renal dysfunction and obesity [32] and the
suggested vasoactive role of chemerin in the perivascular adipose tissue
[8], further investigation is mandatory.

Furthermore, we demonstrated a positive correlation of chemerin
concentration with BMI, waist circumference, triglycerides, ApoB, and
blood pressure and a negative correlation between chemerin and HDL
and ApoAl, respectively. These results support previous data obtained
for morbidly obese subjects [1,14] and a primal report by Bozaoglu [9].
Chemerin has been found an independent marker of the metabolic syn-
drome in the Caucasian population [33]. Accordingly, in our study pop-
ulation, chemerin levels were also significantly higher in subjects
suffering from the MetS. This was also true for T2DM patients and we
observed a correlation with HOMA-IR, HbA1C, and fasting glucose.
Noteworthy, we also determined a clear direct correlation between
chemerin and CRP as well as fibrinogen, supporting chemerin's sup-
posed role as a mediator between obesity and inflammation [13,14].
Apart from that, there was a gender-specific bias and also a significant
link between ACE or AT-2 medication and AT-2 medication and obtain-
ed chemerin concentration. As the gender bias may be due to a higher
body fat percentage in women, the latter probably results from the
higher age of ACE blocker or AT-2 antagonist users compared with
beta blocker users (69.5 vs. 64.4, p = 0.004). In addition, AT-2 antago-
nists and ACE blockers are both metabolically neutral, in contrast to
beta blocker. Thus, their prescription is preferred in diabetic and renal
impaired subjects, whereas only a low percentage of CKD patients re-
ceive beta blockers due to the fear of adversely affecting renal function
and glycemic control [34] and that also applies to our study subjects.

According to our data, elevated chemerin concentration is not asso-
ciated with baseline CAD status. This is contradicting a small previous
study of 188 Chinese patients [18] but on the other hand corroborates
data from a Caucasian study group with 330 subjects [20] as well as a
Korean T2DM study group with 70 subjects [35]. We did not include pa-
tients with acute coronary syndrome in our study, who were reported
to have increased chemerin concentrations [36,37] and may explain dif-
ferent results if also included.

The present study is the first to reveal that a high plasma chemerin
concentration is not only a predictor for renal insufficiency but also con-
fers to a significantly increased risk of future cardiovascular events in
coronary patients. In this context, it has to be mentioned that in patients
with very severe kidney failure, CKD stage 5, higher chemerin levels
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have been reported to improve overall survival [23]. Nevertheless, our
data clearly enlarge the current knowledge about chemerin going be-
yond the previously assumed protective role of chemerin [21].

Despite our new findings, the role of chemerin in metabolism and
cardiovascular pathogenesis is far away from being understood, and
the molecular network involved in the regulation of chemerin levels is
obscure as well. Therefore, we also performed a GWA with the metabol-
ic and atherosclerotic-cardiovascular focused Cardio-Metabo Chip and
used tagging SNPs for the RARRES2 gene locus thereby reassessing
previously demonstrated associations between RARRES and chemerin
[16,38]. Starting with the latter, our genotyping data revealed that plas-
ma chemerin concentration was significantly associated with the tag-
ging SNP rs3735167 (3 = —0.157, p = 0.001) and thus we could
replicate results from a large meta analysis for the cis-acting polymor-
phisms rs3735167 and also for rs7806429, closely linked to rs3735167
[38]. In contrast, no association between chemerin concentration and
rs4721 was found (3 = 0.009, p = 0.839). Using magnetic resonance
imaging, Miissig et al. suggested for rs10278590 (merged to rs4721) a
nominal association with visceral fat in non-obese subjects (p = 0.04)
[16]. Albeit we did not apply that method, we also revealed a significant
association with waist circumference in non-obese patients for rs4721
(Ptrena = 0.020) and also for rs3735167 (Pgena = 0.003).

To further elucidate the metabolic and cardiovascular role of
chemerin, we used the Cardio-Metabo Chip and were able to reveal
three associations with genome-wide significance. The best hit was a
polymorphism in MAP2K5 (rs55709438, nominal p-value = 7.8e —
14), which has been reported to be associated with obesity [39,40]. In
accordance, the significant link between rs55709438 and obesity in
our population could corroborate those previous findings. Moreover,
MAP2KS5 has been demonstrated recently to influence adipogenesis by
impacting PPARy phosphorylation [41] and, consequently, will also af-
fect chemerin expression [31], providing a convincing link between
the MAP2KS5 polymorphism and chemerin concentration.

In addition, we also assessed an association with a SNP (rs3098423)
in CAPN3, a calcium-dependent endoprotease [42], whose expression is
associated with insulin resistance and increased body fat [43]. That SNP
turned out to be significantly linked with eGFR in our patients. Finally,
the third association refers to TP53BP1 (rs2444030), a transcriptional
activator of p53, well known for its role in cellular energy metabolism
[44,45], adipogenic differentiation, and diet-induced obesity [46]. In ac-
cordance, our data demonstrated a significant association of rs2444030
with lipid markers triglycerides, LDL cholesterol, and total cholesterol
but also with eGFR.

Of interest, the identified trans-acting SNPs rs2444030 in TP53BP1,
the linked rs3098423 in CAPN3, as well as rs55709438 in MAP2K5 to-
gether with the previously identified SNP rs8027521 near UNC13C
[38], all of them highly linked with circulating chemerin concentrations,
span a larger region on chromosome 15 (15q15-23) and thus that re-
gion should be further investigated for an impact on chemerin levels.

Finally, it has been reported previously that polymorphisms in the
gene encoding epithelial growth factor-like repeats and discoidin I-
like domains 3 (EDIL3) on chromosome 5, which is involved in angio-
genesis are significantly associated with plasma chemerin levels [4].
As chemerin promotes the formation of new blood vessels, it may be
an essential component of adipose tissue expansion in obesity [4]. Con-
sistently, we could confirm that link in our study, revealing a significant
association (p = 0.007) between rs4444950, 98 kb downstream the
EDIL3 coding region, and plasma chemerin.

Given the lacking predictive value for the cardiovascular risk of cis-
and trans-acting SNPs, the question arises whether chemerin, nonethe-
less, should be regarded as biomarker for the cardiovascular risk or if a
more conservative interpretation should be applied classifying it as a
surrogate marker. On the other hand, these variants were partly linked
with lipid markers, obesity, and renal function. Furthermore, high
chemerin concentrations in our patients were also linked with a
worsening of these parameters and predicted cardiovascular events

independent from renal filtration capacity. Thus, future studies on the
association between those relevant polymorphisms and the cardiovas-
cular outcome using a larger population might find such an association,
or further links we were not able to attest statistical significance for.

Nevertheless, the particular strengths of this study are its precise
well characterization of patients, as well as the long follow-up time of
up to 8 years. We further want to emphasize that our study participants
were patients undergoing coronary angiography for the evaluation of
CAD and are therefore a selected group and thus do not reflect the gen-
eral population. However, the study subjects represent a patient cohort
with a high vascular risk and therefore deserve particular clinical inter-
est. Notably, studies on chemerin in coronary patients are scarce and
our study represents the first observation linking chemerin to future
cardiovascular event risk.

In conclusion, this study corroborates the association between
chemerin and renal function. Moreover, it demonstrates for the first
time that high chemerin levels are predictive for renal impairment
and cardiovascular events and that polymorphisms in 15q15-23
might have an impact on chemerin levels beyond common genetic var-
iations in RARRES2.

4. Methods
4.1. Study subjects

From October 2005 through December 2013 we enrolled 1049 con-
secutive Caucasian patients who were referred to elective coronary an-
giography for the evaluation of established or suspected stable CAD. Out
of these 495 sex-matched patients were selected for determination of
plasma chemerin concentration. Patients undergoing coronary angiog-
raphy for other reasons were not enrolled. In particular, no patients
with acute coronary syndromes were enrolled. Information on conven-
tional cardiovascular risk factors was obtained by a standardized
interview and systolic/diastolic blood pressure was measured by the
Riva-Rocci method under resting conditions in a sitting position at the
day of hospital entry at least 5 h after hospitalization. Hypertension
was defined according to the Seventh Report of the Joint National
Committee on Prevention, Detection, Evaluation, and Treatment of
High Blood Pressure [47], and Type 2 diabetes mellitus (T2DM) was di-
agnosed according to World Health Organization criteria [48]. Height
and weight were recorded, and body mass index (BMI) was calculated
as body weight (kg)/height (m?). According to WHO criteria, BMI > 30
was regarded as obesity [49].

According to National Cholesterol Education Program ATP-III criteria
(NCEP-ATPIII) [50], the MetS was diagnosed in the presence of any three
of: waist circumference >102 cm in men and >88 cm in women, triglyc-
erides >150 mg/dl (1.7 mmol/1), high density lipoprotein (HDL) choles-
terol <40 mg/dl (1.0 mmol/l) in men and <50 mg/dl (1.3 mmol/1) in
women, blood pressure >130/>85 mm Hg, or fasting glucose
2100 mg/dl (5.6 mmol/l).

Coronary angiography was performed with the Judkin's technique
and the severity of stenosis was assessed by visual inspection by a
team of two investigators who were blinded to serologic assays as de-
scribed previously [51]. In short, coronary artery stenoses with lumen
narrowing >50% were considered significant and the extent of CAD
was defined as the number of significant coronary stenoses in a given
patient. Coronary arteries were defined as normal in the absence of
any visible lumen narrowing at angiography. The present study has
been approved by the Ethics Committee of the University of Innsbruck.
Written informed consent was given by all participants.

4.2. Laboratory analyses
Venous blood samples were collected after an overnight fast of 12 h

before angiography was performed and laboratory measurements were
performed from fresh plasma samples, as described previously [52].
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Serum triglycerides, total cholesterol, low density lipoprotein (LDL)
cholesterol, and HDL cholesterol were determined on a Cobas 6000/
8000 (Roche, Basel, Switzerland). Urinary albumin excretion was
expressed as the albumin/creatinine concentration ratio in a random
morning urine specimen. The urinary albumin concentration was deter-
mined using immunoturbidometry (Tina-quant Albumin Gen.2 Assay,
Roche, Basel, Switzerland). The glomerular filtration rate (GFR) has
been estimated according to the quadratic Mayo Clinic equation,
which gives more accurate estimates of GFR in patients with nearly nor-
mal renal function [53]. If serum creatinine was <0.8 mg/dl, 0.8 mg/dl
was inserted as a value for serum creatinine, as described previously
[54]. Both serum and urinary creatinine concentrations were measured
using the modified Jaffé method (Creatinine Jaffé Gen.2 Assay, Roche).
Chronic kidney disease (CKD) stage >2 was diagnosed for eGFR
<90 ml/min/1.73 m? according to the National Kidney Foundation —
Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines [55].
Plasma chemerin levels were determined with a commercial chemerin
enzyme-linked immunosorbent assay (ELISA) kit (Aviscera Bioscience,
CA, USA; catalog no. SK00171-01), specific for total human chemerin
with an inter-assay variation of less than 10%.

4.3. Prospective study

The mean follow-up time of the study was 6.9 + 0.7 years. The pri-
mary study endpoint was composite of coronary event, strokes, and re-
vascularization procedures as previously referred to as major vascular
events by the Heart Protection Study Collaborative Group [56]. In detail,
the endpoint comprised coronary death (fatal myocardial infarction,
sudden cardiac death, mortality from congestive heart failure due to
CAD), fatal ischemic stroke, non-fatal myocardial infarction, non-fatal
ischemic stroke and need for aortocoronary bypass, percutaneous trans-
luminal coronary angioplasty, or vascular surgery revascularization in
the carotid or peripheral arterial beds. Revascularization procedures
have been considered as end points unless they were planned as a con-
sequence of the baseline examination and therefore were not “future”
events. Time and causes of death have been regularly obtained from a
national survey (Statistik Austria, Vienna, Austria) or from hospital re-
cords. At a first follow-up-visit after 3.5 4 1.1 years, renal function has
been reassessed as described above and all fatal as well as non-fatal car-
diovascular events have been separately recorded.

4.4. Cardio-Metabo Chip analysis

DNA was extracted from patient blood samples and single nucleo-
tide polymorphisms (SNPs) in cardiovascular and metabolism genes
were characterized using the Illumina Cardio-Metabo Chip technology
(Illumina Inc., San Diego, CA) as described previously [57]. Patient sam-
ples were excluded if they had genotyping failure for more than 5% of
the sites or if they were identified as duplicates. From a total of
196,725 SNPs those were excluded with a minor allele frequency of
less than 0.5%. In addition SNPs were also excluded, if they failed to be
genotyped in more than 5% of the study population, or if they were
not in Hardy-Weinberg equilibrium among samples (critical p-
value = 0.0001). After frequency and genotyping pruning, there were
130,909 SNPs left. With these settings, we did not observe significant
genomic inflation (\ = 1.03).

4.5. SNP selection and tagging analysis

Due to the fact that the Cardio-Metabo Chip does not cover the
RARRES2 gene, coding for chemerin, respective SNPs for genotyping
have been manually chosen. Two tagging SNPs (rs3735167 and
rs4721) were selected from the HapMap SNP database [58], version 3
release R2; analysis panel: CEU + TSI (Utah residents with ancestry
from Northern and Western Europe as well as Tuscan residents in
Italy), using as criteria a minor allele frequency (MAF) >0.01 and

pairwise r? > 0.8 according to Tagger software [59] implemented in
the program Haploview version 4.2 [60]. According to HapMap SNP da-
tabase, these tagging SNPs capture 100% of RARRES2 variants with a
MAF >0.01 within a region comprising 20 kb of chromosome 7, position
149,652,000 to 149,672,000 (NCBI build 36, hg18). SNP rs3735167 is lo-
cated in the 5’flanking region of RARRES2 and has recently been linked
to chemerin concentration [38], whereas rs4721, known to be associat-
ed with visceral fat mass [16], is in the 3’UTR. The pairwise linkage
disequilibrium (D’ = 0.898; r*> = 0.376) between rs3735167 and
rs4721 has been calculated using Haploview 4.2. Genotypes for SNP
1s3735167, and rs4721 have been called in the larger population of all
1049 enrolled patients who were referred to elective coronary angiog-
raphy for the evaluation of established or suspected stable CAD. Their
distribution was in accordance with the Hardy-Weinberg equilibrium.

4.6. Genotyping

Genotyping of RARRES?2 variants rs3735167, and rs4721 was carried
out on a LightCycler® 480 Real-Time PCR System (F. Hoffmann-La
Roche Ltd., Basel, Switzerland) using the Assay-on-Demand™ service
(Applied Biosystems, Forster City, CA) as described previously [61].
Observed numbers of each genotype were compared with those expect-
ed when the sample was in Hardy-Weinberg equilibrium using the
Chi-square test with one degree of freedom.

4.7. Statistical analysis

Differences in baseline characteristics were tested for statistical sig-
nificance with the Chi-squared tests for categorical and Jonckheere-
Terpstra tests for continuous variables, respectively. Correlation analy-
ses were performed calculating non-parametric Spearman rank correla-
tion coefficients. In addition, analysis of covariance models (ANCOVA)
were built using a general linear model approach. For comparing the
continuous or categorical variables between baseline and follow-up in
patients, we used Wilcoxon and McNemar test respectively. Adjusted
hazard ratios for the incidence of vascular events were derived from
Cox proportional hazard models. Results are given as mean (standard
deviation) if not denoted otherwise and p-values of <0.05 were consid-
ered significant. Normal distribution was checked using Kolmogorov-
Smirnov and Shapiro-Wilk test, respectively. All statistical analyses
were performed with SPSS 20.0 for Windows (SPSS, Inc., Chicago, IL)
and genome-wide association of z-transformed variables with PLINK
(http://pngu.mgh.harvard.edu/purcell/plink [62]).
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