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Homogeneous Solutions of the Heat Equatio 
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We complete a characterization of homogeneous solutions of the beat equation 
begun by D. V. Widder. We determine regions of convergence for expansions 
of temperature functions in terms of the homogeneous solutions. 0 1992 Academic 

Press, Inc. 

1. INTRODUCTION 

A solution of the heat equation 

a% au -=- 
ax2 at 

is called homogeneous of degree CI if 

u(/lx, A2t) = il%(x, t) (2) 

for all 1, > 0. 
Two important sequences of homogeneous solutions of the heat equation 

were introduced by Rosenbloom and Widder in [4]. These are (un) which 
are homogeneous of degree n and {w,} which are homogeneous of degree 
--n - 1 (n > 0). We recall the definition of u, and w, below. Rosenbloom 
and Widder gave necessary and sufficient conditions for convergence of 
expansions of functions in terms of {un} and (wI1>. The underlying idea 
is an analogy between these expansions and the expansions of analytic 
functions in Laurent series, i.e., in terms of (z”), - co < n < co. A summary 
of investigations into this analogy can be found in [S]. One observes 
however that the heat equation is the analog of Laplace’s equation in this 
context, and for a given integer n Laplace’s equation has two independent 
solutions with homogeneity n: Re(z”) and Im(z”). One is therefore le 

35 
0021-9045J92 S3.00 

Copyright 0 1992 by Academic Press, inc. 
All lights of reproduction in any Corm restrved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82448737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


36 KOCHNEFF, SAGHER, AND ZHOU 

investigate all homogeneous solutions of the heat equation with a given 
homogeneity. This was done-with the exception of two cases-by Widder 
in [S]. In this note we supply the two missing functions. It may be interest- 
ing to note that the key is the Hilbert transform, which is the classical tool 
connecting the real and imaginary parts of some analytic functions. 

Consider the ordinary differential equation 

2tu” + xu’ - au = 0, (3) 

where U’ denotes the derivative of u with respect to x. 
It is proved in [S] that any twice differentiable function which satisfies 

any two of (1 ), (2), or (3) also satisfies the third. It follows that a complete 
characterization of all solutions with homogeneity CI consists in finding two 
independent solutions of (3) with homogeneity a. Moreover, once we have 
a solution of (3) homogeneous of any degree, we can obtain a solution of 
the correct homogeneity by multiplying it by an appropriate power of t. 

There is, of course, a considerable amount of latitude in choosing two 
independent solutions of (3). The functions one gets are used as basis 
elements for representing solutions of the heat equation. The choices of 
particular solutions of (3) are influenced by the properties of the resulting 
bases. In particular, the theory of the Hilbert transform enables us to give 
necessary and sufficient conditions for convergence of expansions in these 
bases. 

For II = 0, 1, . . . the “heat polynomials” of degree n are the unique polyno- 
mials of degree n which satisfy the heat equation, have coefficient of xn 
equal to unity, and have homogeneity IZ. They are defined [4] as 

[n/2] 

t&(x, t) = n! c 

tkXn - 2k 

k=O k!(n-2k)!’ (4) 

Part of the interest in the 0,(x, t) stems from their relationship to the 
Hermite polynomials. For y1= 0, 1, . . . define the nth Hermite polynomial 
orthogonal with respect to the measure e--x2/2 dx as 

H,(x) = (- 1)” ex2/2 -$ e-x2/2. 

Then [4] 

u,(x, t) = (-2t)““H, - 
( > & 

(6) 

A second independent solution of (3) can be determined by applying a 
reduction of order argument to (3) with CI = II using v,(x, t) as the first 
solution. This gives for t > 0 and x > 0 [5] 

h,(x, t) = n! (2t)“v,(x, t) lXa H dy, 
n 9 
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where 

is the Gauss-Weierstrass kernel. In [S] it is shown that h,(x, t) has the 
simpler representation 

k(x, I,=y QY, t)iY-x)“dY, (9) 
x 

so that (n!) P1h,(x, t) is the (n + 1)st integral of k(x, t). Note that the condi- 
tion t >O is necessary for the convergence of both integrals. In the fns.t 
integral, the reason is the existence of the roots of the v,(x, 1). Since t 
Hermite polynomials have y1 real roots symmetric about the origin, v,(x, t) 
has both positive and negative roots if t < 0. 

For negative integer homogeneities c1= --IZ - I c 0 one set of solutions of 
(3) are the “associated heat polynomials” given in [A], 

w,(x, t) = k(x, t) 0, 
x -1 ( 1 - - t’ t =&‘--:* is).,’ H, (-jJ. ( 

Observe that w,(x, t) is the Appell transform of v,(x, 1). 
The sequences (wn> and (vn> are biorthogonal for 0 < t < CC: 

s 21,(x, -t) w,(x, t) dx = a,,. 
R 

(11) 

For t < 0, a second set of solutions of (3) is obtained by applying a 
reduction of order argument to w,(x, t): 

-n!ww,(x, t) m k(y, t) 
gik t)= tn+l j ___ ay. 

x d(Ys tl 

The following simpler representation is given in [5]: 

The condition t < 0 is necessary for the convergence of the integrals in 
(12) and (13). 

Another way of obtaining g,(x, t) is to take the Appell transform of 
h,k f). 

We summarize Widder’s linearly independent solutions of (3) which 
satisfy the homogeneity condition (2) with integer az in the following table: 

Homogeneous of degree n Homogeneous of degree - n - 1 

t>o 
t<o 

o,;h, 
“?I 
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A second independent solution is missing for t < 0, positive homogeneity, 
and for t > 0, negative homogeneity. As we have seen before, reduction of 
order fails to give a second set of homogeneous solutions in these cases. 
Using some recent results about the Hilbert transform of the Gaussian [ 11 
we are able to give the missing solutions. We then prove necessary and 
sufficient conditions for the convergence of expansions in terms of the 
homogeneous solutions. 

2. A CHARACTERIZATION OF HOMOGENEOUS SOLUTIONS 

The Hilbert transform of fe LP(R), 1 < p < co, is defined a.e. by 

Sf(x) = p.v. t s, $ ds. (14) 

For f(x, t) E LP(R, dx), let X”(x, t) denote the Hilbert transform off(x, t) 
with respect to the first variable. 

THEOREM 1. If U(X, t)E LP(R, dx), 1 <p < co, is a solution of (2) and 
(3) in the strip o1 < t<a,, if also xu’(x, t), u”(x, t) E LP(R, dx), and 
lim Ix/ + Cc a, t) = 0 for Ol-=c t < %, then Afu(x, t) is also a solution of (2) 
and (3) in the strip o1 < t<o,. 

Prooj Since the Hilbert transform commutes with dilations, (2) will 
be satisfied for Pu(x, t). Thus, we only need to prove that Xu(x, t) will 
satisfy (3). We have 

X(2tu”(X, t) + xu’(x, t) - cXu(x, t)} 

= 2tSqu”(x, t)} + %yxu’(x, t)} -a&%(x, t) 

= 2t(%u)“(X, t) + X{xu’(x, t)} -cl&%(x, t). 

Using Theorem 1 in [2] we have 

~{xu’(x, t)) =xAf{u’(x, t)} + 2F{xu’(x, t)}(O) 

= x(&%)‘(x, t) - p.v. ; s, T ds 

= x(z@u)‘(x, t) -; IR u’(s, t) ds 

= x(&%)‘(x, t). 
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Therefore, we have 
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2t(&%)“(X, t) + x(Afu)‘(x, t) - aAf”u(x, t) = 0. 

This concludes the proof of the theorem. 

Concerning the conditions of the theorem, observe that if u(x), u’(x) are 
absolutely continuous, if also xu’(x), u”(x)E&~(R), 1 <p< 03, and 
liq,, _ m U(X) = 0, then an application of Hardy’s inequality shows that 
u(x) E LP(R). 

The next result may be of independent interest. 
Let 9(x) denote the Gaussian l/J?% c~*“. In [l] it is proved that 

sfeqx) = Y(x) =; e-x2l2 IX euZ12 du. (15) 
0 

THEOREM 2. Let H,,(x) denote the Hermite polynomials with respect to 
the measure ‘3(x). For n = 0, 1, . . . we have 

x(Hn(x) %x)) = H,(x) y”(x) - 

where El(x) = 0 and for n = 0, 1, . ..~ 

(17) 

ProoJ For n = 0 this is (15). For integer n 2 1, HL = n 

~vL(x) w+ 

(-~)-‘d d”-l 1 
d&6?=-&’ 

-x2/2 

= --$?H.-,(x)‘B(x~~ 

= -$ [H,-,(x) y(x)--Pn-2(x)1 

= -[H:,-,(x) Y(x)+ H,-,(x) 9”(x)-I’;-z(x)] 

= -(n-1)Hn2(~)~(x)+~H,-i(-)Y(~)-~H,,-iiX)+P:,-2(J! 

=N,(x)Y(x)-OH,-,(X)+P:,-z(x). 
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For n = 0, 1, it can be directly verified that (l/n) H,(x) - PL- 1(x) = P,(x). 
For n 3 2, 

p;~I(x)~~[y)‘2’ (_l)j(“-‘(~j)l~r;!4(+) 
j=O 

=~[y~~l(~l)i (n- l - j)! Hn-2-2j(X) 

(n - 2 - 2j)! 

Therefore 

and the proof is complete. 

Recall for t >O one set of solutions of (2) and (3) for homogeneities 
-n - 1~ 0 are the {w,} which are in all LP(R, dx), 1< p < 03. Theorems 1 
and 2 enable us to find a second set of homogeneous solutions. 

THEOREM 3. For t >O, n =O, 1, . . . . Sw,(x, t) satisfies the heat equation, 
has homogeneity a = -n - 1, and is linearly independent of w,(x, t). 
A?w,(x, t) has the representation 

where P, is the polynomial of Theorem 2. 

Proof By Theorem 1, Xw,(x, t) satisfies the heat equation and has 
homogeneity -n - 1. If g E LP(R), 16 p < co, is not the boundary value of 
a function analytic in the upper half plane, then g and &‘g are linearly 
independent. Therefore w, and Pw, are linearly independent. 

By Theorem 2 and the dilation invariance of the Hilbert transform, 

&?w,(x, t)=k (:)“‘P {e-“‘~“‘H. ($)} (x) 

=$ (;)n’2@W H,(u)) (-$=) 

This concludes the proof. 
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We turn our attention to the case t < 0, integer homogeneity pa > 0. 
Recall the definition of the Appell transform: 

du(x, t) = k(x, t) u ;, + . 
( > 

If U(X, t) is a solution of the heat equation in a domain D, then du(x, t) 
is a solution of the heat equation in the domain 

8={(x,t):(f,yqD). 

If u(x, t) is homogeneous of degree 01 then du(x, t) is homogeneous of 
degree -a--- 1: 

du(ix, n’t) = k(/lx, a?) u 
ax - 1 

( > 
fi’ -jq 
I 

=1.-%(x, t)C% ‘j,-1 
( 1 t 

= ra--!dCPU(X, 1). 

Therefore 

d&%,(x, t) = k(x, t) mv, 
( > 
;, q = tn + lk(x, t) &3v,(x, - t) (22) 

gives a second solution in t < 0 for integer homogeneity 12 > 0. It is clearly 
linearly independent of the v,(x, t). 

This completes the classification of all homogeneous solutions of the heat 
equation with integer valued homogeneity. We summarize: 

solutions of the heat equation with integer homogeneity n 3 0: 

t>o 

tto 

[n/2] 

u,(x, t) = n! 1 

tkXn - 2k 

k=O k!(n-2k)! 
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solutions of the heat equation with integer homogeneity -n - 1~ 0: 

w,(x, t) = k(x, t) v,(x/t, - l/t) = k(x, t) 
C2Y HxjkJ 

7 

t>o 

w,(x, t) = k(x, t) l&(x/t, - 1/t) = k(x, t) 

t<o 

&(X? t) = 
-n! w,(x, t) m k(y, t) 

p+l f 
~d~=2jbme-‘i.i’Y;“dy 

x n, 

3. REGIONS OF CONVERGENCE 

We are interested in the Lp convergence of the expansions 
C c,A?w,(x, t) and C c,zZ~~Yw,(x, t); see Theorems 7 and 8 below. The 
proofs in the cases p = 1 and p = CE are complicated by the fact that 9’(x) 
is not an L’(R) function. We therefore need some preliminary results. 

Define the Weyl half derivative as 

D:l”fct) =i f”? f’(u)(u- t)-“* du. 
ht 

We have from Lemma 2 in [3]: 
For x>O and /?> 1, if for all t>O 

(23) 

If’(tl Gmin -$ $ , { I (24) 

then 

lW%t)l G C(P) .min (25) 

where 

LEMMA 4. For n = 0, 1, . . . . t > 0, there exist constants B, such that 

(27) 
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where 

(28) 

ProoJf: The case y1= 0 follows from L’HBpital’s. For n 3 1, it is shown in 
[4] that there exists an absolute constant A such that 

Since for any /I > 0 

we have from (29) 

(29) 

Since D,w,(x, f) = -$w,+~(x, t) (see [4]), we have 

Ptw,(x, t)l= Im%l(x, t)l 

= ilw n+Z(X, t)l 

2(n+2) (n+2)‘2 
<A(n+2p4 y-- ( 1 J B, 1 

.min ijqk-z’to;2 
I 

For 0 < to < t (see [4]), we have 

Therefore, by Theorem 6 in [3] we have 

DxXw,(x, t) = iIq2w,(x, t) 

so that 

law,+ 1 (4 t)l = aLJfhAx> t)l 
= +p:‘2w,(x, t)l 

(33) 

B 
<A,+,pmin n+l - ___ 

l-4 IT+23 
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COROLLARY 5. For t > 0, n =O, 1, . . . 

j&A?w,(x, - t)l < A,,tn+1’zex*/4f .min $, & , (34) 

where A, and B, are the constants of Lemma 4. 

Consider temperature functions in the span of the {We}: 

24(x, t) = g c, w,(x, t). 
If=0 

(35) 

Rosenbloom and Widder, in [4], showed that if C,“=. a,v,(x, -a) 
converges at all points x E E, where E is a set of positive measure, then 
/an/ = O((e/2na)“12). (The claim in [4] is for E= [a, b] but their proof 
works equally well in the more general case.) Since w,(x, 0.) = 98zi,(x, a) = 
k(x, (T) v,(x/a, - l/o) it follows that if (35) converges for t = 0 > 0 and all 
xeE then 

Conversely, if (36) holds, then (35) converges absolutely and uniformly 
in half planes t > to > r~ (see [4]). 

THEOREM 6. If (36) holds, then (35) converges in LP(R, dx) norm, 
1< p < co, uniformly in half planes t 2 to > a. 

Conversely, if for some to>0 (35) converges in some LP(R, dx) norm, 
1 d p < co, then (36) holds for all a > t,. 

ProoJ For n > 1 and t > to > 0, if c, satisfies (36), we have from (29) 
for l<p<co 

nf?, Ic,I . Ilw,(., t)ll,,<A lle--x2’gtllp f Ic,J g(z)“” 
n=l 

so that we have uniform LP(R, dx) convergence for t > to. 
For the converse it suffices to show that convergence in LP(R, dx) norm 

for some to > 0 implies pointwise convergence for t > to. Let S,(x, t) = 
C,“= o c, w,(x, t). By (32) we have 

IS‘&> t)-S‘wk t)l G lW(~, t--o)llp’II~N(., to)-Sd*, to)llp, 
where l/p + l/p’ = 1. The last term converges to zero as IV, ii4 -+ 00, and the 
theorem is proved. 
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Note that since DLk)w,(x, t) = (- :)k~,+ ,Jx, t), n, k = 0, 1,2, . . . ([ 
have Lp convergence of the expansion of Dik)u(x, t) obtained by termwise 
differentiation of (35). 

WEOREM 7. Suppose for some 0 > 0: 

Ic,I=O (( > :i ; R’2 . 
For t > G, let 

Then 

&%(x, t) = f c,2Pw,(x, t) (39) 
n=l 

converges in LP(R, dx) norm, 1 < p d 00, uniformly in half planes t 2 to > (r. 
Conversely, if for some t, > 0 (39) converges in some LP(R, dx) norm, 

I < p < wo, then (37) holds for all a > t,. 

ProoJ: For 1~ p -C co the Lp convergence of (39) follows trivially from 
the Lp continuity of the Hilbert transform. The point of the proof below is 
therefore the cases p = 1 and p = 00. 

If (37) holds, then 

converges in LP(R, dx), 1 ,< p ,< co, for each t > O. By (32), if KX > 1 and 
0 < to < 2, since D*w,(x, t) = (-l/2) w,+ 1(x, t), we have 

where Y(x, 1) = A?k(x, t) = &‘w,(x, t), and differentiation is with respect 
to the first variable. By Lemma 4, Y’(x, t) = - i#w,(x, t) E Lp( 
Idp<CQ. 

Let ZS,(x, t) = Cz=‘=, c,z=?w,(x, I). Then 

II=@S.d., t)--@Sd-, t)ll,< II9’(., t--ON, 
Ii n=M+l 

The convergence is uniform for t 2 tl > t, > cr. 
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Conversely, if for some t, > 0 (39) converges in some LP(R, dx) we have 
from (32) 

w,k t) = -I, ax - y, t - to) #w,( y, to) dy 

=q ~‘(x-Y,t--t,)~w,~l(Y,t,)dY 
R 

(41) 

so that for l<p<~~, r>t,, 

5 c,-Iw,(x, t) <211Y’(., t-tto)llp,. 5 c,-lSW,-1t.2 to) * n=M+i (I n=M+l II P 

Therefore, by Theorem 6, 

(42) 

for all G > t,. Therefore (37) holds for all (T > t,. 
Note, since D$?%w,(x, t) = (- 4)” &%,+,Jx, t), we have Lp con- 

vergence of the expansion of DF’%u(x, t) obtained by termwise differentia- 
tion of (39). 

Since for t > 0, JZZYPW,(X, - t) = k(x, - t) %w,( -x/t, l/t) we determine 
the region of convergence of the series C c,&‘A?w,(x, t) using Theorem 7. 
We get: 

THEOREM 8. If for some CJ > 0 

Icnl=O (( > > jf-& n’2 (43) 

then the series 

u(x, t) = f c,&d~w,(x, -t) (44) 
It=1 

converges uniformly in strips 0 < t < t, < a. Furthermore, the series for 
U(X, t)/k(x, -t) converges uniformly in LP(R, dx), 1 <p< ~0, in strips 
o<t<t,<o. 

Conversely, iffor some t, > 0 the series for u(x, t)/k(x, -t) converges in 
some LP(R, dx), 1 < p 6 co, then (43) holds for all a c t,. 
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