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Abstract 

Somersalo, E., D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell’s 
equations, Journal of Computational and Applied Mathematics 42 (1992) 123-136. 

In this paper, we consider the problem of determining the electromagnetic state of a body from measurements 
made on the surface of the body. We study the full set of Maxwell’s equations that govern time-harmonic 
electric and magnetic fields. We seek to reconstruct the magnetic permeability p, the electric permittivity E 
and the electric conductivity u in the interior of the body from measurements made on the surface. We exhibit 
appropriate boundary measurements in the form of a boundary mapping, specifically the mapping from the 
tangential components of the elzctrie L Eeld to the tangential components of the magnetic field. This data can 
be used to reconstruct p, E and u approximately, provided they deviate only slightly from known constants. 
We also estimate the reconstruction errors. 

Keywords: Impedance imaging, Maxwell’s equations, distorted plane waves. 

1. Introduction 

In his paper [l], Calderbn considered the problem of determining an approximation to the 
electrical conductivity in a bounded region fl of lR3 from electrical measurements made on the 
surface 30. This impedance imaging problem has recently been studied by a number of authors, 
see, e.g., [4,6,7,9]. In these works, the time variation of the electromagnetic fields is neglected, 
so that the electric state of L? is governed by a single second-order elliptic partial differential 
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equation of electrostatics, where only one unknown function (electric conductivity) appears. In 
this article, we study the full set of Maxwell’s equations that govern time-harmonic electric and 
magnetic fields. The inverse problem therefore involves three unknown coefficients. 

Here we consider the case in which Ilt is a bounded domain in R3. For simplicity, we assume 
that $2 has a C’ boundary, i.e., each point at the boundary aJ2 has a neighborhood U such that 

is C”-isomorphic with the upper half space c= {X = (x,, x2, x3) I x3 2 0). We shall 
consider the electromagnetic fields (E, H) in 0 satisfying frequency domain Maxwell’s equa- 
tions 

QnE=impH, Q/\H= -ioeE + aE, (1 1) . 

in In, o > 0 being the time-harmonic frequency of the fields. The magnetic permeability p, the 
electric permittivity E and the conductivity u are assumed to satisfy the following regularity 
conditions in 0: 

@, c, oE C’(.n) n C’(O), (I 2) . 

p, 00, o>o. (13) . 

To state the inverse problem, the first question is what boundary data we should consider. The 
classical impedance imaging problem assumes the knowledge of the map that associates 
currents to voltages, namely the Dirichlet-to-Neumann map or its inverse, the resistivity map. 
In fact, this mapping is the kernel of the quadratic form that gives the total energy needed to 
maintain a given voltage or current pattern on the surface of the unknown conductor LL In the 
time-dependent case the total energy flux Q, through the boundary aGl is 

@=Rej Y.(EAH)dS=Rel (Y/\E)=MdS. (I 4) . 
a-A! ai2 

Here, v is the unit normal vector of 30 pointing outwards from 0. Formula (1.4) suggests that 
in the case of nonstatic theory we take the data to be the boundary mapping 

A:vAE~~~ *v/\Hlan. (15) . 

This map will be discussed further in Section 3. 
In this work we puggest an approximate constructive procedure to recover the electromag- 

netic parameters E, ~1 and u from the knowledge of A. The method is similar to the distorted 
plane wave approximation given by Calderon. As in his work, this approximate linearization 
scheme is expected to work well in the case where the electromagnetic parameters deviate only 
slightly from constant values. In Section 2 we give the outline of the method, postponing the 
detailed discussion and proofs to Section 3. 

2. The distorted plane wave approximation: an outline 

In this section we explain the basic idea of the linearizing approximaticn scheme. 
Assume that the coefficient functions p, E and <T can be written as 

P(X) = PO + &+)9 E(X) = Eg + BE(X)? u(x) =0,+60(x), (2 1) . 

where eo, p. and c+~ are constants, eo, p. > 0 and o. 2 0, and the perturbations 8y, 8~ and Scr 
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are small to an order that will be specified later. Consider first the constant medium equations 

V A E, = iwl_c,HO, V//H,= -iwe,E, + uoE,. (2 2) . 

For any #j E R3, assume that we can always find a pair (E,, Ho) and (E& H,*) of solutions to 
the system (2.2) with the following properties: (E,, Ho) and (EC, H,*) are of the form 

E,(x) = a e’l’“, H,,(x) = p eiEmw, (2 3) . 

and 
E,*(x) = cy*eic**x, H,*(x) = fi*eii*.*, 

(2 4) . 

for some cy, /3, 5 and (Y*, P*, c* in C3, where the complex uave vectors satisfy the extra 
condition 

[+l*=[. (2 5) . 

Next, suppose that the complete equations (1.1) have a solution (E, H) of the form 

E(x) = E,(x) +6E(x), H(x) = H,(x) + 6H(x), (2 6) . 

where (E,, Ho) is the constant medium solution (2.3), and 6E satisfies the boundary condition 

v~6E(x)l~~=O, (2 7) . 

and what is more, the correction terms 6E and CiH are small to first order in the perturbations 
Sp, Se and 6a, denoted as 

SE(x) =B(@, ik, au), 6H(x) = +p, Se, 6~). (2 8) . 

Then a straightforward calculation gives 

/ ( v’ Er\H; -E;/\H)dS 
aR 

= V=(E/\H,*-E,*//H)dx 
/ n 

= I(( V/\E)*H,*-(Vr\H,*)*E-(Vr\E,*).H+(Vr\H)*E,*)dx 
R 

= 
i 

(ioSpH, l Hg -it&kE,*E,*+6oE,*E$) dx+6’((& Se, 6~)~), (2 9) . 
R 

the notation above meaning that the error term is second order in the perturbations 6~, SE and 
Sa. Using the definition of the fields (2.3), (2.4) together with the boundary condition (2.7) we 
obtain from (2.9) the formula 

d(t) = / ((u A a) +*e’e’” +A@ A a eitex) l Cy*eiE*.X) dS 
af2 

=: /( iwS~p +* - iWSEQ*a!* +Scra~*) e@” dx+b((&, &, 80)~) 
n 

=iwp+*Q -iwcu~cu*~+a.a*Sa+B((S~~, &, SO)‘), (2.10) 

the hats denoting the Fourier transforms of the corresponding functions. 
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The approximate linearized solution of the inverse problem is obtained by the following 
steps. 

(i) From the knowledge of A, compute the left-hand side of formula (2.10). 
(ii) By using the fact that the choice of the complex vectors cy, /3, cy * and /3* is not unique 

for a given pair c,& *, solve for the Fourier transforms of the functions 6~ and 6~ + i&/o in 
terms of the data and the residual term. 

(iii) Apply the inverse Fourier transform to these equations to get an approximate solution 
for 6~ and 6~ + iSu/o. 

The crucial point that makes the above linearization possible is that one can prove estimates 
for the error term that is due to the second-order residual term Bi(&, SE, S(T)*) in (2.10). The 
main results of the paper are summarized in the theorem below, which we make morehprecise 
in Section 3. In the following, # denotes a smooth mollifier, i.e., $ E Cm(lR’), supp @ c (4 E 

t~klhd/#dx = 1. If N> I), we write &(x) =N3$(Nx). 

Theorem 2.1. Assume that 

II Q IL = sup I Q(x) I = I &+i- 0 
SUP 

I 

(2.11) 

is small, and for some q, 0 < 17 < 1, N is a large number of the order (1 - 7) log(l/ II Q II =!. Then 
the aboue linearization yields an approximation of the functions eN * Sp, t,$,, * 6~ and +N * Sa 
where the error is of the order of magnitude II Q 11:+? 

A more precise meaning for the smallness of the norm of Q as well as for the constants of 
proportionality are given in the following section. 

3. Detailed discussion and proofs 

Let us start this section by defining the basic function spaces. This will enable us to describe 
the mapping properties of the operator A. 

The basic function space that we shall consider is 

x= E-“*L*(q3 x j.C”*L*(R)3, 

i.e., the direct product of vector-valued weighted L*-spaces equipped with the norm 
(3 1) . 

(3 2) . 

and the corresponding inner product. Furthermore, define 

H(V A) = (u E L2(a)3 1 V A u E L2(12Q) 

and 
(3 3) . 

Z(VA)= uEH(VA)l/kAu.u dx=/uV/\u dx forall VEH(VA) . 
R R I 

(3 4) . 
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Equivalently, fi(V A ) is the completion of Ci(J2)3 in the graph norm of V A . Since in general 

/ 
VAUW dx- I u-v Au dx-k 

R R / 
(v A u) l 1’ dS, 

a0 
(3 5) . 

u being in fi( V A ) says that the tangential component of u vanishes on a&! in the weak sense. 
By Hs(0)3, s E IR, we denote the L*-based Sobolev spaces of vector-valued fields in 0. 

Furthermore, the space of tangential vector fields on the bo:mdary U2 with components locally 
in the Sobolev space H” is denoted by T’“@ln). 

Next, define the Maxwell operator L over 0 with the “electric” boundary condition (2.7) as 

(3 6) . 

where the domain of L is 

B(L)=Z-?(VA)XH(VA). 

With this domain of definition, L is easily proved to be self-adjoint [5]. 

(3 7) . 

Consider now the problem of finding a solution (E, H) for Maxwell’s equation with a 
prescribed tangential e!ectric field at the boundary. In order to formulate the problem in terms 
of L, we need to subtract off the boundary values. We do this as follows. Assume that we 
require 

y A E 1 aR = f E TH’/*(W). (3 8) . 

Denote by R a right inverse of the tangential trace mapping 

yt : H*(O)” + TH’/2(M2), ~,:F+uAF(~~. (3.9) 

For the proof of the existence of the mapping R, see [3]. With the notation E = E - Rf, 
Maxwell’s equations can be written 

(3 .lO) 

where B is the pointwise multiplier given as 

(3.11) 

and the inhomogeneity terms J and K are given as 

i 
J = -vARf, K=o 

CL 
:Rf. (3.12) 

In the above definitions, 1 is the 3 X 3 unit matrix, and 7 = E + is/w. We shall discuss now the 
solvability of (3.10). 

The following result is well known at least in the nondissipative case a = 0, i.e., B = 0, see, 
e.g., [5, Theorem 8.111. We shall give here a modification of this argument to cover also the 
dissipative case. 
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sition 3.1. l%e spectrum of the operator L - B consists of a discrete set (w, 1 n E N) whose 
only cluster point is in$nity. If B vanishes, the spectrum is real, while in the general case (T z 0, the 
spectrum lies in the strip - max(o(x)/&)) < Im w < 0. 

Proof. If B = 0, the reality of the spectrum follows by the self-adjointness of the operator L. 
Next, assume that B f 0 and Im o > 0. Since L is self-adjoint in X, we have for all 
u = (z+, u,) Ed the estimate 

]{(L-B-o)u,u)]= (Lu,u)-RewIIuII*- i(Im 4ull*+~lu,I* dx)l 

2 Im 0 II u II *, (3.13) 

and consequently, by Schwa&s inequality, 

1 
G j--&l(L -B--+11. (3.14) 

In particular, L - B - o is injective. To see that the range of L - B - o is dense, assume that 
u is orthogonal to the range, i.e., for all u ES(L), 

((L-B-w)u, u)=O. (3.15) 

Then, by the definition of the adjoint operator, v Ed =9(L), and we can choose u = u 
above. But then the estimate (3.13) implies that v = 0. Hence, L - B - o is invertible and the 
the norm of the inverse operator does not exceed l/Im w. 

Assuming next that Im o < -max(cT(x)/&)), we get the estimate 

I((L -B- o)u, u>l a IIm ollull*+~du,I* dxl 
R 

a IIm 01 Ilull*- nE / %lz~l* dx 

dx+ IIm wI/pIu,l* dx 
R 

(3.16) 

Proceeding as in the previous case we get the invertibility of the mapping L - B - o. 
To prove the discreteness of the spectrum we need the following fundamental result that is 

proved, e.g., in [5]. 

iRmma 3.2. The range of the operator L is closed, and the mapping L - ’ : Ran( L) + Ran( L) n 
59(L) is compact. 

The above lemma implies in particular that X admits the decomposition 

X= Ker(L) @ Ran(L), (3.17) 
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the direct sum being orthogonal with respect to the inner product of X. We shall denote by P 
the orthogonal projection P : X + Ran(L). 

Now, let Im o < 0 and Re o > 0. We shall consider the equation 

(L-B-O)U=V, (3.18) 

where u cS( L) and v E X is arbitrary. The solution u of this equation is sought in the form 

u = (B +w)_‘(v +q), (3.19) 

where 4 E Ran(L) and (B + w)- * denotes simply the inverse of the matrix B + o. Plugging this 
expression into (3.18) gives 

or, since 

In order 
operator 

L(B++‘(v+q)-q=o, (3.20) 

L = LP, we obtain by applying L-’ on this equation and rearranging terms, 

P(B++‘q-L-‘q= -P(B+co)% (3.21) 

to show that this equation is of the Fredholm type, we only have to verify that the 

P( B + 0)-l 1 Ran(L) : Ran(L) + Ran(L) (3.22) 

is an isomorphism. But for any w E Ran(L), we have 

I(w P(B +0)-W I = I(w, (B+$‘w) 12 w 7 II 2 (3.23) 

and P(B + a~)-~ is bounded, so by the Lax-Milgram lemma [lo] the mapping (3.19) is 
invertible. Now, by the analytic Fredholm theory (see [8]) we can deduce the discreteness of the 
spectrum. 0 (Proposition 3.1) 

We have now shown that Maxwell’s equations (1.1) with boundary data given by (3.8) can be 
rewritten as (3.10), and this equation is uniquely solvable except for a discrete set of values of 
W. In order to define A as in (1.5), we now need the tangential trace of the solution H, which is 
determined as follows. First, the tangential trace mapping yt is extended as 

yt : H(V A) + TH-“2(aR) (3.24) 

by the weak form of Gauss’ theorem (3.5), 

(@Ian, ytF),,=(~,B~F),-(VA~, F)n, (3.25) 

where F E H( V A ), 4p E H 1(O)3 is arbitrary and ( l , l >a~ and ( - , - >a are the natural 
extensions of the L2-dualities in the appropriate spaces (cf. [2]). Thus, we can define 

A : TH”2(afi) --) TH-“*(&fI) (3.26) 

through the decomposition 

(3.27) 

Note that the extension mapping R is not unique. However, we have the following lemma. 



130 E. Somersalo et al. / An inr?erse problem for Maxwell~ equations 

bmrna 3.3. T%e definition (3.27) of the mapping A is independent of the specific choice of the 
extension map R. 

f. Let R, and R, be two different right inverses of the trace mapping yt. Denote by 
, Hi) the solutions of (3.101, when the inhomogeneities are chosen as 

\ I 

4 
Y 

o_Rjf 
45 

= . I 

-‘,,Rjf 
I 

, j=lJ, (3.28) 

Ki 
\ cc 

respectively. Denoting Ej = ~j + Rjf, j = 1,2, and furthermore, E = E, -E, and H=H, -Hz, 
we note that (E, HI Ed and 

(L-B-o) E =o. 
( 1 

(3.29) 

If s is not in the spectrum of L - B, this implies in particular that E = H = 0 and thus the 
tangential boundary values of the fields H, and Hz coincide. 0 

Now that we have discussed the boundary operator A, the next step is to investigate the 
constant medium solutions (E,, H,) and (E& H,*) of the form (2.3) and (2.4). The following 
simple lemma establishes the existence of these fields. In the following we shall use the 
notations y. = E,, + iq,/o and k2 = ~~~~~~~ 

Lemma 3.4. Let 5 E a83 be arbitrary. Assume that the coordinates are chosen so that 5 = (cl, 0: 0). 
Then the fields (2.31, (2.4) satis& (2.2) and (2.5) if we choose 

g= (&, c2, c3) = (&, i(# +z,$‘2, (2: + k2)li2), zO E C, zi# k*, (3.30) 

(3.31) 

1 
P =-c/k, 

UP0 

(3.32) 

and the dual system of uectors as 

P = (Cl, -62, -63)9 

a* = (a,, --+, -a3), 

and jinally 

P* = 0% -P2, -P3). 

(3.33) 

(3.34) 

(3.35) 

f. Triviaily, 

&+I*=& (3 -36) 
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Also, by the definition of p, 

131 

V A ((y eigmx) = - ia A 5 eig*x = iw@ ei”“, (3.37) 

so the first one of Maxwell’s equations is satisfied. On the other hand, ar l f = 0 and 5 - 5 = k 2, 

SO 

V A p ei5.X = - ip A 5 eil’x = - &(l A Q) A 5 eiiax 

. 

= - 15. la! ei5.x = -_ioy,a eiC’X, 

WO 
(3.38) 

which is the second one of Maxwell’s equations. 
The same calculations apply for the dual system cy *, p * and 5 *. q 

Having the constant medium solutions, we can consider the perturbations (2.1) of the 
medium and the corresponding solutions (2.6) with the boundary condition (2.7). Below WC; 
obtain the equations for the perturbations SE and SH. Combining the equations of E and lil 
with those of E, and Ho we get 

V A SE = iwpoSH + ioSp( Ho + SH), 

V/;,SH= -iwr.SE+~oSE+io(sr+i~)(Eo+SE), (3.39) 

with the boundary condition 

u A SE 1 aa = 0, (3.40) 

understood in the weak sense SE E &V A ). In operator notation, this equation can be written 
as 

(Lo-B,-o)( ;;) =mQ( ;;) +oQ( ;)p (3.41) 

where Lo and B, are defined in the same way as L and B in (3.5) and (3.10), respectively, with 
E, (T and Al, replaced by eo, a0 and po, and 

Q= 

SE sa 
-+i- 0 
EO WE0 I 

SCL l 
0 - 

PO I 
Equation (3.41 1 is naturally understood in the space 

(3.42) 

x0 = E(y2L2( 0)’ x j,pL2( Q)‘, (3.43) 

and the domain of the operator Lo coincides with that of the operator L. 
We show as follows that when the potential matrix Q is small, (3.41) admits a solution with 

the norm of the same order as the norm of Q. The spectrum a( Lo - B,) of the operator 
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L, - B0 is known to be discrete. We can therefore choose w > 0 and o e o( L, - S,). For this 
o, let d denote the strictly positive distance of w to the spectrum. Now, (3.41) is equivalent to 

SE ( 1 5H 
-0(L,-B~-~)-*Q ((ii)+(:))* (3W 

‘l[he operator on the right-hand side of this equation satisfies the norm estimate 

IIw(L,-B,-o)-‘Qll < ~IIQIL, (3.45) 

where 

Wx) 
II Q II 

Se(x) + i- 0 
,=sup 0 

I 

. 

0 Gw 

(3.46) 

In particular, the mapping is a contraction if 11 Q 11 ao is small enough. We have therefore the 
following theorem. 

Theorem 3.5. Assuming that o 4 a( L, - B,), o > 0, and 

d 
llQll=< -9 0 

(3.41) admits a solution (GE, SH) satisfying 

% tIpIi.)ii~ii~ Eo 
ii( )II H . 

0 

(3.47) 

(3.48) 

It should be noted that in order to choose the frequency w outside the spectrum of L, - B,, 
one needs precise information about the geometry of the domain L? as well as of the 
background material. However, if the background is conducting, i.e., o. # 0, the choice of 
o E R, can be made arbitrarily. We have the following theorem. 

Thewem 3.6. 7&e spectnrm a( L, - B,) of the operator L, - B, intersect the real axis at most at 
the origin. 

Proof. Since the operator L, - B, has a pure point spectrum, we only have to show that for 
each o & IR, o f 0, the operator A, = L, - B0 - o is injective. Therefore, assume that A,u = 0 
for some u E~+Y( A,) =S( L,)). Since L, - w is self-adjoint, we have 

O=h (A,u, u> = -Im (B,u, U) = - / 
o,]u,(x)~~ dx, 

0 
implying that u1 = 0. But then A,u = (L, - o)u and 

(3.49) 

O=((L,-o)u, u) = --w 
/ 

j&4,(x)J2 dx, 
R 

(3.50) 

i.e., ix2 = 0. This completes the proof. q 
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Consider now (2.10) again. The above discussion of the perturbed solutions (2.6) has shown 
that the remainder term of (2.10) is indeed second order. For brevity, we use the notation 
6y = (SE + i&/w introduced in (3.12). Writing out explicitly the &dependencies, we have 

40 =/ 
an 

(( u A a(()) -p*(s) e’t’” + A(u A a(() eiQx) l a*([) eig*ex) dS 

= io( --(y(5) *a*(&+) + P(5) l P*(M&)) + r(S), (3.51) 

where the residual term r is 

r(t) = iw/ (-E;(x, 5)*=(x, ~)SY(X) +H,“((G 5) l sH(x, S)&+)) dx. (3.52) 
n 

From the proof of Lemma 3.4 it is evident that if we choose 5 E C3 as in (3.X) with z0 fixe?, 
the choice of the remaining parameters cy, p, a! * and p* is not unique. Assume that we pick 
two different vectors cyI and cy2 according to (3.31) and following the guidelines of Lemma 3.4 
form then the corresponding vectors pi, ~7 and p:, j = 1, 2. Writing (3.51) %st with the set 
j = 1 and then with j = 2, we get the matrrx equation 

or briefly, using the matrix notation, 

+ R(5)* 

I 9 (3.53) 

(3.54) 

To invert the matrix A(&), we need the following result. 

Lemma 3.7. The vectors cuj, pi, CY~ and pi*, j = 1, 2, satisfjkg Lemma 3.4 can be chosen such 
that for any A E C, 

det A(t) = A 15 1 2. (3.55) 

Proof. Let 5, cy and /3 be any vectors chosen as in Lemma 3.4. Then 

p.p*= (0+(PAa*)= a! aa*) - (l* ~a)~), (3.56) 

where we used the identity l l a* = l* l a. Furthermore, since 

P a=(&-[)*a!=&?& 

we get with any choice of the vectors a)j = (Yj(5), j = 1, 2, the identity 

det A(S) = -(aI $w2*P2*) + (~,W(P1 x+9 

(3.57) 

(3.58) 
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To evaluate this expression, we write the product ar l a * explicitly. From (3.31) and (3.34), 

We now make particular choices of z, and z2 to obtain (3-55). We simplify the expression 
(3.59) by requiring that for some A E @, z1 and z2 satisfjr the equation 

( 51 52 * a=**=+-zf+ -2,+-z, 
x3 53 1 

= -+((6$ + fS:)z: + M:f!z* - (as: + k2)zf)- (3.59) 
3 

(l; + +Sf)zf + 525,zlz2 - ($5; + k*)zf = - $+,,)*A~;. 

By the Fundamental Theorem of Algebra, we can now choose z$j), 
and (i, z’,‘)) each satis& (3.60). These choices, which correspond to 

and 

Qc2= ( 51 52 (2) 
i, z$? -iK - 7z2 , 

3 I 

(3.60) 

j = 1, 2, such that (1, ~5~)) 

(3.61) 

(3.62) 

imply (3.55). cl 

From (3.60) it follows that for 15 1 large, zy) = 6’(l). Therefore, from (3.31) and (3.32) with 
z0 fixed, we have the estimates 

I a#) I 4 C( 1 + 15 I *)Y (3.63) 

lPj(5)l d(l+ I5 I*). (3.64) 

Similar estimates hoid also for a; and PT. 
Muitiplying (3.541 by A( 5 )- ‘, 6 f 0, we get 

A(t)-‘D(c) = +A(!wW). (3.65) 

The left-hand side is now completely determined by the data A, so to complete the approxima- 
tion scheme we have to find an appropriate estimate for the inverse Fourier transform of the 
residual term A - ‘R. 

Lemma 3.8. Assume that o > 0 is not in the spectrum of the operator L, - BO, and assume that 
Q satisfies the estimate (3.47) of Theorem 3.5. Further, !et M > 0 be large enough to satisfy 
fl c lx E R3 I I x I CM). Then, for some constant C > 0 independent of 6 E R3, 

I A(T)-‘R(5) 1 G &(I + 16 I*)’ e’“!*l IlQlf,. (3.66) 
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Proof. Denoting by (E$j. H,T,) and (6Ej, 6Hj) the fields corresponding to the choice Cuj, j = 1, 
2, we get by Schwarz’s inequality and definition (3X), 

1 rj(S) } = ]iw/ (-E:j(x 
n 

5) l GEj(x, &‘)Sy(x) +H&(x, 5) .aHj(x, S)‘P(X)) dx 1 

(3.67) 

where the norms with the subindex 2 denote the usual unweighted norms of the space 
t*(&?)j x L2(CQ3. From the remark after the previous lemma as well as from the definition of 
5 * it follows now that for some constant C > 0, 

EZj Ill Ill HCTj <C(l+ ]~I*) eMItI. 
2 

Furthermore, from (X63), (3.64), (3.55) and Cramer’s rule, we get 

1 A(5)-’ 1 

so combining these 

(3.68) 

+1+ ItI*), (3.69) 

estimates with (3.48) proved in Theorem 3.5, the claim follows. 0 

Having established the second-order smallness of the residual term, we can now show that 
taking the inverse Fourier transform of (3.65) yields a good approximation to &y and 8~. This 
argument follows that of [l]. Let $ be a smooth mollifier in F3, i.e. $ E Cw(R3), +(t) = 0 as 
151 > 1 and l@(x) dx= 1. For y > 0 we define +N by setting &,,(t) = @(l/N* 0, or +N(x) = 

N3$( Nx). Multiplying (3.65) by &,,(s) and applying the inverse Fourier transform 9-l on both 
sides, we get 

$,,/ * F-‘(A-‘D)= +*N 
>:: Y-‘(A-]R), (3.70) 

where * is the convolution. When N is large, the first term on the right gives a reasonable 
approximation of the unknown functions 6y and 8~. (Remember that we assumed that Sy and 
6~ are twice ccJntinuously differentiable.) Therefore, we have to evaluate the size of the second 
term on the right. It turns out that the second term is indeed small for large values of N if the 
perturbations are small enough. The precise relation between the sizes of N, II Q ]I m and the 
norm of the residual term is given in the following theorern. 

Theorem 3.9. Assume that N > 0 is chosen so that for some q, 0 < q < 1, 

N7e2MN < 
1 

II Q It-” l 

Then, under the assumptions of the previous lemma, 

(3.71) 

h+N * ~-'(A-'~)II,~CllQII~~. (3.72) 
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Lemma 3.8, we get the estimate 

II&v * 9-l (A-lR)llca+&(~)l I( dS 

< C(1 + Nq3ezMN /&( $8) WIQII: 

G CN7ezMN II Q II:, (3.73) 

which clearly implies the claim. 0 
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