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Abstract

We prove the almost sure existence of absolutely continuous spectrum at low disorder for the Anderson
model on the simplest example of a product of a regular tree with a finite graph. This graph contains loops
of unbounded size.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Since Klein’s theorem on the existence of absolutely continuous spectrum for the Anderson
model on a regular tree [9] was given new proofs, in [1,3], there have been several generalizations
of this result to the Anderson model on other trees. For example, decorated trees was considered
in [7] while substitution trees were treated in [8]. In this paper we show the almost sure ex-
istence of purely absolutely continuous spectrum at weak disorder for the Anderson model on
the simplest example of a product of a regular tree with a finite graph. To our knowledge this is
the first proof of extended states for the Anderson model on a graph with loops of unbounded
size. Graphs with unbounded loops were considered in [4] for other types of randomness.
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Fig. 1. The graph T × G.

The Laplace operator on the product of a regular tree with a finite graph is unitarily equivalent
to a direct sum of shifted Laplace operators on the base tree, where the shifts are determined
by the spectrum of the Laplacian on the finite factor graph. This implies that the spectrum of
the Laplace operator is the union of shifted copies of the spectrum of the base tree Laplacian.
What happens when a random potential of Anderson type is added? In our example, we are able
to prove the existence of absolutely continuous spectrum on the intersection of the shifted copies,
namely, the interval [−2

√
2 + 1,2

√
2 − 1]. We conjecture that the analogous theorem is true for

general products of trees with finite graphs. (Added in proof: This has now been proved by Klein
and Sadel [10].) Notice, however, that if the norm of the finite factor graph Laplacian is too
large, this intersection will be empty. It is an interesting open problem to determine the nature
of the spectrum for energies where only some of the shifted copies of the Laplace operator in
the decomposition of the free Laplacian have spectrum. In our example these would be the ener-
gies contained in the intervals [−2

√
2,−2

√
2 + 1] and [2√

2 − 1,2
√

2 ]. The analogous problem
for slowly decaying random potentials on the strip was considered in [5], but the methods used
there do not apply to the Anderson model.

In this paper the base tree T is a binary rooted tree and the finite factor graph G is the graph
with two vertices connected with a single edge. This graph T × G is depicted in Fig. 1.

The Laplacian for the product graph is � = �T ⊗ 1 + 1 ⊗ �G, acting on the Hilbert space
�2(T × G) = �2(T ) ⊗ �2(G) = �2(T ) ⊗ C

2. In what follows we will think of elements of
�2(T ) ⊗ C

2 as C
2 valued functions on T . From this point of view, the analysis of this model

can be considered to be a 2 × 2 matrix valued version of the model on the original tree. Roughly
speaking, the hyperbolic plane H is replaced by the Siegel upper half space SH2. So, although the
outline of the proof is the same as for the tree, we are confronted with non-commuting variables
and the much more complicated geometry at infinity of SH2.

For convenience we will actually work with the adjacency matrix, which amounts to setting
the diagonal matrix elements of the Laplacian to zero. Then �G = [ 0 1

1 0

]
, and the Laplacian acts

on ϕ ∈ �2(T ) ⊗ C
2 as

�ϕ(x) =
∑

y:y∼x

ϕ(y) + �Gϕ(x).

Here y ∼ x means that y is connected to x by a single edge.
Let Q denote an i.i.d. random potential on T taking values in the set of 2 × 2 real symmetric

matrices Sym(2,R). Assume that the single site distribution is given by the measure ν satisfy-
ing
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E
[‖Q‖2(1+p)

]=
∫

Sym(2,R)

‖Q‖2(1+p) dν(Q) < ∞ (1.1)

for some p > 0.
We study the spectral properties of the Anderson Hamiltonian

Hk = � + kQ (1.2)

for small coupling constant k, which we take to be positive. The goal of this paper is to prove the
following theorem.

Theorem 1.1. Let Hk be the random Anderson Hamiltonian defined by (1.2), where the potential
Q satisfies (1.1). Let I be any closed subinterval of (−2

√
2 + 1,2

√
2 − 1). Then, for sufficiently

small k, H has purely absolutely continuous spectrum in I almost surely.

Here are some of the new ingredients in this paper. After a preliminary symplectic change
of variables to move the fixed point of our recursion relation to iI , we define a weight function
in (1.9) with some extra convexity compared to the functions we used previously (the analogue
on the original tree is described in the conference proceedings review [6]). This allows a simple
geometric characterization ((2.1) and (2.2)) of the places where our key inequality degenerates.
This characterization involves an unusual co-ordinate system for SH2 given by (1.11).

1.1. The forward Green function and the recursion relation

Let P denote the rank two projection onto the space of functions supported on the vertices
above the root (inside the oval in Fig. 1). Then, for λ in the resolvent set of Hk , we define the
Green function at the root to be

G(λ) = P(H − λ)−1P. (1.3)

This Green function is a λ dependent random variable taking values in the Siegel upper half
space SH2.

By definition, SH2 is the set of symmetric 2 × 2 matrices with complex entries whose imag-
inary parts are positive definite. The symplectic group Sp(4,R) acts on SH2 via generalized
linear fractional transformations. For Γ = [A B

C D

] ∈ Sp(4,R) and Z ∈ SH2 we write the action as

Γ ·Z = (AZ +B)(CZ +D)−1. Properties of SH2, its compactification, and the Sp(4,R) action
that we need can be found in the thesis of Freitas [2].

The forward Green functions are defined by disconnecting the tree as indicated, and restricting
the resolvent for the Hamiltonians of the two disconnected subtrees to the range of the projections
corresponding to the root nodes of the subtrees (see Fig. 2).

The analogue of (1.3) gives rise to two forward Green functions G1(λ) and G2(λ) that, for a
given realization of the potential, are related to G(λ) by

G(λ) = Φλ

(
G1(λ) + G2(λ)

2
− k

2
Q

)
(1.4)

where
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Fig. 2. Definition of the forward Green functions.

Φλ(G) = (2G + λ − �G)−1

and Q is the value of the potential at the root. Note that Φλ is the generalized linear fractional
transformation which we can identify with the matrix

Φλ =
[

0 I/
√

2√
2I (λI − �G)/

√
2

]
.

If λ is real, then Φλ ∈ Sp(4,R). Otherwise, Φλ is a composition of a complex shift with a trans-
formation in Sp(4,R).

We define Gλ to be the fixed point of Φλ. Solving the fixed point equation Gλ = Φλ(Gλ)

yields

Gλ = −
(

λ − �G

4

)
+ i

√
1

2
−
(

λ − �G

4

)2

.

Since the eigenvalues of �G are ±1, both eigenvalues of Gλ lie on a circle of radius 1/
√

2 in
the upper half plane when λ ∈ (−2

√
2 + 1,2

√
2 − 1). For these values of λ, Gλ ∈ SH2, while

for real λ outside this range, Gλ lies on the boundary at infinity. This explains the range of λ for
which we can prove absolutely continuous spectrum.

We now choose a closed interval J ⊂ (−2
√

2 + 1,2
√

2 − 1) that will remain fixed for the rest
of the paper. Define

Rε = {λ ∈ C: Reλ ∈ J, 0 < Imλ � ε} (1.5)

with ε sufficiently small so that Gλ ∈ SH2 for λ ∈ Rε .
We want the fixed point Gλ to serve as an origin for SH2. To avoid difficulties that result

from the fact that Gλ does not commute with all of SH2, we perform a λ dependent symplectic
change of variables to move the origin to iI . For λ ∈ Rε , write Gλ = Xλ + iYλ and let Γλ be the
symplectic transformation given by the matrix

Γλ =
[

Y
−1/2
λ −Y

−1/2
λ Xλ

0 Y
1/2
λ

]
.

Then Γλ · Gλ = iI . We will work with the new variables Z in SH2 related to G by

Z = Γλ · G = Y
−1/2

GY
−1/2 − Y

−1/2
XλY

−1/2
.
λ λ λ λ
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With these variables, Eq. (1.4) becomes

Z(λ) = Ψλ

(
Z1(λ) + Z2(λ)

2
− k

2
Q̂

)
(1.6)

where Ψλ = Γλ ◦Φλ ◦Γ −1
λ and Q̂ = Y

−1/2
λ QY

−1/2
λ . For future reference we compute the matrix

for Ψλ explicitly. This yields

Ψλ =
[

(λ − �G)/(2
√

2 ) −√1 − (λ − �G)2/8√
1 − (λ − �G)2/8 (λ − �G)/(2

√
2 )

]
=
[

cos(Θλ) − sin(Θλ)

sin(Θλ) cos(Θλ)

]
(1.7)

where Θλ = cos−1((λ−�G)/(2
√

2 )) with the branch of cos−1 chosen to make sin(Θλ) positive
definite when λ ∈ J . Notice that Ψλ is an orthogonal symplectic matrix for λ ∈ J .

Eq. (1.6), and the self-similarity of the tree imply that for any positive measurable function w

on SH2,

E
[
w
(
Z(λ)

)]= E

[
w

(
Ψλ

(
Z1(λ) + Z2(λ)

2
− k

2
Q̂

))]
, (1.8)

where Z1(λ), Z2(λ) are independent copies of Z(λ) and Q is independently distributed accord-
ing to ν.

1.2. The functions wp(Z1,Z2) and μ∗
2,p(Z1,Z2)

The following symplectically invariant function will play an important role in our analysis.
For Zj = Xj + iYj , j = 1,2 and p > 0, let

wp(Z1,Z2) = ∥∥Y−1/2
2 (Z1 − Z2)

∗Y−1
1 (Z1 − Z2)Y

−1/2
2

∥∥1+p

1+p
(1.9)

where ‖ · ‖1+p denotes the Schatten (1 +p) norm. When p = 0 the norm gives the trace, and the
resulting definition is a function of the Riemannian distance in the Siegel space. As we will see
below, wp is still invariant under the symplectic action when p > 0, and the extra convexity that
results for positive p will be important.

The weight function that we use to measure growth in SH2 is defined to be

wp(Z) = wp(Z, iI ). (1.10)

The following lemma collects some properties of wp(Z1,Z2) and wp(Z).

Lemma 1.2.

(i) Let Γ be an element of Sp(4,R) acting on SH2. Then

wp(Γ · Z1,Γ · Z2) = wp(Z1,Z2).

(ii) Let T be a complex translation given by the action T · Z = Z + it with t > 0. Then

wp(T · Z1, T · Z2) < wp(Z1,Z2).
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(iii) There are constants C1 and C2 such that for every Z ∈ SH2,

∥∥Im(Z)
∥∥1+p � C1wp(Z) + C2.

(iv) For any ε > 0 there exists Cε such that for any Q ∈ Sym(2,R)

wp(Z + Q) �
(
1 + ε + Cε‖Q‖2(1+p)

)
wp(Z) + Cε‖Q‖2(1+p).

This lemma is proved in Appendix A.
The ratio

μ2,p,λ(Z1,Z2) = wp

(
Ψλ

(
Z1 + Z2

2

))/(1

2
wp(Z1) + 1

2
wp(Z2)

)
plays a central role in our analysis. To understand this function we introduce an unusual co-
ordinate system for SH2. For Z = X + iY ∈ SH2, define

U(Z) = Y−1/2(Z − iI ). (1.11)

We will study this co-ordinate system in detail below. Clearly wp(Z) = ‖U(Z)∗U(Z)‖1+p

1+p =
‖U(Z)‖2(1+p)

2(1+p). The quantity U(Z) appears in the following crucial formula.

Proposition 1.3. For Imλ � 0,

wp

(
Ψλ

(
Z1 + Z2

2

))
�
∥∥∥∥1

2

[
U(Z1)

∗,U(Z2)
∗]P(Y1, Y2)

[
U(Z1)

U(Z2)

]∥∥∥∥1+p

1+p

(1.12)

where

P(Y1, Y2) =
[

Y
1/2
1

Y
1/2
2

]
(Y1 + Y2)

−1[Y 1/2
1 , Y

1/2
2

]
is the orthogonal projection onto the range of

[
Y

1/2
1

Y
1/2
2

]
. The inequality is an equality if λ ∈ R.

Notice that the left side of (1.12) does not depend on λ, so we can define the λ independent
upper bound for μ2,p,λ

μ∗
2,p(Z1,Z2) =

∥∥∥∥1

2

[
U(Z1)

∗,U(Z2)
∗]P(Y1, Y2)

[
U(Z1)

U(Z2)

]∥∥∥∥1+p

1+p

/(1

2
wp(Z1) + 1

2
wp(Z2)

)
.

It follows from Proposition 1.3 that

μ2,p,λ � μ∗
2,p. (1.13)
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Proposition 1.4. The ratio μ∗
2,p(Z1,Z2) � 1, or equivalently

∥∥∥∥1

2

[
U(Z1)

∗,U(Z2)
∗]P(Y1, Y2)

[
U(Z1)

U(Z2)

]∥∥∥∥1+p

1+p

� 1

2
wp(Z1) + 1

2
wp(Z2). (1.14)

Equality holds if and only if Z1 = Z2.

These propositions are proved below, where we also determine in what form they survive on
the compactifications considered below.

1.3. Reduction to estimates on μ∗
2,p

If Z = Γλ · G then ImG = Y
1/2
λ ImZ Y

1/2
λ . Thus, ‖ImG‖ � C‖ImZ‖ uniformly for λ ∈ Rε

with ε small. So, given Lemma 1.2(iii), Theorem 1.1 follows from the following theorem (see,
e.g., Lemma 1 of [4]).

Theorem 1.5. Let G(λ) be the Green function for the random Hamiltonian Hk = �+kQ defined
by (1.3), and let Z(λ) = Γλ · G(λ). Then, for sufficiently small coupling constant k, and small ε,
there exists a constant C such that

sup
λ∈Rε

E
[
wp

(
Z(λ)

)]
� C.

In this section we will indicate how this theorem follows from estimates of μ∗
2,p at infinity.

This part of the proof follows the same lines as [3]. Using (1.8) twice we find that

E
[
wp

(
Z(λ)

)]= E

[
wp

(
Ψλ

(
1

2
Z1 + 1

2
Ψλ

(
1

2
Z2 + 1

2
Z3 − 1

2
kQ̂2

)
− 1

2
kQ̂1

))]
where Z1, Z2 and Z3 are independent copies of Z(λ) and Q1 and Q2 are independent copies
of the single site (matrix) potential. Since we may permute Z1, Z2 and Z3 without changing the
expectation, we find

E
[
wp

(
Z(λ)

)]= 1

3
E
[
Σ(Z1,Z2,Z3, kQ̂1, kQ̂2, λ)

]
where Σ is the symmetrization of the expression above given by

Σ(Z1,Z2,Z3,Q1,Q2, λ) =
∑
σ

wp

(
Ψλ

(
1

2
Zσ1 + 1

2
Ψλ

(
1

2
Zσ2 + 1

2
Zσ3 − 1

2
Q2

)
− 1

2
Q1

))
.

In the sum, σ ranges over the three cyclic permutations of (1,2,3).
Introduce the ratio

μ3(Z1,Z2,Z3,Q1,Q2, λ) = Σ(Z1,Z2,Z3,Q1,Q2, λ)

wp(Z1) + wp(Z2) + wp(Z3)
.

To prove our main theorem, we will prove that
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Proposition 1.6. There exists a compact set K ⊆ SH2 × SH2 × SH2, ε > 0, ε1 > 0 and δ > 0 so
that

sup
(Z1,Z2,Z3)/∈K, ‖Q1‖�ε1, ‖Q2‖�ε1, λ∈Rε

μ3(Z1,Z2,Z3,Q1,Q2, λ) � (1 − δ).

Given Proposition 1.6 we can prove Theorem 1.5 as follows.

Proof of Theorem 1.5. Choose ε, ε1, K and δ so that the estimate in Proposition 1.6 holds. Let
χ(·) denote the characteristic function of the indicated set. We can then estimate E[wp(Z(λ))]
by introducting cutoffs as follows.

E
[
wp

(
Z(λ)

)]
� 1

3
E
[
χ
(‖kQ̂1‖ � ε1,‖kQ̂2‖ � ε1, (Z1,Z2,Z3) /∈ K

)
Σ
]

+ 1

3
E
[
χ
(‖kQ̂1‖ � ε1,‖kQ̂2‖ � ε1, (Z1,Z2,Z3) ∈ K

)
Σ
]

+ 1

3
E
[
χ
(‖kQ̂1‖ > ε1

)
Σ
]+ 1

3
E
[
χ
(‖kQ̂2‖ > ε1

)
Σ
]
. (1.15)

Here Σ stands for Σ(Z1,Z2,Z3, kQ̂1, kQ̂2, λ). In the first term on the right of (1.15) we may
replace Σ with (1 − δ)(wp(Z1) + wp(Z2) + wp(Z3)) for any λ ∈ Rε , thanks to Proposition 1.6.
This results in the following estimate for the first term on the right of (1.15), valid for all λ ∈ Rε

1

3
E
[
χ
(‖kQ̂1‖ � ε1,‖kQ̂2‖ � ε1, (Z1,Z2,Z3) /∈ K

)
Σ
]
� (1 − δ)E

[
wp

(
Z(λ)

)]
.

The second term in the right of (1.15) is estimated by noting that Σ(Z1,Z2,Z3,Q1,Q2, λ)

is continuous on SH2 × SH2 × SH2 × Sym(2,R) × Sym(2,R) × Rε and therefore bounded on
a compact subset. This yields the following estimate for the second term on the right of (1.15),
again valid for all λ ∈ Rε

1

3
E
[
χ
(‖kQ̂1‖ � ε1,‖kQ̂2‖ � ε1, (Z1,Z2,Z3) ∈ K

)
Σ
]
� C(ε, ε1,K).

The last two terms on the right of (1.15) are handled identically, so we will focus on the third
term. This is where the assumption of low disorder, i.e., that k is sufficiently small, enters. We
wish to exploit the fact that χ(‖kQ̂1‖ > ε1) → 0 as k → 0, pointwise in Q1. To do this we will
need the following upper bound for Σ

Σ(Z1,Z2,Z3,Q1,Q2, λ)

� C
(
1 + ‖Q1‖2(1+p) + ‖Q2‖2(1+p)

)(
wp(Z1) + wp(Z2) + wp(Z3) + 1

)
. (1.16)

Before proving this inequality, let us see how it can be used to complete the proof. Recall that Q̂

denotes Y
−1/2
λ QY

−1/2
λ so that ‖Q̂‖ � C‖Q‖ with C uniform for λ ∈ Rε . Thus, using (1.16) and

the independence of the random variables Q1,Q2,Z1,Z2,Z3 we find that for bounded k there
exists a constant C such that
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E
[
χ
(‖kQ̂1‖ > ε1

)
Σ
]

� CEQ1,Q2

[
χ
(‖kQ̂1‖ > ε1

)(
1 + ‖Q1‖2(1+p) + ‖Q2‖2(1+p)

)](
3E
[
wp

(
Z(λ)

)]+ 1
)

= δ(k, ε1)
(
E
[
wp

(
Z(λ)

)]+ 1
)

where δ(k, ε1) → 0 as k → 0. Given (1.1), this follows from the Lebesgue dominated conver-
gence theorem applied to EQ1,Q2[χ(‖kQ̂1‖ > ε1)(1 + ‖Q1‖2(1+p) + ‖Q2‖2(1+p))]. Combining
this estimate with the previous estimates for the first and second terms on the right of (1.15) we
obtain

E
[
wp

(
Z(λ)

)]
�
(
1 − δ + δ(k, ε1)

)
E
[
wp

(
Z(λ)

)]+ C

� (1 − δ/2)E
[
wp

(
Z(λ)

)]+ C

for k sufficiently small, valid for all λ ∈ Rε . Since the constants here are independent of λ ∈ Rε ,
this implies the bound of Theorem 1.5 and completes the proof, provided we can rule out
E[wp(Z(λ))] = ∞.

It remains to establish (1.16) and to prove an a priori estimate for E[wp(Z(λ))].
We begin by proving (1.16). Proposition 1.3 and Proposition 1.4 imply that wp(Ψλ(

Z1+Z2
2 ))�

1
2wp(Z1) + 1

2wp(Z2). Repeated applications of this inequality, together with Lemma 1.2(iv)
with any choice of ε, which we write in the less precise form wp(Z − Q) � C(1 +
‖Q‖2(1+p))(wp(Z) + 1), yield

Σ(Z1,Z2,Z3,Q1,Q2, λ)

�
∑
σ

[
1

2
wp(Zσ1 − Q1) + 1

4
wp(Zσ2 − Q2) + 1

4
wp(Zσ3)

]

�
∑
σ

[
C
(
1 + ‖Q1‖2(1+p)

)(
wp(Zσ1) + 1

)+ C
(
1 + ‖Q2‖2(1+p)

)
× (wp(Zσ2) + 1

)+ 1

4
wp(Zσ3)

]
.

This implies (1.16).
Finally we turn to the a priori bound. We need to prove E[wp(Z(λ))] � C(λ), where the

constant C(λ) may blow up as Imλ becomes small. We will show that for any realization of the
potential,

wp

(
Z(λ)

)
� C(λ)

(
1 + ‖Q‖2(1+p)

)
, (1.17)

where C(λ) does not depend on the potential. Then the bound follows by taking the expecta-
tion.

For this bound it is more convenient to work with the original forward Green function G(λ).
By Lemma 1.2(i) we have wp(Z(λ)) = wp(Z(λ), iI ) = wp(G(λ),Gλ). For any realization of
the potential, the recursion relation can be written G(λ) = −(G1 +G2 +λ−�G −Q)−1, where
we are writing Gi for Gi(λ). Thus
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∥∥G(λ)
∥∥� sup

Z∈SH2

∥∥(Z + i Imλ)−1
∥∥� C/ Imλ

(see Lemma A.1 in Appendix A for the second inequality). The same estimate holds for ‖G1‖
and ‖G2‖. Now let Y1 = Im(G1 + G2 + λ − �G − Q) and Y2 = Im(2Gλ + λ − �G). Notice
that for i = 1,2, Yi � Imλ and so, since Yi is real symmetric, Y−1

i � 1/ Imλ. Now we use the
invariance of wp in Lemma 1.2(i), and the fixed point property of Gλ to write

wp

(
G(λ),Gλ

)= wp

(−(G1 + G2 + λ − �G − Q)−1,−(2Gλ + λ − �G)−1)
= wp(G1 + G2 + λ − �G − Q,2Gλ + λ − �G)

= ∥∥Y−1/2
2

(
G∗

1 + G∗
2 − Q − 2G∗

λ

)
Y−1

1 (G1 + G2 − Q − 2Gλ)Y
−1/2
2

∥∥1+p

1+p

�
(
Imλ−1(‖G1‖1+p + ‖G2‖1+p + ‖Q‖1+p + 2‖Gλ‖1+p

))2(1+p)

�
(
Imλ−1(C/ Imλ + ‖Q‖1+p + 2‖Gλ‖1+p

))2(1+p)
.

Since ‖Gλ‖1+p is a λ dependent constant, independent of the potential, and all norms are equiv-
alent for 2 × 2 matrices, this inequality implies (1.17). �

Our next task is to reduce Proposition 1.6 to a statement about μ∗
2,p .

The standard compactification SH2 of SH2 is obtained by using the ball model. This is the set
of all symmetric 2 × 2 complex matrices W with ‖W‖ < 1. Here the norm is the operator norm,
W being regarded as an operator on a two-dimensional �2 space. The upper half space model
and the ball model are related by the map Z 
→ (Z − iI )(Z + iI )−1 = (Z + iI )−1(Z − iI )

and its inverse. The ball model can be compactified in a natural way, by taking its closure in
the Euclidean topology. The boundary of this closure, which we identify with the boundary at
infinity, ∂∞SH2, of SH2, contains all symmetric 2 × 2 complex matrices W with ‖W‖ = 1 Thus,
SH2 = SH2 ∪ ∂∞SH2. For more information, see [2]. We now extend μ3 to the compactification
SH2 × SH2 × SH2 × Sym(2,R) × Sym(2,R) × Rε by defining its value at a boundary point as
the supremum of all values along all sequences converging to the boundary point in the topology
of the compactification. Since the resulting function is upper semicontinuous, Proposition 1.6
follows if we show that the value of μ3 on any point of the boundary SH2 × SH2 × SH2 × {0} ×
{0} × J is < 1. Recall that J is the real interval at the base of Rε .

First, let us show that μ3 � 1 on the boundary. Let (Z1,Z2,Z3) ∈ ∂∞(SH2 × SH2 × SH2)

(this means that at least one Zi is in ∂∞SH2) and λ ∈ J ⊂ R. To estimate the value of μ3 at the
boundary point (Z1,Z2,Z3,0,0, λ) let (Z1,n,Z2,n,Z3,n,Q1,n,Q2,n, λn) converge to this point
in the topology of the compactification. We must bound μ3 along this sequence.

A calculation together with the inequality (1.13) shows that

μ3(Z1,Z2,Z3,Q1,Q2, λ)

=
∑
σ

μ∗
2,p

(
Zσ1 − 2Q1,Ψλ

(
1

2
Zσ2 + 1

2
Zσ3 − Q2

))

×
( 1

2wp(Zσ1 − 2Q1) + 1
4μ∗

2,p(Zσ2 − Q2,Zσ3 − Q2)(wp(Zσ2 − Q2) + wp(Zσ3 − Q2))

wp(Z1) + wp(Z2) + wp(Z3)

)
.

(1.18)
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By Proposition 1.4 we know μ∗
2,p � 1 so when evaluated at (Z1,n,Z2,n,Z3,n,Q1,n,

Q2,n, λn),

μ3 �
∑
σ

( 1
2wp(Zσ1,n − 2Q1,n) + 1

4 (wp(Zσ2,n − Q2,n) + wp(Zσ3,n − Q2,n))

wp(Z1,n) + wp(Z2,n) + wp(Z3,n)

)
.

Thus by Lemma 1.2(iv), since Q1,n,Q2,n tend to zero, the limit is � 1.
Since the symplectic action Z 
→ Z + Q for Q ∈ Sym(2,R) extends continuously to the

boundary at infinity, the sequence Zn + Qn will converge to Z in the compactification if
Zn → Z and Qn → 0. Thus (1.18) implies that if μ3 → 1 along a sequence converging to
(Z1,Z2,Z3,0,0, λ) in the compactification, then there are sequences Z1,n → Z1, Z2,n → Z2,
Z3,n → Z3 and λn → λ such that

μ∗
2,p(Z1,n,Z2,n) → 1, μ∗

2,p(Z1,n,Z3,n) → 1, μ∗
2,p(Z2,n,Z3,n) → 1, (1.19)

and

μ∗
2,p

(
Z1,n,Ψλn

(
Z2,n + Z3,n

2

))
→ 1,

μ∗
2,p

(
Z2,n,Ψλn

(
Z3,n + Z1,n

2

))
→ 1,

μ∗
2,p

(
Z3,n,Ψλn

(
Z1,n + Z2,n

2

))
→ 1. (1.20)

The sequences in each limit may be different.
The way one might hope to use these equations is to show that if μ∗

2,p(Z1,n,Z2,n) → 1 then
the limits Z1 and Z2 are equal, that is Z1 = Z2 = Z, and that (Z1,n + Z2,n)/2 → Z too. The
second statement is not automatic because addition does not extend continuously to the com-
pactification. This would be a plausible extension of Proposition 1.4, and can be shown to hold
for a tree. Then (1.19) and (1.20) would imply that there is a Z on the boundary at infinity
with Ψλ(Z) = Z. This contradiction would prove the desired inequality and hence Proposi-
tion 1.6.

This approach fails for the product graph we are considering. However the following two
propositions can be used in an analogous way. The next proposition says that even though it is
possible that μ∗

2,p(Z1,n,Z2,n) → 1 without Z1 = Z2, the limit condition does imply that both Z1

and Z2 belong to the same set, an image of H imbedded in SH2 described by (ii) or (iii) below.

Proposition 1.7. Let (Z1,n,Z2,n) be a sequence converging to a point in SH2 × SH2 with
μ∗

2,p(Z1,n,Z2,n) → 1. Then either:

(i) Z1,n, Z2,n and the average Za,n = (Z1,n + Z2,n)/2 (possibly for a subsequence) all con-
verge to the same point in SH2. In other words, the corresponding points W1,n, W2,n and
Wa,n in the ball model converge to the same point in the Euclidean topology.

(ii) There exists a real orthogonal matrix V such that Wi,n → V
[ 1 0

0 αi

]
V t for i = 1,2, a (pos-

sibly for a subsequence). Here |αi | � 1 and the limit Wi lies on the boundary of the ball
model.
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(iii) There exists a real orthogonal matrix V and r,p ∈ R such that Zi,n → V
[ zi r

r p

]
V t for i =

1,2, a (possibly for a subsequence). Here zi ∈ H and the limit Zi lies on the boundary of
the upper half space model.

The next proposition says that the sets described above do not intersect their images under Ψλ.

Proposition 1.8.

(i) If Z lies on the boundary of SH2 in the upper half space model, then Ψλ(Z) �= Z for every
λ ∈ J .

(ii) Suppose V is a real orthogonal matrix and V
[ 1 0

0 α

]
V t and V

[ 1 0
0 β

]
V t with |α| � 1, |β| � 1

are two points in the boundary of the ball model. Then for every λ ∈ J

Ψ̃λ

(
V

[
1 0
0 α

]
V t

)
�= V

[
1 0
0 β

]
V t .

Here Ψ̃λ denotes the action of Ψλ conjugated to act on the ball model.
(iii) Suppose V is a real orthogonal matrix and V

[ z r
r p

]
V t and V

[
z′ r
r p

]
V t with z, z′ ∈ H are two

points on the boundary in the upper half space model. Then for every λ ∈ J

Ψλ

(
V

[
z r

r p

]
V t

)
�= V

[
z′ r

r p

]
V t .

We now show how Proposition 1.7 and Proposition 1.8 imply Proposition 1.6 and thus our
main result.

Proof of Proposition 1.6. Suppose μ3 → 1 along a sequence (Z1,n,Z2,n,Z3,n,Q1,n,Q2,n, λn)

converging to (Z1,Z2,Z3,0,0, λ) in the compactification. Then, there are sequences so that
(1.19) and (1.20) hold. Then, by Proposition 1.7 there are three possibilities. (i): Zi,n and
(Zi,n + Zj,n)/2 (possibly for a subsequence) all converge to the same point Z and thus
Ψλ(Z) = Z. This is not possible since the only fixed point of Ψλ in SH2 is iI . (We leave the
proof of the required continuity in λ to the reader.) The second possibility is (ii): Zi,n and
(Zi,n + Zj,n)/2 (possibly for a subsequence) when viewed in the ball model all converge to
matrices of the form V

[ 1 0
0 α

]
V t for the same real rotation matrix V but possibly different values

of α with |α| � 1. Then (1.20) implies that there exist α and β with |α| � 1, |β| � 1 such that
Ψ̃λ · (V [ 1 0

0 α

]
V t ) = V

[ 1 0
0 β

]
V t . This is impossible by Proposition 1.8(ii). Otherwise (iii): Zi,n and

(Zi,n + Zj,n)/2 (possibly for a subsequence) all converge to matrices of the form V
[ z r

r p

]
V t for

the same real rotation matrix V and the same values of r,p ∈ R but possibly different values
of z ∈ H. Then (1.20) implies that there exist z, z′ ∈ H such that Ψλ · (V [ z r

r p

]
V t ) = V

[
z′ r
r p

]
V t .

This is impossible by Proposition 1.8(iii). Since all cases lead to a contradiction, we conclude
that μ3 → 1 is not possible. Therefore Proposition 1.6 holds. �
2. Proofs

In this section we will show how the geometric formula for μ∗
2,p given after Proposition 1.3

allows us to prove Proposition 1.4 and its extension Proposition 1.7. What emerges is that there
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are two separate relevant quantities – the projections of U(Z1) and U(Z2) onto their unit spheres,
and the range of P(Y1, Y2) – whose limits are constrained when μ2,p,λ tends to 1. Understand-
ing these constraints leads to a proof of our results. We conclude the section with a proof of
Proposition 1.8.

The proof of Proposition 1.3 is a simple calculation.

Proof of Proposition 1.3. Since Ψλ · (iI ) = iI we have

wp

(
Ψλ

(
Z1 + Z2

2

))
= wp

(
Ψλ

(
Z1 + Z2

2

)
, iI

)
= wp

(
Ψλ

(
Z1 + Z2

2

)
,Ψλ(iI )

)
� wp

(
Z1 + Z2

2
, iI

)

=
∥∥∥∥1

2

((
Z∗

1 + Z∗
2 + 2iI

)
(Y1 + Y2)

−1(Z1 + Z2 − 2iI )
)∥∥∥∥1+p

1+p

=
∥∥∥∥1

2

[
U(Z1)

∗,U(Z2)
∗]P(Y1, Y2)

[
U(Z1)

U(Z2)

]∥∥∥∥1+p

1+p

.

The inequality in the third line follows from Lemma 1.2(i) and (ii) and the fact that Ψλ is a
composition of a transformation in Sp(4,R) and a complex translation by Imλ. If Imλ = 0 the
complex translation is missing and the inequality becomes an equality. �
Proof of Proposition 1.4. We need to estimate a quantity of the form ‖ 1

2 [U∗
1 ,U∗

2 ]P [U1
U2

]‖1+p

1+p

where U1 and U2 are 2 × 2 matrices and P is a self-adjoint rank 2 projection. The first inequality
is ∥∥∥∥1

2

[
U∗

1 ,U∗
2

]
P

[
U1
U2

]∥∥∥∥1+p

1+p

�
∥∥∥∥1

2

[
U∗

1 ,U∗
2

][U1
U2

]∥∥∥∥1+p

1+p

=
∥∥∥∥1

2

(
U∗

1 U1 + U∗
2 U2

)∥∥∥∥1+p

1+p

.

Since the (1 + p) norm takes account of all the singular values, this inequality is strict unless

Ran

[
U1
U2

]
⊆ RanP. (2.1)

Next we use the triangle inequality for the norm ‖ · ‖1+p to conclude

∥∥∥∥1

2

(
U∗

1 U1 + U∗
2 U2

)∥∥∥∥1+p

1+p

�
(

1

2

∥∥U∗
1 U1

∥∥
1+p

+ 1

2

∥∥U∗
2 U2

∥∥
1+p

)1+p

.

Since p > 0, the unit ball in the norm ‖ · ‖1+p is convex. This implies that the inequality is strict
unless U∗

1 U1 is a multiple of U∗
2 U2. Since both U∗

1 U1 and U∗
2 U2 are positive definite matrices,

this multiple must be a positive number. Finally, by convexity,
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(
1

2

∥∥U∗
1 U1

∥∥
1+p

+ 1

2

∥∥U∗
2 U2

∥∥
1+p

)1+p

� 1

2

∥∥U∗
1 U1

∥∥1+p

1+p
+ 1

2

∥∥U∗
2 U2

∥∥1+p

1+p

with a strict inequality unless ‖U∗
1 U1‖1+p = ‖U∗

2 U2‖1+p . Thus equality implies that the multiple
above equals 1 and

U∗
1 U1 = U∗

2 U2. (2.2)

In the case of the present proposition we have that Ui = U(Zi) = Y
−1/2
1 (Zi − iI ), i = 1,2 and

that P projects onto

Ran

[
Y

1/2
1

Y
1/2
2

]
= Ran

[
I

Y
1/2
2 Y

−1/2
1

]
.

The equality holds since Y
1/2
1 is invertible for Z1 ∈ SH2. Now the range condition

Ran

[
U(Z1)

U(Z2)

]
⊆ Ran

[
I

Y
1/2
2 Y

−1/2
1

]

is equivalent to U(Z2) = Y
1/2
2 Y

−1/2
1 U(Z1) or X2 + i(I − Y−1

2 ) = X1 + i(I − Y−1
1 ). Equating

real and imaginary parts, this implies Z1 = Z2. �
Notice that we did not use (2.2) in the proof, but it will be important later.
The following function will be used below

R(t, ε) = t/2 +
√

t2/4 + ε2.

Its asymptotics when ε → 0 and t → t0 depend on the sign of t0:

R(t, ε)

⎧⎪⎨⎪⎩
= t + O(ε2) if t0 > 0,

→ 0 if t0 = 0,

= ε2/|t | + O(ε4) if t0 < 0.

(2.3)

We will also need the fact that if ε → 0 and t1 → 0 and t2 → t0 < 0 then

R(t2, ε)/R(t1, ε) → 0. (2.4)

This follows from 1/R(t, ε) = ε−2(R(t, ε) − t).
Let Z = X + iY ∈ SH2 and U(Z) = Y−1/2(Z − iI ). Here are some facts that we need. Write

U(Z) = ε−1(S + iT )

where ε = 1/‖U(Z)‖2(1+p) and ‖S + iT ‖2(1+p) = 1. Then



R. Froese et al. / Journal of Functional Analysis 262 (2012) 1011–1042 1025
Y 1/2 = ε−1R(T , ε),

X = ε−1Y 1/2S = ε−2R(T , ε)S,

T = ε
(
Y 1/2 − Y−1/2)= R(T , ε) − ε2R(T , ε)−1,

S = εY−1/2X.

Notice that T is a real symmetric matrix, but not necessarily positive definite. The matrix S need
not be symmetric, but R(T , ε)S is.

Proof of Proposition 1.7. We are given sequences (Z1,n,Z2,n) → (Z1,Z2) ∈ SH2 × SH2 with
μ∗

2,p(Z1,n,Z2,n) → 1. Let Uk,n = U(Zk,n) = ε−1
k,n(Sk,n + iTk,n), k = 1,2 and define Pn to be the

rank 2 projection onto the range of

Ran

[
Y

1/2
1,n

Y
1/2
2,n

]
= Ran

[
ε−1

1,nR(T1,n, ε1,n)

ε−1
2,nR(T2,n, ε2,n)

t

]
.

Then

μ∗
2,p(Z1,n,Z2,n) =

∥∥∥∥1

2

[
r1,n

(
St

1,n − iT1,n

)
, r2,n

(
St

2,n − iT2,n

)]
Pn

[
r1,n(S1,n + iT1,n)

r2,n(S2,n + iT2,n)

]∥∥∥∥1+p

1+p

with

r
2(1+p)

1,n = 2ε
−2(1+p)

2,n

ε
−2(1+p)

1,n + ε
−2(1+p)

2,n

, r
2(1+p)

2,n = 2ε
−2(1+p)

1,n

ε
−2(1+p)

1,n + ε
−2(1+p)

2,n

,

so that r
2(1+p)

1,n + r
2(1+p)

2,n = 2. By going to a subsequence we may assume that

Sk,n + iTk,n → Sk + iTk, k = 1,2,

rk,n → rk, k = 1,2,

Pn → P

since these quantities vary in compact sets. Now every term in the expression for μ∗
2,p converges,

so that ∥∥∥∥1

2

[
r1
(
St

1 − iT1
)
, r2
(
St

2 − iT2
)]

P

[
r1(S1 + iT1)

r2(S2 + iT2)

]∥∥∥∥1+p

1+p

= 1.

Given this equality we can follow the reasoning in the proof of Proposition 1.4 to conclude
that (2.1) and (2.2) hold when U1 and U2 in those equations are replaced by r1(S

t
1 − iT1) and

r2(S
t
2 − iT2). After this replacement (2.2) implies r1 = r2 = 1. Thus by (2.1) we find that

Ran

[
S1 + iT1
S + iT

]
⊆ RanP or P

[
S1 + iT1
S + iT

]
=
[

S1 + iT1
S + iT

]
. (2.5)
2 2 2 2 2 2
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The equality r1 = r2 = 1 also implies that ε1,n/ε2,n → 1 and

(
St

1 − iT1
)
(S1 + iT1) = (St

2 − iT2
)
(S2 + iT2). (2.6)

If the common limit for ε1,n and ε2,n is non-zero, then Zk,n, k = 1,2 converge to points in the
interior of SH2. In this case the conclusion of the proposition follows from Proposition 1.4. Thus
we may assume that εk,n → 0, k = 1,2.

Let Za,n = (Z1,n + Z2,n)/2 and define Xa,n, Ya,n, Ua,n, εa,n, Sa,n and Ta,n and their limiting
values as above. Then a calculation shows that

U∗
a,nUa,n = 1

2

[
U∗

1,nU
∗
2,n

]
Pn

[
U1,n

U2,n

]
.

Taking norms, this implies that

ε
−2(1+p)
a,n = μ∗

2,p(Z1,n,Z2,n)
1

2

(
ε
−2(1+p)

1,n + ε
−2(1+p)

2,n

)
.

Since we are assuming that μ∗
2,p(Z1,n,Z2,n) → 1, this implies that εa,n/εk,n → 1, k = 1,2. In

particular, εa,n → 0. This means that the average point Za,n is moving to infinity, that is, possible
cancellations in the sum Z1,n + Z2,n that would keep Za,n finite do not occur.

We will use that

Ta,n = εa,n

(
Y1,n + Y2,n

2

)1/2

− εa,n

(
Y1,n + Y2,n

2

)−1/2

= 1√
2

((
εa,n

ε1,n

)2

R(T1,n, ε1,n)
2 +

(
εa,n

ε2,n

)2

R(T2,n, ε2,n)
2
)1/2

− ε2
a,n

√
2

((
εa,n

ε1,n

)2

R(T1,n, ε1,n)
2 +

(
εa,n

ε2,n

)2

R(T2,n, ε2,n)
2
)−1/2

. (2.7)

Beginning with Ta = εaY
−1/2
a (Ya − I ) we also compute that

T 2
a,n = 1

2

[
T ∗

1,nT
∗
2,n

]
Pn

[
T1,n

T2,n

]
.

Then taking account of the imaginary part of (2.5) we find that in the limit

T 2
a = 1

2

(
T 2

1 + T 2
2

)
, (2.8)

which is not immediately apparent from (2.7). Similarly

St
aSa = 1

2

(
St

1S1 + St
2S2
)

(2.9)
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and

(Sa + iTa)
∗(Sa + iTa) = 1

2

(
(S1 + iT1)

∗(S1 + iT1) + (S2 + iT2)
∗(S2 + iT2)

)
. (2.10)

The points corresponding to Zk,n, k = 1,2, a in the disk model are given by

Wk,n = (Zk,n + iI )−1(Zk,n − iI ) =
(
Sk,n + i

√
T 2

k,n + 4ε2
k,n

)−1
(Sk,n + iTk,n). (2.11)

Our task is to show that the limiting values satisfy either (i) W1 = W2 = Wa or the relations
described in one of part (ii) or (iii) of the proposition.

We will break our analysis into cases depending on the eigenvalues of the real symmetric
2 × 2 matrices T1 and T2. Let t1 and t2 be the eigenvalues of T1 and τ1, τ2 be the eigenvalues of
T2. For T1 we have 6 cases which we will label ++, +0, +-, 00, 0-, -- depending on whether
t1 and t2 are positive, zero or negative. Pairing the possibilities for T1 and T2 and taking account
of symmetry leaves 21 cases to consider.

Case ++ ++
In this case T1 and T2 and, by (2.7), also Ta are positive definite. So (2.11) implies that W1,n,

W2,n and Wa,n all converge to I . So (i) holds.

Cases ++ +0, ++ +-, ++ 00, ++ 0- and ++ --
In these cases, using (2.3), we have limn→∞ R(T1,n, ε1,n) = T1 and we see that the limit of[R(T1,n,ε1,n)

R(T2,n,ε2,n)

]
has the form

[
T1
B

]
where B = limn→∞ R(T2,n, ε2,n). By assumption T1 is invertible,

hence Ran
[

T1
B

]
is two-dimensional, and hence equal to RanP . From (2.5) we may deduce that

Ran(S2 + iT2) ⊆ RanB . Referring again to (2.3) we see that RanB is less than two-dimensional,
so that S2 + iT2 has rank less than two. On the other hand S1 + iT1 is invertible. This contra-
dicts (2.6). Therefore these cases do not occur.

Case +0 +0
By (2.6) S1 + iT1 and S2 + iT2 are either both invertible or both not invertible. If they are

both invertible, then, since limn→∞ Sk,n + i

√
T 2

k,n + 4ε2
k,n = Sk + iTk for k = 1,2 we see from

(2.11) that W1 = W2 = I . From (2.10) we see that (Sa + iTa) is invertible. Also, from (2.7) we
can conclude that Ta � 0. Then (2.11) implies that Wa = I , too.

Now we must consider the case where S1 + iT1 and S2 + iT2 are both not invertible. First
we show that T1 and T2 have the same eigenvectors. We argue by contradiction. Suppose the
eigenvector of T1 corresponding to its positive eigenvalue is different from that of T2. Then the

limit limn→∞
[R(T1,n,ε1,n)

R(T2,n,ε2,n)

] = [ T1
T2

]
has rank 2, which implies that P is the projection onto its

range. Thus (2.1) implies that Ran
[ S1+iT1

S2+iT2

]⊆ Ran
[ T1

T2

]
.

For the moment, let us focus on S1 and T1. Denote the projections onto the positive and zero
eigenvectors for T1 by P+ and P0. The range condition above implies that RanS1 ⊆ RanT1 which
implies that RanP0S1 ⊆ RanP0T1 = 0. So P0S1 = 0. In addition, we know that R(T1,n, ε1,n)S1,n

is symmetric, so taking limits, we find that T1S1 = St
1T1. This implies that P+SP0 = 0.

Taken together, these equalities show that S1 = P+S1P+. Now we can deduce that RanP0 ⊆
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Ker(ST
1 − iT1)(S1 + iT1). In fact, we must have equality: Ker(ST

1 − iT1)(S1 + iT1) can-
not be more than one-dimensional because, lying on the unit sphere, (S1 + iT1) �= 0. So
Ker(ST

1 − iT1)(S1 + iT1) = KerT1.
Now an analogous argument shows that Ker(ST

2 − iT2)(S2 + iT2) = KerT2. We are assuming
that KerT1 �= KerT2. However, (2.6) implies Ker(ST

1 − iT1)(S1 + iT1) = Ker(ST
2 − iT2)(S2 +

iT2). This contradiction proves our claim that the eigenvectors of T1 and T2 are the same.
Now we focus again on S1,n + iT1,n and compute the limiting value of W1,n. To simplify

notation slightly, we drop the subscript 1. Let t1,n, t2,n be the eigenvalues of Tn, and let Vn be the
real orthogonal matrix whose columns are the eigenvectors of Tn. For the case we are considering
t1,n → t1 > 0 and t2,n → 0. Clearly

Tn = Vn

[
t1,n 0
0 t2,n

]
V t

n. (2.12)

The symmetry of R(Tn, εn)Sn implies that

Sn = Vn

[
s1,1,n R(t2,n, ε1,n)s1,2,n/R(t1,n, ε1,n)

s1,2,n s2,2,n

]
V t

n. (2.13)

Since the limit S + iT is not invertible we have s2,2,n → 0. With this notation, the expression for
Wn is

Wn = Vn

[
s1,1,n + i

√
t2
1,n + 4ε2

n R(t2,n, εn)s1,2,n/R(t1,n, εn)

s1,2,n s2,2,n + i

√
t2
2,n + 4ε2

n

]−1

×
[

s1,1,n + it1,n R(t2,n, εn)s1,2,n/R(t1,n, εn)

s1,2,n s2,2,n + it2,n

]
V t

n.

Now we can compute the (1,1) entry of V t
nWnVn explicitly, yielding

(s2,2,n + i

√
t2
2,n + 4ε2

n )(s1,1,n + it1,n) − R(t2,n, εn)s
2
1,2,n/R(t1,n, εn)

(s2,2,n + i

√
t2
2,n + 4ε2

n )(s1,1,n + i

√
t2
1,n + 4ε2

n ) − R(t2,n, εn)s
2
1,2,n/R(t1,n, εn)

.

Write (s2,2,n, t2,n, εn) = rn(ω1,n,ω2,n,ω3,n) with ω2
1,n + ω2

2,n + ω2
3,n = 1. Then rn → 0 and, by

going to a subsequence if needed, we may assume that the ωk,n → ωk , k = 1,2,3. The numerator
and denominator of the expression above converge to the same value, namely,(

ω1 + i

√
ω2

2 + 4ω2
3

)
(s1,1 + it1) − R(ω2,ω3)s

2
1,2/t1.

We claim that this value cannot be zero. If it is, then calculating the real and imaginary parts
yields

ω1s1,1 − t1

√
ω2

2 + 4ω2
3 − R(ω2,ω3)s

2
1,2/t1 = 0,

s1,1

√
ω2 + 4ω2 + ω1t1 = 0.
2 3
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Recall that t1 > 0 and R(ω2,ω3) � 0. The second equation implies that each term in the first
equation is non-positive, and thus must be zero separately. This yields ω2 = ω3 = 0 so ω1 = ±1
and thus s1,1 = 0. Returning to the expression for the common value of the numerator and de-
nominator, this is now it1,1 which is non-zero, contradicting our assumption. We conclude that
this common value of the numerator and denominator above is non-zero, and thus the (1,1) entry
of the limit V tWV is 1.

Thus we have shown that

W = V

[
1 β

β α

]
V t ,

where we have taken into account that since W is a matrix in the ball model for SH2, it is
symmetric. In addition, we know that ‖W‖ � 1 so we can conclude that β = 0. To see this we
compute the eigenvalues of

[ 1,β

β,α

]∗[ 1,β

β,α

]
explicitly. This yields a value for the larger eigenvalue

of

1 + |α|2 + 2|β|2
2

+
√

(1 − |α|2)2

4
+ |1 + α|2|β|2 � 1 + |β|2.

This must be � 1 so β = 0. Then we must also have |α| � 1 to keep ‖W‖ � 1.
Re-introducing the subscript 1, this shows that W1 has the form prescribed in conclusion (ii)

of the proposition. The argument for W2 is the same, and the matrix V , containing eigenvectors
for T1 or T2 is the same matrix in both cases. Using (2.7) we can see that the matrix Ta =
((T 2

1 +T 2
2 )/2)1/2 has the same eigenvectors as T1 and T2, and also has one positive and one zero

eigenvector. So a similar argument shows that Wa also has the form prescribed in (ii) (possibly
Wa = I which is a special case of (ii)), again with the same matrix V . This concludes the proof
of this case.

Case +0 +-
We begin by showing that T1 and T2 have the same eigenvectors. To begin, we consider

S2 + iT2 and note that by (2.12) and (2.13) this matrix has the form

S2 + iT2 = V

[
σ1,1 + iτ1 0

σ2,1 σ2,2 + iτ2

]
V T ,

where τ1 > 0 and τ2 < 0 are the eigenvalues of T2. Thus

det
(
St

2 − iT2
)
(S2 + iT2) = |σ1,1 + iτ1|2|σ2,2 + iτ2|2 �= 0

so S2 + iT2 is invertible. By (2.6), S1 + iT1 is invertible too.

If the eigenvectors of T1 and T2 are different, then by (2.3) the limit limn→∞
[R(T1,n,ε1,n)

R(T2,n,ε2,n)

]=[ T1
T2,+

]
, where T2,+ is the matrix T2 projected onto its positive eigenspace. The matrix

[ T1
T2,+

]
has rank 2 so its range must coincide with the range of P . Then (2.5) implies that RanS1 +
iT1 ⊆ RanT1 which is impossible since S1 + iT1 is invertible and dim RanT1 = 1. Therefore the
eigenvectors of T1 and T2 are the same. Let V be the orthogonal matrix containing the common
eigenvectors.
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Since S1 + iT1 is invertible, we obtain from (2.11) that W1 = (S1 + iT1)
−1(S1 + iT1) = I .

Similarly W2 = (S2 + i|T2|)−1(S2 + iT2). An explicit computation shows that this has the form
V
[ 1 0

0 α

]
V t with α = (σ2,2 − i|τ2|)/(σ2,2 + i|τ2|).

It remains to consider Wa . Using the formula (2.7) and the asymptotics (2.3) we find that Ta =
((T 2

1 +T 2
2,+)/2)1/2. Thus Ta has one positive and one zero eigenvalue with the same eigenvectors

as T1 and T2. The arguments from the previous case show that Wa has the form V
[ 1 0

0 α

]
V t with

|α| � 1.

Case +0 00
In this case, T2 = 0 so by (2.6) S1 + iT1 and S2 are either both invertible or both not invertible.

If they are both invertible, then by (2.11) W1 = W2 = I . By (2.7) Ta = T1/
√

2 and therefore has
one positive and one zero eigenvalue. Then the argument from case +0 +0 shows that Wa =
V
[ 1 0

0 α

]
V t with |α| � 1, where V contains the eigenvectors of T1.

Now we consider the case where S1 + iT1 and S2 are both not invertible.
First we show that KerS2 = KerT1. Notice that since R(T1,n, ε1,n)S1,n = St

1,nR(T1,n, ε1,n)

and R(T1,n, ε1,n) → T1, upon taking limits we find that T1S1 = St
1T1. Thus

(
St

1 − iT1
)
(S1 + iT1) = St

1S1 + i
(
St

1T1 − T1S1
)+ T 2

1 = St
1S1 + T 2

1 .

So, by (2.6), if S2v = 0 then ‖S1v‖2 + ‖T1v‖2 = 0 which implies that T1v = 0. Thus KerS2 ⊆
KerT1. By assumption KerT1 has dimension 1, so we must have equality.

The arguments in case +0 +0 now imply that W1 has the form V
[ 1 0

0 α

]
V t with |α| � 1, where

V contains the eigenvectors of T1. Since Ta = T1/
√

2, Wa has the same form.
It remains to consider W2. Let τ1,n and τ2,n be the eigenvalues of T2,n which, by assumption,

both converge to zero. We will use the notation

aj,n = ε−1
j,nR(τj,n, εj,n), j = 1,2.

These are the eigenvalues of Y
1/2
2 . Then, since

[ a1,n 0
0 a2,n

]
S2,n is a real symmetric matrix, it has

real eigenvalues λ̃n and δ̃n and eigenvectors
[ cn

sn

]
and

[−sn
cn

]
where cn = cos(θn) and sn = sin(θn)

for some θn. To declutter the notation, we will now drop the subscript n with the understanding
that variables are evaluated along a subsequence. We find that

S2 = V2

[
λ̃c2+δ̃s2

a1

λ̃−δ̃
a1

cs

λ̃−δ̃
a2

cs λ̃s2+δ̃c2

a2

]
V t

2

where V2 diagonalizes T2. Then we obtain

W2 = V2

[
λ̃c2+δ̃s2

a1
+ iε(a1 + 1/a1)

λ̃−δ̃
a1

cs

λ̃−δ̃
a2

cs λ̃s2+δ̃c2

a2
+ iε(a2 + 1/a2)

]−1

×
[

λ̃c2+δ̃s2

a1
+ iε(a1 − 1/a1)

λ̃−δ̃
a1

cs

λ̃−δ̃ λ̃s2+δ̃c2

]
V t

2

a2

cs
a2

+ iε(a2 − 1/a2)
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= V2

[
(λc2 + δs2) + iε′(a2

1 + 1) (λ − δ)cs

(λ − δ)cs (λs2 + δc2) + iε′(a2
2 + 1)

]−1

×
[

(λc2 + δs2) + iε′(a2
1 − 1) (λ − δ)cs

(λ − δ)cs (λs2 + δc2) + iε′(a2
2 − 1)

]
V t

2

where λ = λ̃/a1, δ = δ̃/a1, ε′ = ε/a1, and we have cancelled a common factor of a2/a1 from
the bottom row of each matrix. Since we are assuming that S2 is converging to a rank 1 matrix,
we may assume that λ converges to a non-zero finite number and δ converges to zero. Moreover,
since not only ε but also τ1 = ε(a1 − 1/a1) converges to zero, we find that ε′ = ε/a1 converges
to zero too.

Now write (δ, ε′) = r(ω1,ω2) where r → 0 and ω2
1 + ω2

2 = 1. Going to a subsequence if
needed, we may assume that ω1 and ω2 converge. Then a lengthy calculation shows that in the
limit (the limiting values of a1 and a2 could be infinite here) we have

W2 − I = −2iω2

ω1 + iω2
(
a2

1s2 + a2
2c2 + 1

)V2

[
s2 −cs

−cs c2

]
V t

2 .

The limiting vector V2
[ c

s

]
is orthogonal to the kernel of S2. Since KerS2 = KerT1, this vec-

tor must be the eigenvector of T1 with positive eigenvalue. Thus V2
[

s2 −cs

−cs c2

]
V t

2 = V
[ 0 0

0 1

]
V t ,

where V contains the eigenvectors for T1. Therefore we may conclude that W2 = V
[ 1 0

0 α

]
V t with

|α| � 1.

Case +0 0-
We will show that this case is not possible.
First, suppose that (S1 + iT1) is invertible. Then, by (2.6) S2 + iT2 is invertible too. Let V1,n

be an orthogonal matrix diagonalizing T1,n so that V t
1,nT1,nV1,n = [ t1,n 0

0 t2,n

]
. We will work in the

basis where T1,n is diagonal, so let S̃k,n + iT̃k,n = V t
1,n(Sk,n + iTk,n)V1,n. To apply (2.5) we need

to compute the limit of

Ran

[[
R(t1,n,ε1,n) 0

0 R(t2,n,ε1,n)

]
Bn

]
(2.14)

where B = Vn

[R(τ1,n,ε2,n) 0
0 R(τ2,n,ε2,n)

]
V t

n for some orthogonal Vn. Here t1,n and t2,n are the eigen-
values of T1,n and τ1,n and τ2,n are the eigenvalues of T2,n. Using (2.3) we find that

[[
R(t1,n,ε1,n) 0

0 R(t2,n,ε1,n)

]
Bn

]
→
⎡⎢⎣

t1 0
0 0
0 0
0 0

⎤⎥⎦ .

Since this matrix has rank 1, the limiting range in (2.14) must be larger. To determine what it can
be, we multiply the matrix in (2.14) on the left by

[ 1 0
0 rn

]
where rn is chosen to scale the second

column of the matrix in (2.14) to produce a non-zero limit, possibly after going to a subsequence.
Multiplying on the right side with an invertible matrix does not change the range. So, using (2.5)
we find that
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Ran

[
S̃1 + iT̃1
S̃2 + iT̃2

]
⊆ Ran

⎡⎢⎣
t1 0
0 ω1
0 ω2
0 ω3

⎤⎥⎦
for some ω1, ω2 and ω3. This implies that S̃2 + iT̃2 is not invertible, which contradicts our
assumption.

Now we consider the case when S1 + iT1 and S2 + iT2 are both not invertible. By (2.6) their
kernels are equal. Let V1 be an orthogonal matrix diagonalizing T1,n so that V t

1,nT1,nV1,n =[ t1,n 0
0 t2,n

]
. As we have seen above, the fact that R(T1,n, ε1n)S1,n is symmetric together with the

fact that R(t2,n, ε1n)/R(t1,n, ε1n) → 0 imply

S1 + iT1 = V1

[
s1,1 + it1 0

s2,1 s2,2

]
V t

1 = V1

[
s1,1 + it1 0

s2,1 0

]
V t

1 .

We used that since t1 > 0 and S1 + iT1 is not invertible, we must have s2,2 = 0. Similarly, the
fact that τ2 < 0 and τ1 = 0 implies that R(τ2,n, ε1n)/R(τ1,n, ε1n) → 0 so we can conclude that

S2 + iT2 = V2

[
σ1,1 0
σ2,1 σ2,2 + iτ2

]
V t

2 = V2

[
0 0

σ2,1 σ2,2 + iτ2

]
V t

2 ,

since S2 + iT2 is not invertible either. Now we invoke the fact that S1 + iT1 and S2 + iT2 have
the same kernel. This implies that

V1

[
0
1

]
= V2

1√
σ 2

2,1 + σ 2
2,2 + τ 2

2

[
σ2,2 + iτ2

−σ2,1

]
.

Write V −1
1 V2 = [ c s

−s c

]
where c = cos θ and s = sin θ for some θ . Then, the first line of the

previous matrix equation reads

c(σ2,2 + iτ2) + sσ2,1 = 0.

Since τ2 < 0 the imaginary part of this equation implies c = 0. Since c2 + s2 = 1, this implies
s = ±1 and thus σ2,1 = 0. Therefore

S2 + iT2 = V1

[
0 ±1

∓1 0

][
0 0
0 σ2,2 + iτ2

][
0 ∓1

±1 0

]
V t

1 = V1

[
σ2,2 + iτ2 0

0 0

]
V t

1 .

Now we turn to (2.5). We conjugate all the matrices with V1,n, that is, we work in the basis
where T1,n is diagonal. Then we find

Ran

⎡⎢⎣
s11 + it1 0

s2,1 0
σ2,2 + iτ2 0

⎤⎥⎦⊆ lim Ran

⎡⎣
[

R(t1,n,ε1,n) 0
0 R(t2,n,ε1,n)

]
Vn

[
R(τ1,n,ε2,n) 0

0 R(τ2,n,ε2,n)

]
V t

n

⎤⎦

0 0
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where Vn = [ cn −sn
sn cn

]
with cn → 0, sn → ±1. Write (R(t2,n, ε1,n),R(τ1,n, ε2,n)) = δn(ω1,n,ω2,n)

with δn → 0 and (ω1,n,ω2,n) → (ω1,ω2) and ω2
1,n + ω2

2,n = 1. Now multiply the matrix on the

right side of the previous equation with
[ 1 0

0 1/δn

]
. This leaves the range unchanged, so the limit

on the right is the limiting range of

⎡⎢⎣
R(t1,n, ε1,n) 0

0 ω1,n

R(τ1,n, ε2,n)c
2
n + R(τ2,n, ε2,n)s

2
n ω2,nsncn − R(τ2,n, ε2,n)sncn/δn

R(τ1,n, ε2,n)sncn − R(τ2,n, ε2,n)sncn ω2,ns
2
n + R(τ2,n, ε2,n)c

2
n/δn

⎤⎥⎦ .

This limiting range will be the span of the limiting values of the columns, provided these are
linearly independent. Using R(τ2,n, ε2,n)/δn → 0, we see that this is true, and therefore

Ran

⎡⎢⎣
s11 + it1 0

s2,1 0
σ2,2 + iτ2 0

0 0

⎤⎥⎦⊆ Ran

⎡⎢⎣
t1 0
0 ω1
0 0
0 ω2

⎤⎥⎦ .

But this is impossible because τ2 < 0.

Case +0 --
In this case the limiting range of

[R(T1,n,ε1,n)

R(T2,n,ε2,n)

]
is the range of a matrix of the form

[
A
0

]
for

some invertible 2 × 2 matrix A. This follows from the asymptotics (2.3) which imply that the
eigenvalues of R(T2,n, ε2,n) tend to zero much more quickly than those of R(T1,n, ε1,n). Thus
(2.5) implies S2 + iT2 = 0 which is not possible. So this case does not occur.

Case 00 00
If S1 is invertible, then, since T1 = T2 = 0, (2.6) and (2.9) imply that S2 and Sa are invertible

too. Then formula (2.11) shows that W1 = W2 = Wa = I .
If S1 is not invertible, then (2.6) and (2.9) show that S1, S2 and Sa have the same kernel.

Following the computation of W2 in the case 0+ 00, we see that for the present case, W1, W2
and Wa each have the form V

[ 1 0
0 α

]
V t with |α| � 1, where in each case V contains the common

eigenvectors of St
1S1, St

2S2 and St
aSa .

Case 00 0-
If S1 and S2 + iT2 are both invertible then, starting with (2.5) and possibly rescaling the limit

on the right, we will end up with

Ran

[
S1

S2 + iT2

]
⊆ Ran

[
A

B

]
where A and B are invertible matrices with real entries. Since the ranges are unchanged under
multiplication on the right by invertible matrices, this is equivalent to

Ran

[
I

(S + iT )S−1

]
⊆ Ran

[
I

BA−1

]

2 2 1
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which implies that S2S
−1
1 + iT2S

−1
1 = BA−1. Taking the imaginary part of this equation yields

T2S
−1
1 = 0 which implies T2 = 0, since S1 is invertible. But T2 �= 0 so this is impossible.

Now suppose that S1 and S2 + iT2 are both not invertible. From (2.6) they have a common
kernel, which must be one-dimensional. If this kernel is spanned by v then, since S1 is a real
matrix and S1v = 0, we may assume that v has real entries too. Then S2v + iT2v = 0 implies, by
taking real and imaginary parts, that S2v = 0 and T2v = 0. If V2 is an orthogonal matrix diago-

nalizing T2, we have T2 = V2
[ 0 0

0 t2

]
V t

2 . Thus, v = T2
[ 1

0

]
. Now, it follows that S1 = V2

[ 0 s1,2
0 s2,2

]
V t

2

and S2 + iT2 = V2
[ 0 σ1,2

0 σ2,2+iτ2

]
V t

2 . So, starting with (2.5) and conjugating with V2 we obtain

⎡⎢⎣
s1,2
s2,2
σ1,2

σ2,2 + iτ2

⎤⎥⎦ ∈ lim Ran

⎡⎣Vn

[
R(t1,n,ε1,n) 0

0 R(t2,n,ε1,n)

]
V t

n[
R(τ1,n,ε2,n) 0

0 R(τ2,n,ε2,n)

]
⎤⎦ (2.15)

where Vn = V −1
2,n V1,n = [ cn −sn

sn cn

]
for some cn = cos(θn) and sn = sin(θn). Going to a subsequence

if needed, we assume that cn and sn converge. To simplify notation, drop the n subscript and
let R1 = R(t1,n, ε1,n), R2 = R(t2,n, ε1,n), R3 = R(τ1,n, ε2,n), and R4 = R(τ2,n, ε2,n). With this
notation we need to find the limiting range of

B =
⎡⎢⎣

R1c
2 + R2s

2 (R1 − R2)sc

(R1 − R2)sc R1s
2 + R2c

2

R3 0
0 R4

⎤⎥⎦ .

Let δ1 =
√

R2
1c2 + R2

2s2 + R2
3 and δ2 =

√
R2

1s2 + R2
2c2 + R2

4 be the Euclidean norms of the

columns of B . If limR3/δ1 > 0, then B
[ 1/δ1 0

0 1/δ2

]
converges to a matrix of the form

⎡⎢⎣
∗ ∗
∗ ∗
+ 0
0 0

⎤⎥⎦
where + denotes a positive entry and ∗ is an arbitrary entry and each column has Euclidean norm
equal to 1. Here we used that R4/δ2 → 0, which follows from the estimate R2

4/δ2
2 � 2R2

4/R2
k for

k either 1 or 2 and the fact that R4/Rk → 0. The matrix above has rank 2, and thus its range must
be the same as the limiting range on the right side of (2.15). Now, given (2.15), the fact that both
entries in the last row are zero contradicts τ2 < 0.

Thus we must have limR3/δ1 = 0 which implies that either R3/(R1c) → 0 or R3/(R2s) → 0.
(It could be that one or the other of these sequences is undefined, if c or s is identically zero

along the sequence.) If R3/(R1c) → 0 we compute the limiting value of BV
[ 1/R1 0

0 1/

√
R2

2+s2R2
3

]
and find that this has the form



R. Froese et al. / Journal of Functional Analysis 262 (2012) 1011–1042 1035
⎡⎢⎢⎢⎢⎣
1 0
0 R2/

√
R2

2 + s2R2
3

cR3/R1 sR3/

√
R2

2 + s2R2
3

−sR4/R1 cR4/

√
R2

2 + s2R2
3

⎤⎥⎥⎥⎥⎦→
⎡⎢⎣

1 0
0 ∗
0 ∗
0 0

⎤⎥⎦

where the second column has Euclidean norm equal to 1. As above, this contradicts (2.15).

Finally, if R3/(R2s) → 0 we compute the limiting value of BV
[

1/

√
R2

1+c2R2
3 0

0 1/R2

]
and find that

this has the form ⎡⎢⎢⎢⎢⎣
R1/

√
R2

1 + c2R2
3 0

0 1
cR3/

√
R2

1 + c2R2
3 sR3/R2

−sR4/

√
R2

1 + c2R2
3 cR4/R2

⎤⎥⎥⎥⎥⎦→
⎡⎢⎣

∗ 0
0 1
∗ 0
0 0

⎤⎥⎦

where the first column has Euclidean norm equal to 1. Again this contradicts (2.15).
In conclusion, we see that this case is not possible.

Case 00 --
This case is analogous to ++ 00 and is not possible.

Case 0- 0-
Let V1 and V2 be orthogonal matrices diagonalizing T1 and T2 respectively. By switching the

sign of a column, if needed, we may assume that V1 and V2 are rotation matrices. We will show
that they are equal. Using (2.5) we write

[
S1 + iT1
S2 + iT2

]
∈ lim Ran

⎡⎣ V1

[
R1 0
0 R2

]
V t

1

V2

[
R3 0
0 R4

]
V T

2

⎤⎦
where the quantities on the right are being evaluated along a subsequence where V1 and
V2 converge. As before, R1 = R(t1,n, ε1,n), R2 = R(t2,n, ε1,n), R3 = R(τ1,n, ε2,n), and R4 =
R(τ2,n, ε2,n). Going to a subsequence we assume that R2/R4 converges, and by switching the
roles of R2 and R4 if needed, that limR2/R4 = a < ∞. Notice that a � 0. Let V = V t

2V1 =[
c −s
s c

]
, where c = cos(θ) and s = sin(θ) for some θ . We now conjugate by V2 to work in a basis

where T2 is diagonal. Then we find

[
V2(S1 + iT1)V

t
2

V2(S2 + iT2)V
t
2

]
∈ lim Ran

⎡⎣V
[

R1 0
0 R2

]
V t[

R3 0
0 R4

]
⎤⎦

= lim Ran

⎡⎣V
[

R1 0
0 R2

]
[

R3 0
]
V

⎤⎦

0 R4
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= lim Ran

⎡⎢⎣
R1c −R2s

R1s R2c

R3c −R3s

R4s R4c

⎤⎥⎦[R−1
1 0
0 ε−2

]

= lim Ran

⎡⎢⎣
c −s/|t2|
s c/|t2|
ac −R3s/ε

2

0 c/|τ2|

⎤⎥⎦ .

Suppose limR3s/ε
2 = ∞. Then the limiting range on the right is equal to the range of

⎡⎢⎣
c 0
s 0
ac 1
0 0

⎤⎥⎦ .

This is not possible because the last row of the matrix on the left has imaginary part τ2 < 0 and
is therefore non-zero. Hence we may assume R3s/ε

2 → b < ∞. In particular, this implies that
s → 0, since ε2/R3 → 0. Thus V = I and we have shown that V1 = V2.

Next we will show that S1 = S2 and T1 = T2. Returning to the range condition, write

V (S1 + iT1)V
t =

[
s1,1 0
s2,1 s2,2

]
+ i

[
0 0
0 t2

]
,

V (S2 + iT2)V
t =

[
σ1,1 0
σ2,1 σ2,2

]
+ i

[
0 0
0 τ2

]
,

where now V = V1 = V2. The zero in the top right corner follows from R2/R1 → 0 and
R4/R3 → 0. Then

⎡⎢⎣
s1,1 0
s2,1 s2,2 + it2
σ1,1 0
σ2,1 σ2,2 + iτ2

⎤⎥⎦ ∈ Ran

⎡⎢⎣
1 0
0 1/|t2|
a b

0 1/|τ2|

⎤⎥⎦ .

In particular the second column of the matrix on the left must be a non-zero multiple of the
second column of the matrix on the right. This is possible only if b = 0, so we may assume this.
The resulting range condition is equivalent to

[
σ1,1 0
σ2,1 σ2,2 + iτ2

]
=
[

a 0
0 1/|τ2|

][
1 0
0 |t2|

][
s1,1 0
s2,1 s2,2 + it2

]
.

Taking the imaginary part of this equation yields t2 = τ2. The real part reads

[
σ1,1 0
σ2,1 σ2,2

]
=
[

as1,1 0
s2,1 s2,2

]
.
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So s2,1 = σ2,1, s2,2 = σ2,2 and σ1,1 = as1,1 with a � 0. Finally, (2.5) implies that s2
1,1 = σ 2

1,1 so
it must be that a = 1 and s1,1 = σ1,1.

Thus we have shown that S1 = S2 and T1 = T2. Let us call the common values S and T . It
follows from (2.8) that T 2

a = T 2 and from (2.7) that Ta � 0. Thus Ta = T . To see that Sa = S

too, notice that in the basis where T is diagonal Sa will also have a zero in the top right corner.
Thus we can write

V SaV
t =

[
a1,1 0
a2,1 a2,2

]

and then (2.10) implies

[
a1,1 a2,1

0 a2,2 − it

][
a1,1 0
a2,1 a2,2 + it

]
=
[

s1,1 s2,1
0 s2,2 − it

][
s1,1 0
s2,1 s2,2 + it

]
.

This gives a2,1 = s2,1, a2
1,1 = s2

1,1 and a2
2,2 = s2

2,2. But the equation Xa = (X1 + X2)/2, written
as R(Ta,n, εa,n)Sa,n = (R(T1,n, ε1,n)S1,n + R(T2,n, ε2,n)S2,n)/2 implies that a1,1 has the same
sign as s1,1 and that a2,2 has the same sign as s2,2. Thus Sa = S.

Suppose that (S + i|T |) is invertible. Then W1 = W2 = Wa = (S + i|T |)−1(S + iT ) and we
have proved case (i) of this proposition.

It remains to deal with the case where (S + i|T |) is not invertible. In this case the values of
S and T do not completely determine the limiting value of Z (or W ). We will show that the
possible limiting values are described by case (iii) of this proposition.

The matrix (S + i|T |) is not invertible whenever s1,1 = 0. So we wish to consider the situation

where we have a sequence of positive numbers εn → 0 and sequences of matrices Tn = [ t1,n 0
0 t2,n

]
with t1,n → 0 and t2,n → t2 < 0 and Sn = [ s1,1,n s2,1,nR(t2,n,εn)/R(t1,n,εn)

s2,1,n s2,2,n

]
with s1,1,n → 0, s2,1,n →

s2,1 and s2,2,n → s2,2. Since R(t2,n, εn) ∼ ε2/|t2| we find that

lim
n→∞Zn = lim

n→∞
1

ε2
n

(
R(Tn, εn)Sn + iR(Tn, εn)

2)
= lim

n→∞
1

ε2
n

V

([
R(t1,n, εn) 0

0 R(t2,n, εn)

][
s1,1,n s2,1,nR(t2,n, εn)/R(t1,n, εn)

s2,1,n s2,2,n

]

+ i

[
R(t1,n, εn)

2 0
0 R(t2,n, εn)

2

])
V t

= lim
n→∞V

[ s1,1,n

εn
R(

t1,n

εn
,1) + iR(

t1,n

εn
,1)2 s2,1

|t2|
s2,1
|t2|

s2,2
|t2|

]
V t .

The top left entry can have any limiting value in H, depending on the relative rates at which t1,n,
s1,1,n and εn converge to zero. This shows that case (iii) of this proposition holds.
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Case 0- --
Following the calculation above we find in this case that

[
V2(S1 + iT1)V

t
2

V2(S2 + iT2)V
t
2

]
∈ lim Ran

⎡⎢⎣
R1c −R2s

R1s R2c

R3c −R3s

R4s R4c

⎤⎥⎦[R−1
1 0
0 ε−2

]

= lim Ran

⎡⎢⎣
c −s/|t2|
s c/|t2|
0 −s/|τ1|
0 c/|τ2|

⎤⎥⎦ .

This contradicts the fact that S2 + iT2 is invertible in this case. So this case is not possible.

Case -- --
In this case both S1 + iT1 and S2 + iT2 are invertible, so the condition (2.5) implies that[

S1 + iT1
S2 + iT2

]
∈ Ran

[
A

I

]
for some invertible real matrix A. Then we find that (S1 + iT1) = A(S2 + iT2) so that S1 = AS2
and T1 = AT2. Then A = T1T

−1
2 and so T −1

1 S1 = T −1
1 AS2 = T −1

2 S2 = B for some matrix B .
Notice that B + i = T −1

1 (S1 + iT1) is invertible. Now (S1 + iT1)
∗(S1 + iT1) = (B + i)∗T 2

1 (B + i)

and similarly (S1 + iT1)
∗(S1 + iT1) = (B + i)∗T 2

2 (B + i). So (2.6) implies T 2
1 = T 2

2 which
implies T1 = T2 since both eigenvalues are negative in each case. Then we find A = I and so
S1 = S2 too.

Now we find, using the asymptotics of R(T1,n, ε1,n) that Y1 = 0 and Z1 = X1 = |T1|−1S1.
Similarly Y2 = 0 and Z2 = X2 = |T2|−1S2. Therefore Z1 = Z2 = (Z1 + Z2)/2 = Za . This com-
pletes the proof. �
Proof of Proposition 1.8. (i) The only fixed point for Ψλ in SH2 is Z = iI , and this is not on
the boundary.

(ii) It follows from (1.7) that

Ψ̃λ =
[

e−iΘλ 0
0 eiΘλ

]
where

e−iΘλ = cos(Θλ) − i sin(Θλ)

= (λ − �G)/(2
√

2 ) − i

√
1 − (λ − �G)2/8

= V1

[
ω1(λ) 0

0 ω2(λ)

]
V t

1 .

Here V1 is the rotation matrix diagonalizing �G and ω1(λ)=(λ−1)/(2
√

2 )−i
√

1 − (λ − 1)2/8,
ω2(λ) = (λ + 1)/(2

√
2 ) − i

√
1 − (λ + 1)2/8 lie on the unit circle for λ ∈ J .
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The equation Ψ̃λ · (V [ 1 0
0 α

]
V t ) = V

[ 1 0
0 β

]
V t that we are trying to rule out can now be written

V te−iΘλV
[ 1 0

0 α

]
V t(eiΘλ)−1V = [ 1 0

0 β

]
. Since (eiΘλ)−1 = e−iΘλ this is equivalent to

V2

[
ω1(λ) 0

0 ω2(λ)

]
V t

2

[
1 0
0 α

]
V2

[
ω1(λ) 0

0 ω2(λ)

]
V t

2 =
[

1 0
0 β

]
(2.16)

where V2 = V tV1. To show this is impossible for any rotation matrix V2 = [ cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, ob-

serve that the matrix

U = V2

[
ω1(λ) 0

0 ω2(λ)

]
V t

2 (2.17)

is unitary. We obtain from (2.16)

U

[
1 0
0 α

]
=
[

1 0
0 β

]
U∗.

In particular, the upper left matrix entries have to agree. This gives

U1,1 = U1,1.

Thus ImU1,1 = 0. On the other hand, using that V2 is real, it follows from (2.17) that

ImU1,1 = sin2(θ) Imω1(λ) + cos2(θ) Imω2(λ).

But the right side cannot be zero for λ ∈ (−2
√

2+1,2
√

2−1), in view of the definition of ωi(λ).
Thus (2.16) cannot hold.

(iii) We wish to show that the equation

Ψλ

(
V

[
z r

r p

]
V t

)
= V

[
z′ r

r p

]
V t (2.18)

cannot hold.
If z = z′ = i∞ then we must first transfer (2.18) to the ball model. The point

[ i∞ r
r p

] ∈ SH2

corresponds to the point
[ 1 0

0 (p−i)/(p+i)

]
in the ball model. So, in this case (2.18) asserts that Ψλ

has a fixed point on the boundary. This is false, so we have ruled out the case z = z′ = i∞.
If z = i∞ and z′ ∈ R, then we may compute the left side of (2.18) as follows. Recall from

(1.7) that

Ψλ =
[

cos(Θλ) − sin(Θλ)

sin(Θλ) cos(Θλ)

]
where

cos(Θλ) = V1

[
c1 0
0 c

]
V t

1 , sin(Θλ) = V1

[
s1 0
0 s

]
V t

1 .

2 2
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Here V1 is a real rotation matrix and s1, s2 > 0. Using this notation and the representation

V2 = V tV1 =
[

c −s

s c

]
with c = cos(θ) and s = sin(θ), we can calculate an expression for the left side of (2.18). Upon
substituting z = −1/w and setting w = 0, (2.18) results in a matrix equation whose bottom right
entry can be written

c2s2(s2
1 + s2

2 + (c1 − c2)
2)+ s1s2

(
c4 + s4)+ s1s2p

2 = 0.

Since s1 and s2 are both strictly positive this equation cannot hold. Thus we have ruled out the
case z = i∞ and z′ ∈ R.

The equation above also cannot hold when s1 and s2 are replaced with −s1 and −s2, and this
can be used to rule out the case z ∈ R and z′ = i∞.

Finally, if z1, z2 ∈ R then (2.18) can be written

V2

[
c1 0
0 c2

]
V t

2

[
z r

r p

]
− V2

[
s1 0
0 s2

]
V t

2

=
[

z′ r

r p

]
V2

[
s1 0
0 s2

]
V t

2

[
z r

r p

]
+
[

z′ r

r p

]
V2

[
c1 0
0 c2

]
V t

2 .

The bottom right entry of this equation reads

s1
(
s2 + (rc + ps)2)+ s2

(
c2 + (rs − pc)2)= 0.

Again, since s1 and s2 are strictly positive, this equation cannot hold. We have ruled out (2.18)
in all cases so the proof of (iii) is complete. �
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Appendix A

Proof of Lemma 1.2. (i) It is enough to prove this statement for Γ of the form Γ = [
I B
0 I

]
with BT = B , Γ = [ 0 −I

I 0

]
or Γ = [A 0

0 AT −1

]
, since these generate Sp(4,R). If Γ = [

I B
0 I

]
with

BT = B then Γ · (X + iY ) = (X +B)+ iY . So Z1 −Z2, Y1 and Y2 are invariant under the action
of Γ which implies that wp(Z1,Z2) = ‖Y−1/2

2 (Z1 − Z2)
∗Y−1

1 (Z1 − Z2)Y
−1/2
2 ‖1+p

1+p is invariant

too. If Γ = [ 0 −I
I 0

]
then Γ ·Z = −Z−1. The invariance of wp follows from the identities −Z−1

1 +
Z−1

2 = Z−1
1 (Z1 − Z2)Z

−1
2 and ImZ−1

i = Z−1
i YiZ

∗
i
−1, together with the fact that ‖C∗C‖1+p =

‖CC∗‖1+p . The proof for the case Γ = [A 0
T −1

]
is similar.
0 A
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(ii) Since t > 0 we have (Y + t)−1 � Y−1. Thus the required inequality follows from

∥∥(Y2 + t)−1/2(Z1 − Z2)
∗(Y1 + t)−1(Z1 − Z2)(Y2 + t)−1/2

∥∥1+p

1+p

�
∥∥(Y2 + t)−1/2(Z1 − Z2)

∗Y−1
1 (Z1 − Z2)(Y2 + t)−1/2

∥∥1+p

1+p

= ∥∥Y−1/2
1 (Z1 − Z2)(Y2 + t)−1(Z1 − Z2)

∗Y−1/2
1

∥∥1+p

1+p

�
∥∥Y−1/2

1 (Z1 − Z2)Y
−1
2 (Z1 − Z2)

∗Y−1/2
1

∥∥1+p

1+p

= ∥∥Y−1/2
2 (Z1 − Z2)

∗Y−1
1 (Z1 − Z2)Y

−1/2
2

∥∥1+p

1+p
.

(iii) We follow [5]. For λ ∈ Rε , Yλ is bounded above and below by positive constants. Thus,
ImG = Y

1/2
λ ImZ Y

1/2
λ < C ImZ with constants uniform in λ. Since all norms are equivalent

for 2 × 2 matrices, and by the convexity of | · |1+p , it suffices to show that for Z = X + iY ,
‖Y‖1 � ‖(Z − iI )∗Y−1(Z − iI )‖1 + 4. Because Y is positive definite,

‖Y‖1 = tr(Y )

� tr
(
Y + Y−1 − 2I

)+ 4

= tr
(
(Y − I )Y−1(Y − I )

)+ 4

� tr
(
(Y − I )Y−1(Y − I ) + XY−1X

)+ 4

= tr
((

X − i(Y − I )
)
Y−1(X + i(Y − I )

))+ 4

= ∥∥(Z − iI )∗Y−1(Z − iI )
∥∥

1 + 4. (A.1)

This completes the proof. For future reference, notice that (A.1) also holds with ‖Y−1‖1 on the
left side.

(iv) Using ‖AB‖1+p � ‖A‖2(1+p)‖B‖2(1+p) and ‖A‖2
2(1+p) = ‖A∗A‖1+p , together with the

comment following (A.1) we find that for any ε > 0∥∥(Z + Q − iI )∗Y−1(Z + Q − iI )
∥∥

1+p

�
∥∥(Z − iI )∗Y−1(Z − iI )

∥∥
1+p

+ 2
∥∥QY−1/2

∥∥
2(1+p)

∥∥Y−1/2(Z − iI )
∥∥

2(1+p)

+ ∥∥QY−1Q
∥∥

1+p

� (1 + ε)
∥∥(Z − iI )∗Y−1(Z − iI )

∥∥
1+p

+ (1 + 1/ε)‖Q‖2
∥∥Y−1

∥∥
1+p

�
(
1 + ε + Cε‖Q‖2)∥∥(Z − iI )∗Y−1(Z − iI )

∥∥
1+p

+ Cε‖Q‖2.

Now the result follows from the fact that for any ε > 0, there is Cε such that |a + b|1+p �
(1 + ε)|a|1+p + Cε |b|1+p for positive a and b. �
Lemma A.1. Let Z = X + iY be a complex n × n matrix with X and Y real and symmetric.
Moreover assume that Y � t1 > 0. Then Z is bijective and ‖Z−1‖ � t−1.
1
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Proof. For all ϕ ∈ C
n,

t1‖ϕ‖2 � (ϕ,Yϕ) = Im(ϕ,Zϕ) �
∣∣(ϕ,Zϕ)

∣∣� ‖ϕ‖‖Zϕ‖,
and hence

‖ϕ‖ � t−1
1 ‖Zϕ‖. (A.2)

This implies that Z is injective and hence bijective since n is finite. Inserting ϕ = Z−1ψ

into (A.2), we find ∥∥Z−1ψ
∥∥� t−1

1 ‖ψ‖
for all ψ ∈ C

n. This yields the claim. �
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