
Topology and its Applications 159 (2012) 49–56
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On coincidence point and fixed point theorems for nonlinear multivalued
maps

Wei-Shih Du

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2010
Received in revised form 21 July 2011
Accepted 21 July 2011

MSC:
47H10
54H25

Keywords:
Coincidence point
MT -function
Function of contractive factor
Berinde–Berinde fixed point theorem
Mizoguchi–Takahashi’s fixed point theorem
Nadler’s fixed point theorem
Banach contraction principle

Several characterizations of M T -functions are first given in this paper. Applying the
characterizations of M T -functions, we establish some existence theorems for coincidence
point and fixed point in complete metric spaces. From these results, we can obtain new
generalizations of Berinde–Berinde’s fixed point theorem and Mizoguchi–Takahashi’s fixed
point theorem for nonlinear multivalued contractive maps. Our results generalize and
improve some main results in the literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Let us begin with some basic definitions and notation that will be needed in this paper. Throughout this paper, we
denote by N and R, the set of positive integers and real numbers, respectively. Let (X,d) be a metric space. For each x ∈ X
and A ⊆ X , let d(x, A) = infy∈A d(x, y). Denote by N (X) the class of all nonempty subsets of X and C B(X) the family of all
nonempty closed and bounded subsets of X . A function H : C B(X) × C B(X) → [0,∞) defined by

H(A, B) = max
{

sup
x∈B

d(x, A), sup
x∈A

d(x, B)
}

is said to be the Hausdorff metric on C B(X) induced by the metric d on X .
Let g : X → X be a self-map and T : X → N (X) be a multivalued map. A point x in X is a coincidence point of g and T if

gx ∈ T x. If g = id is the identity map, then x = gx ∈ T x and call x a fixed point of T . The set of fixed points of T and the set
of coincidence point of g and T are denoted by F (T ) and C O P (g, T ), respectively. Recall that g is said to be nonexpansive
if d(gx, gy) � d(x, y) for all x, y ∈ X .

It is known that many metric fixed point theorems were motivated from the Banach contraction principle (see, e.g., [1])
which plays an important role in various fields of nonlinear analysis.
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Theorem BCP (Banach contraction principle). Let (X,d) be a complete metric space and T : X → X be a self-map. Assume that there
exists a nonnegative number γ < 1 such that

d
(
T (x), T (y)

)
� γ d(x, y) for all x, y ∈ X .

Then T has a unique fixed point in X.

In 1969, Nadler [2] first gave a famous generalization of the Banach contraction principle for multivalued map. Since
then a number of generalizations in various different directions of the Banach contraction principle and Nadler’s fixed point
theorem have been investigated by several authors; see [1,3–15] and references therein.

Theorem NA (Nadler). Let (X,d) be a complete metric space and T : X → C B(X) be a k-contraction; that is, there exists a nonnega-
tive number k < 1 such that

H(T x, T y) � kd(x, y) for all x, y ∈ X .

Then F (T ) �= ∅.

Let f be a real-valued function defined on R. For c ∈ R, we recall that

lim sup
x→c

f (x) = inf
ε>0

sup
0<|x−c|<ε

f (x)

and

lim sup
x→c+

f (x) = inf
ε>0

sup
0<x−c<ε

f (x).

Definition 1.1. ([3–5]) A function ϕ : [0,∞) → [0,1) is said to be an MT -function if it satisfies Mizoguchi–Takahashi’s
condition (i.e. lim sups→t+ ϕ(s) < 1 for all t ∈ [0,∞)).

Clearly, if ϕ : [0,∞) → [0,1) is a nondecreasing function or a nonincreasing function, then ϕ is an MT -function. So the
set of MT -functions is a rich class. An example which is not an MT -function is given hereunder. Let ϕ : [0,∞) → [0,1)

be defined by

ϕ(t) :=
{

sin t
t , if t ∈ (0, π

2 ],
0, otherwise.

Since lim sups→0+ ϕ(s) = 1, ϕ is not an MT -function.
In 2007, M. Berinde and V. Berinde [6] proved the following interesting fixed point theorem.

Theorem BB (M. Berinde and V. Berinde). Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map, ϕ : [0,∞) →
[0,1) be an MT -function and L � 0. Assume that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + Ld(y, T x) for all x, y ∈ X .

Then F (T ) �= ∅.

It is quite obvious that if let L = 0 in Theorem BB, then we can obtain Mizoguchi–Takahashi’s fixed point theorem [9]
which is a partial answer of Problem 9 in Reich [10].

Theorem MT (Mizoguchi and Takahashi). Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map and
ϕ : [0,∞) → [0,1) be an MT -function. Assume that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) for all x, y ∈ X .

Then F (T ) �= ∅.

In fact, Mizoguchi–Takahashi’s fixed point theorem is a generalization of Nadler’s fixed point theorem, but its primitive
proof in [9] is difficult. Another proof in [11] is not yet simple. Recently, Suzuki [10] gave a very simple proof of Theorem MT.

Several characterizations of MT -functions are first given in this paper. Applying the characterizations of MT -functions,
we establish some existence theorems for coincidence point and fixed point in complete metric spaces. From these results,
we can obtain new generalizations of Berinde–Berinde’s fixed point theorem and Mizoguchi–Takahashi’s fixed point theorem
for nonlinear multivalued contractive maps. Our results generalize and improve some main results in [1–3,6–12].
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2. Main results

In this section, we first give some characterizations of MT -functions.

Theorem 2.1. Let ϕ : [0,∞) → [0,1) be a function. Then the following statements are equivalent.

(a) ϕ is an MT -function.

(b) For each t ∈ [0,∞), there exist r(1)
t ∈ [0,1) and ε

(1)
t > 0 such that ϕ(s) � r(1)

t for all s ∈ (t, t + ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r(2)
t ∈ [0,1) and ε

(2)
t > 0 such that ϕ(s) � r(2)

t for all s ∈ [t, t + ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r(3)
t ∈ [0,1) and ε

(3)
t > 0 such that ϕ(s) � r(3)

t for all s ∈ (t, t + ε
(3)
t ].

(e) For each t ∈ [0,∞), there exist r(4)
t ∈ [0,1) and ε

(4)
t > 0 such that ϕ(s) � r(4)

t for all s ∈ [t, t + ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N in [0,∞), we have 0 � supn∈N ϕ(xn) < 1.

(g) ϕ is a function of contractive factor [4]; that is, for any strictly decreasing sequence {xn}n∈N in [0,∞), we have 0 �
supn∈N ϕ(xn) < 1.

Proof. (i) “(a) ⇔ (b)”.
We first show “(a) ⇒ (b)”. Suppose that ϕ is an MT -function. Then for each t ∈ [0,∞), there exists εt > 0 such that

sup
t<s<t+εt

ϕ(s) < 1.

By the denseness of R, there also exists rt ∈ [0,1) such that

sup
t<s<t+εt

ϕ(s) � rt < 1,

which says that ϕ(s) � rt for all s ∈ (t, t + εt). The converse part (i.e. (b) ⇒ (a)) is obvious.
(ii) “(b) ⇔ (c)”.
Clearly, “(c) ⇒ (b)” is true for r(1)

t := r(2)
t and ε

(1)
t := ε

(2)
t . Conversely, assume (b) holds. Let t ∈ [0,∞) be given. Then, by

our hypothesis, there exist r(1)
t ∈ [0,1) and ε

(1)
t > 0 such that ϕ(s) � r(1)

t for all s ∈ (t, t + ε
(1)
t ). Put ε

(2)
t = ε

(1)
t and

r(2)
t := max

{
r(1)

t ,ϕ(t),ϕ
(
t + ε

(1)
t

)}
.

Then r(2)
t ∈ [0,1) and ϕ(s) � r(2)

t for all s ∈ [t, t + ε
(2)
t ]. So we prove “(b) ⇒ (c)”.

(iii) The implications “(c) ⇒ (d) ⇒ (b)” and “(c) ⇒ (e) ⇒ (b)” are obvious.
(iv) Let us prove “(e) ⇒ (f)”.
Suppose that (e) holds. Let {xn}n∈N be a nonincreasing sequence in [0,∞). Then t0 := limn→∞ xn = infn∈N xn � 0 exists.

By our hypothesis, there exist rt0 ∈ [0,1) and εt0 > 0 such that ϕ(s) � rt0 for all s ∈ [t0, t0 + εt0 ). On the other hand, there
exists � ∈ N, such that

t0 � xn < t0 + εt0

for all n ∈ N with n � �. Hence ϕ(xn) � rt0 for all n � �. Let

η := max
{
ϕ(x1),ϕ(x2), . . . ,ϕ(x�−1), rt0

}
< 1.

Then ϕ(xn) � η for all n ∈ N. Hence 0 � supn∈N ϕ(xn) � η < 1 and (f) holds.
(v) The implication “(f) ⇒ (g)” is obvious.
(vi) Finally, we prove “(g) ⇒ (e)”.
Assume that ϕ is a function of contractive factor. On the contrary, suppose that there exists t̂ ∈ [0,∞) such that for each

r ∈ [0,1) and each ε > 0 there is s ∈ [t̂, t̂ + ε) with property ϕ(s) > r. So, for r1 := ϕ(t̂) ∈ [0,1) and for ε1 := 1 > 0 it must
exists s1 ∈ [t̂, t̂ + ε1) with ϕ(s1) > r1. The last inequality also implies that s1 �= t̂ and thus t̂ < s1. Choose ε2 > 0 satisfying
t̂ + ε2 � s1, and set

r2 := max

{
ϕ(s1),1 − 1

2

}
.

Then, for r2 and for ε2 as indicated, we can find s2 ∈ [t̂, t̂ + ε2) with ϕ(s2) > r2. This also entails that t̂ < s2 < s1. Continuing
this process, we can construct a strictly decreasing sequence {sn} ⊂ [t̂,∞) ⊂ [0,∞) such that

ϕ(sn) > rn := max

{
ϕ(sn−1),1 − 1

}
� 1 − 1
n n
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for all n ∈ N. This yields supn∈N ϕ(sn) � 1 which contradict that ϕ is a function of contractive factor. Therefore we show
that “(g) ⇒ (e)” is true.

By (i)–(vi), we complete the proof. �
Remark 2.1. In [5, Theorem 2.8], the author had proved that any MT -function is a function of contractive factor.

The following existence theorem for coincidence point and fixed point is one of the main results of this paper.

Theorem 2.2. Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map, g : X → X be a continuous self-map and
ϕ : [0,∞) → [0,1) be an MT -function. Assume that

(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X ;
(b1) there exists a function h : X → [0,∞) such that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + h(gy)d(gy, T x) for all x, y ∈ X .

Then C O P (g, T ) ∩ F (T ) �= ∅.

Proof. Note first that for each x ∈ X , by (a), we have d(gy, T x) = 0 for all y ∈ T x. So, for each x ∈ X , by (b1), we obtain

d(y, T y) � ϕ
(
d(x, y)

)
d(x, y) for all y ∈ T x. (1)

Let x ∈ X . Take x0 = x ∈ X and choose x1 ∈ T x0. If d(x0, x1) = 0, then x0 = x1 ∈ T x0. Hence x0 ∈ F (T ) and we are done.
Otherwise, if d(x0, x1) > 0 or x0 �= x1, let κ : [0,∞) → [0,1) be defined by κ(t) = 1+ϕ(t)

2 . Clearly, 0 � ϕ(t) < κ(t) < 1 for all
t ∈ [0,∞). By (1), it follows that

d(x1, T x1) < κ
(
d(x0, x1)

)
d(x0, x1). (2)

By (2), there exists x2 ∈ T x1 such that

d(x1, x2) < κ
(
d(x0, x1)

)
d(x0, x1).

If d(x1, x2) = 0, then x1 = x2 ∈ T x1 and hence x1 ∈ F (T ). Otherwise, there exists x3 ∈ T x2 such that

d(x2, x3) < κ
(
d(x1, x2)

)
d(x1, x2).

Let ξn = d(xn−1, xn), n ∈ N. By induction, we can obtain the following: for each n ∈ N,

xn ∈ T xn−1, and (3)

ξn+1 < κ(ξn)ξn. (4)

Since κ(t) < 1 for all t ∈ [0,∞), by (4), the sequence {ξn}∞n=1 is strictly decreasing in [0,∞). Since ϕ is an MT -function,
by Theorem 2.1, 0 � supn∈N ϕ(ξn) < 1. Then it follows that

0 < sup
n∈N

κ(ξn) = 1

2

[
1 + sup

n∈N

ϕ(ξn)
]

< 1.

Let γ := supn∈N κ(ξn). So γ ∈ (0,1). By (4) again, we have

ξn+1 < κ(ξn)ξn � γ ξn for each n ∈ N. (5)

Thus it follows from (5) that

d(xn, xn+1) = ξn+1 < γ ξn < · · · < γ nξ1 = γ nd(x0, x1) (6)

for each n ∈ N. Let αn = γ n

1−γ d(x0, x1), n ∈ N. For m, n ∈ N with m > n, we have form (6) that

d(xn, xm) �
m−1∑
j=n

d(x j, x j+1) < αn.

Since 0 < γ < 1, limn→∞ αn = 0 and hence limn→∞ sup{d(xn, xm): m > n} = 0. This prove that {xn} is a Cauchy sequence
in X . By the completeness of X , there exists v ∈ X such that xn → v as n → ∞. Since, by (3), xn+1 ∈ T xn , we have from (a)
that

gxn+1 ∈ T xn for each n ∈ N. (7)
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Since g is continuous and limn→∞ xn = v , we have

lim
n→∞ gxn = gv. (8)

Since the function x �→ d(x, T v) is continuous, we get from (b1), (7), (8) and limn→∞ xn = v that

d(v, T v) = lim
n→∞ d(xn+1, T v)

� lim
n→∞ H(T xn, T v)

� lim
n→∞

{
ϕ

(
d(xn, v)

)
d(xn, v) + h(gv)d(gv, gxn+1)

} = 0.

Hence d(v, T v) = 0. Since T v is closed in X , we have v ∈ T v . By (a), gv ∈ T v . Therefore, v ∈ C O P (g, T ) ∩ F (T ) and the
proof is complete. �

Here, we give an example illustrating Theorem 2.2.

Example A. Let �∞ be the Banach space consisting of all bounded real sequences with supremum norm d∞ and let {en} be
the canonical basis of �∞ . Let {τn} be a sequence of positive real numbers satisfying τ1 = τ2 and τn+1 < τn for n � 2 (for
example, let τ1 = 1

2 and τn = 1
n for n ∈ N with n � 2). Thus {τn} is convergent. Put vn = τnen for n ∈ N and let X = {vn}n∈N

be a bounded and complete subset of �∞ . Then (X,d∞) be a complete metric space and d∞(vn, vm) = τn if m > n.
Let T : X → C B(X) and g : X → X be defined by

T vn :=
{ {v1, v2}, if n ∈ {1,2},

X \ {v1, v2, . . . , vn, vn+1}, if n � 3,

and

gvn :=
{

v2, if n ∈ {1,2},
vn+1, if n � 3,

respectively. Then the following hold.

(a) T x is g-invariant for each x ∈ X .

(b) C O P (g, T ) ∩ F (T ) = {v1, v2}.

(c) g is continuous on X .

Indeed, (a) and (b) are obviously true. To see (c), since

• d∞(gv1, gv2) = 0 < τ1 = d∞(v1, v2),

• d∞(gv1, gvm) = τ2 = τ1 = d∞(v1, vm) for any m � 3,

• d∞(gv2, gvm) = τ2 = d∞(v2, vm) for any m � 3,

• d∞(gvn, gvm) = τn+1 < τn = d∞(vn, vm) for any n � 3 and m > n,

we prove that g is nonexpansive on X which implies that g is continuous on X .
Define ϕ : [0,∞) → [0,1) by

ϕ(t) :=
{ τn+2

τn
, if t = τn for some n ∈ N,

0, otherwise,

and ĥ : X → [0,∞) by

ĥ(vn) :=
{

0, n ∈ {1,2},
n, if n � 3.

Since lim sups→t+ ϕ(s) = 0 < 1 for all t ∈ [0,∞), ϕ is an MT -function. We claim that

H∞(T x, T y) � ϕ
(
d∞(x, y)

)
d∞(x, y) + ĥ(gy)d∞(gy, T x) for all x, y ∈ X, (∗)

where H∞ is the Hausdorff metric induced by d∞ . In order to verify that T satisfies (∗), we consider the following four
possible cases:

Case 1. ϕ(d(v1, v2))d∞(v1, v2) + ĥ(gv2)d∞(gv2, T v1) = τ3 > 0 = H∞(T v1, T v2).
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Case 2. For any m � 3, we have

ϕ
(
d∞(v1, vm)

)
d∞(v1, vm) + ĥ(gvm)d∞(gvm, T v1) = τ3 + (m + 1)τ2 > τ1 = H∞(T v1, T vm).

Case 3. For any m � 3, we obtain

ϕ
(
d∞(v2, vm)

)
d∞(v2, vm) + ĥ(gvm)d∞(gvm, T v2) = τ4 + (m + 1)τ2 > τ1 = H∞(T v2, T vm).

Case 4. For any n � 3 and m > n, we get

ϕ
(
d∞(vn, vm)

)
d∞(vn, vm) + ĥ(gvm)d∞(gvm, T vn) = τn+2 = H∞(T vn, T vm).

Hence, by Cases 1, 2, 3 and 4, we prove that T satisfies (∗). Therefore, all the assumptions of Theorem 2.2
are satisfied. Applying Theorem 2.2, we also prove C O P (g, T ) ∩ F (T ) �= ∅. Notice that H∞(T v1, T vm) = τ1 > τ3 =
ϕ(d∞(v1, vm))d∞(v1, vm) for all m � 3, so Mizoguchi–Takahashi’s fixed point theorem is not applicable here.

As a direct consequence of Theorem 2.2, we obtain the following result.

Theorem 2.3. Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map, g : X → X be a continuous self-map and
ϕ : [0,∞) → [0,1) be an MT -function. Assume that

(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X ;
(b2) there exist L � 0 and a function τ : X → [0, L] such that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + τ (gy)d(gy, T x) for all x, y ∈ X .

Then C O P (g, T ) ∩ F (T ) �= ∅.

Example B. Let �∞ , d∞ , H∞ , {en}, {τn}, X , T , g and ϕ be the same as in Example A. Define a function h̄ by

h̄(vn) :=

⎧⎪⎪⎨
⎪⎪⎩

2√
5
, if n = 1,

1
e , if n = 2,

1 − τn
τ2

, if n � 3.

Then h̄ is a function from X into [0,1]. In order to verify that T satisfies

H∞(T x, T y) � ϕ
(
d∞(x, y)

)
d∞(x, y) + h̄(gy)d∞(gy, T x) for all x, y ∈ X, (∗∗)

we need to consider the following four possible cases:

Case 1. ϕ(d(v1, v2))d∞(v1, v2) + h̄(gv2)d∞(gv2, T v1) = τ3 > 0 = H∞(T v1, T v2).

Case 2. For any m � 3, we have

ϕ
(
d∞(v1, vm)

)
d∞(v1, vm) + h̄(gvm)d∞(gvm, T v1) = τ3 +

(
τ2 − τm+1

τ2

)
τ2

= τ2 + (τ3 − τm+1) > τ1

= H∞(T v1, T vm).

Case 3. For any m � 3, we obtain

ϕ
(
d∞(v2, vm)

)
d∞(v2, vm) + h̄(gvm)d∞(gvm, T v2) = τ2 + (τ4 − τm+1) � τ1 = H∞(T v2, T vm).

Case 4. For any n � 3 and m > n, we get

ϕ
(
d∞(vn, vm)

)
d∞(vn, vm) + h̄(gvm)d∞(gvm, T vn) = τn+2 = H∞(T vn, T vm).

Hence we know that T satisfies (∗∗). Applying Theorem 2.3, we have C O P (g, T ) ∩ F (T ) �= ∅.
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Theorem 2.4. Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map, g : X → X be a continuous self-map,
ϕ : [0,∞) → [0,1) be an MT -function and L � 0. Assume that

(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X ;
(b3) there exists L � 0 such that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + Ld(gy, T x) for all x, y ∈ X .

Then C O P (g, T ) ∩ F (T ) �= ∅.

Proof. Define τ : X → [0, L] by τ (x) = L for all x ∈ X . So, (b3) implies (b2) and hence the conclusion follows from Theo-
rem 2.3. �
Example C. Let �∞ , d∞ , H∞ , {en}, {τn}, X , T , g and ϕ be the same as in Example A. It is not hard to verify that T satisfies

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + d(gy, T x) for all x, y ∈ X .

Applying Theorem 2.4 with L = 1, we obtain C O P (g, T ) ∩ F (T ) �= ∅.

Remark 2.2. It is quite obvious that (b2) implies (b3) (since τ (x) � L for all x ∈ X ), so (b2) and (b3) are indeed equivalent.
Hence Theorem 2.3 and Theorem 2.4 are real logical equivalent.

The following intersection theorem is also immediate from Theorem 2.2.

Theorem 2.5. Let (X,d) be a complete metric space, T : X → C B(X) be a multivalued map, g : X → X be a continuous self-map and
ϕ : [0,∞) → [0,1) be an MT -function. Assume that

(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X ;
(b4) there exist L � 0 and a function μ : X → [L,∞) such that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + μ(gy)d(gy, T x) for all x, y ∈ X .

Then C O P (g, T ) ∩ F (T ) �= ∅.

Example D. Let �∞ , d∞ , H∞ , {en}, {τn}, X , T , g and ϕ be the same as in Example A. Define a function h̃ by

h̃(vn) := 1 + τn for any n ∈ N.

Then h̄ is a function from X into [1,∞). Following a similar argument as in Example A, we can show that T satisfies

H∞(T x, T y) � ϕ
(
d∞(x, y)

)
d∞(x, y) + h̃(gy)d∞(gy, T x) for all x, y ∈ X,

and C O P (g, T ) ∩ F (T ) �= ∅ follows from Theorem 2.5.

Remark 2.3. In fact, Theorem 2.4 can be proved by Theorem 2.5. Indeed, under the assumptions of Theorem 2.4, let
μ : X → [L,∞) be defined by μ(x) = L for all x ∈ X . So (b3) implies (b4). Hence Theorem 2.5 implies Theorem 2.4. No-
tice that Theorem 2.5 also implies Theorem 2.3 since τ (x) � L � μ(x) for all x ∈ X .

Applying Theorem 2.2, we get the following generalization of Berinde–Berinde’s fixed point theorem.

Theorem 2.6 (Generalized Berinde–Berinde’s fixed point theorem). Let (X,d) be a complete metric space, T : X → C B(X) be a multi-
valued map, ϕ : [0,∞) → [0,1) be an MT -function and h : X → [0,∞) be a function. Assume that

H(T x, T y) � ϕ
(
d(x, y)

)
d(x, y) + h(y)d(y, T x) for all x, y ∈ X . (9)

Then F (T ) �= ∅.

Proof. Let g = id be the identity map. It is easy to verify that all the conditions of Theorem 2.2 are satisfied. Hence the
conclusion follows from Theorem 2.2. �
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Example E. Let �∞ , d∞ , H∞ , {en}, {τn}, X , T , ϕ and ĥ be the same as in Example A. Then F (T ) = {v1, v2}. Following a
similar argument as in Example A, we can prove that T satisfies

H∞(T x, T y) � ϕ
(
d∞(x, y)

)
d∞(x, y) + ĥ(y)d∞(y, T x) for all x, y ∈ X .

Using Theorem 2.6, we get F (T ) �= ∅ (in fact F (T ) = {v1, v2}).

Remark 2.4.

(1) In Example B, since

ϕ
(
d∞(v2, v3)

)
d∞(v2, v3) + h̄(v3)d∞(v3, T v2) = τ4 +

(
τ2 − τ3

τ2

)
τ2

= τ2 + (τ4 − τ3) < τ1

= H∞(T v2, T vm),

T does not satisfy (9). So Theorem 2.6 cannot be applicable to Example B. Therefore Theorem 2.2 is a proper extension
of Theorem 2.6.

(2) Theorems 2.2, 2.3, 2.4, 2.5 and 2.6 all generalize and improve Berinde–Berinde’s fixed point theorem, Mizoguchi–
Takahashi’s fixed point theorem, Nadler’s fixed point theorem, Banach contraction principle and some main results
in [1–3,6–14]. By applying Theorem 2.1, [3, Theorem 2.1] and [14, Theorem 3.1] are indeed real logical equivalent.

(3) Let (X,d) be a metric space. Recall that a single-valued map T : X → X is called a generalized Berinde map [15] if there
exist r ∈ [0,1) and a function b from X into [0,∞) such that

d(T x, T y) � rd(x, y) + b(y)d(y, T x) for all x, y ∈ X .

In particular, if there exists B ∈ [0,∞) such that b(x) = B for all x ∈ X , then T is called a Berinde map [13,15]. In [15],
Suzuki proved some new fixed point theorems for generalized Berinde maps with constants. He also gave an example
illustrating that there exists a generalized Berinde map which is not a Berinde map; for more details, see [15].
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