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SUMMARY

High-throughput sequencing has allowed for unprec-
edented detail in gene expression analyses, yet its
efficient application to single cells is challenged by
the small starting amounts of RNA. We have devel-
oped CEL-Seq, a method for overcoming this limita-
tion by barcoding and pooling samples before
linearly amplifying mRNA with the use of one round
of in vitro transcription. We show that CEL-Seq gives
more reproducible, linear, and sensitive results than
a PCR-based amplification method. We demon-
strate the power of this method by studying early
C. elegans embryonic development at single-cell
resolution. Differential distribution of transcripts
between sister cells is seen as early as the two-cell
stage embryo, and zygotic expression in the somatic
cell lineages is enriched for transcription factors. The
robust transcriptome quantifications enabled by
CEL-Seq will be useful for transcriptomic analyses
of complex tissues containing populations of diverse
cell types.
INTRODUCTION

For many biological questions a single-cell-level description of

gene regulation is advantageous to cell populations (Tang

et al., 2011; Wang and Bodovitz, 2010). Microscopy, FACS, or

real-time PCR-based methods can provide a single-cell aspect

to experiments but are able to assay only a handful of genes at

a time. High-throughput technologies such as microarrays and

RNA-Seq provide a full view of the expression of all genes but

are limited by the amount of RNA needed for analysis. This can

be solved by adding an RNA amplification step, either by expo-

nential PCR-based amplification or linear in vitro transcription

(IVT) amplification (Eberwine et al., 1992). With PCR practically

any RNA starting amount can be employed, simply by adding

additional cycles, thereby allowing analysis at the single-cell

level. However, efforts for linear amplification of RNA from single

cells have been challenged by IVT’s lower bound of �400 pg

total RNA as input material for a single round of amplification.

Therefore, to date, IVT has not been efficiently used for amplifi-

cation of RNA from single cells (Tang et al., 2011).
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With the dramatically decreasing costs of sequencing, RNA-

Seq (Wang et al., 2009) has emerged as the preferred method

for transcriptomic analyses, overtaking microarrays, providing

an imperative for any transcriptomic method to be adapted for

RNA-Seq. A PCR-based amplification protocol has been used

in combination with SOLID sequencing (Tang et al., 2009).

Recently, the PCR-based method has been extended to include

a multiplexing step for the amplification of multiple cells in

parallel, allowing for high-throughput analysis, and uses the Illu-

mina sequencing platform (Islam et al., 2011). In comparison, IVT

of single cells has been described before; however, it is labor

intensive (Eberwine et al., 1992), requiring three rounds of

amplification (�5 days work/cell) and has not been adapted for

multiplexed sequencing. These considerations have hitherto

prevented the higher quality possible with IVT from being adapt-

ed for single-cell RNA-Seq.

Here, we present CEL-Seq (Cell Expression by Linear amplifi-

cation and Sequencing), a protocol that meets the demand of

linear amplification by IVT for sufficient material by pooling bar-

coded samples, therefore allowing the efficient linear amplifica-

tion of RNA from single cells and their analysis by sequencing.

We compare the performance of our method on two mammalian

cell types to that of a PCR-based approach and use spike-ins to

establish CEL-Seq’s exact reproducibility and sensitivity at very

low amounts of input RNA. Finally, we apply our protocol to study

sister cells from early C. elegans embryos, and demonstrate that

CEL-Seq’s high performance can be used to reliably distinguish

between cell types, even in cases where only subtle biological

differences are present.
RESULTS

CEL-Seq Performs Multiplexed Single-Cell
Transcriptomics by Linear Amplification
The CEL-Seq method begins with a single-cell reverse-tran-

scription reaction using a primer designed with an anchored

polyT, a unique barcode, the 50 Illumina sequencing adaptor,

and a T7 promoter (Figure 1A; see Experimental Procedures

for details). Next, second-strand synthesis is performed and

then the cDNA samples are pooled and consequently comprise

sufficient template material for an IVT reaction. The amplified

RNA is then subjected to directional RNA library preparation.

The RNA is fragmented to a size distribution appropriate for

sequencing, the Illumina 30 adaptor is added by ligation, RNA

is reverse transcribed to DNA, and the 30-most fragments that
s
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Figure 1. The CEL-Seq Method

(A) Individual cells are added to tubes, eachwith a uniquely bar-coded primer for reverse transcription. After second-strand synthesis, the reactions are pooled for

IVT. The amplified RNA is then fragmented and purified before entry into a modified version of the Illumina directional RNA protocol, the molecules with both

Illumina adaptors are selected, and the DNA library is sequenced with paired-end reads.

(B) Nucleotide distribution in the sequenced paired-end reads. Each nucleotide position is represented by one column, with the first base on the left.

(C) Barcode distribution of one IVT reaction after demultiplexing. The cells from three two-cell stageC. elegans embryos (denoted P1 and AB) and a single one-cell

stage embryo (denoted P0) were amplified together in a single multiplexed IVT reaction.

(D) Distribution of the reads mapping to the C. elegans genome in the six AB/P1 cells. Error bars indicate the SD.

(E) Correlation between biological AB replicates.

See also Figure S1C.
contain both Illumina adaptors and a barcode are selected. The

resulting library undergoes paired-end sequencing, where the

first read recovers the barcode, whereas the second identifies

the mRNA transcript (Figure 1A). Thus, by multiplexing CEL-

Seq takes advantage of the different input requirements of the

reverse-transcription and IVT reactions to obtain sufficient RNA

from single cells for a single round of linear amplification.

As an initial test, we applied CEL-Seq to individual cells iso-

lated from three two-cell C. elegans embryos (Table S1). On

average, 95.5% of the filtered reads had a barcode located
Cel
precisely at the beginning of the first read, invariably followed

by a polyT stretch (Figure 1B). Barcodes from all six samples

were represented, indicating the success of the individual

single-cell reverse-transcription reactions (Figure 1C). We map-

ped reads to the C. elegans genome and found that 91.7%

stemmed from mRNA. Only 2.0% stemmed from ribosomal

RNA (rRNA), demonstrating CEL-Seq’s specificity for polyadeny-

lated transcripts. This was also supported by the extremely low-

detected expression levels of core histone mRNAs, which are

thought to be highly expressed yet mostly nonpolyadenylated
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Figure 2. Benchmarking of CEL-Seq on Mouse ES and MEF Cells

(A) CEL-Seq Pearson’s correlation coefficients among the ES andMEF cells (on log10 tpm values), computed as previously described by Islam et al. (2011), on the

1,000 genes most highly expressed in ES cells and 1,000 genes most highly expressed in MEF cells (1,385 genes).

(B) Mean number of genes detected above two thresholds (10 and 100 tpm) across the ES and MEF cell types using CEL-Seq and the ‘‘STRT’’ PCR-based

method (Islam et al., 2011). Error bars indicate 95% confidence intervals.

(C) Reproducibility according to expression level. For each gene the coefficient of variation was computed across the log10 tpm values in the ES cells for the STRT

and CEL-Seq methods. The genes were then ranked by expression level in bins of 200 from high to low. For each bin the mean and SD of the coefficients of

variation of the genes are shown.

See also Figure S2 for additional analyses.
(Figure S1A). Finally, RNase treatment of cells did not

produce amplified RNA indicating the specificity of the method

to RNA.

CEL-Seq is highly strand specific because 97.2% of exonic

reads exhibited sense orientation (Figure 1D). The readsmapped

exclusively to the 30 end of transcripts (Figure S1B), which was

expected because CEL-Seq only retains the 30-most fragments

of transcripts (Figure 1A). Some reads mapped to intergenic

sequences, but manual inspection of the aligned reads revealed

that this can likely be explained by incomplete 30 UTR annota-

tions (data not shown). Expression levels were then estimated

by counting all reads mapping to each gene, and normalized to

give the read count in transcripts per million (tpm; see Experi-

mental Procedures). The expression levels of all genes (hence-

forth, transcriptome) across biological replicates showed an

average correlation of R = 0.979 (Figures 1E and S1C). A nega-

tive control—starting with the growth media lacking a cell—

resulted in very few reads (Figure S1D).

CEL-Seq Outperforms a PCR-Based Multiplexed RNA-
Seq Method
We next sought to compare the performance of our protocol to

the STRT method, a previously introduced PCR-based multi-

plexed RNA-Seq method by Islam et al. (2011). We thus applied

CEL-Seq to the cell types compared in this previous study by

Islam et al. (2011) and determined the transcriptomes of nine

mouse embryonic stem (ES) cells and seven mouse embryonic

fibroblasts (MEFs) (Table S1). When comparing the distribution

of expression levels of each single-cell transcriptome across

methods and cell type, CEL-Seq shows more reproducible

distributions of expression (Figure S2A). We found that CEL-

Seq produced higher correlations for ES cells and distinguished

between cell types more clearly, when examining the highly ex-

pressed genes in either cell type (Figures 2A and S2B). Further-

more, CEL-Seq detected significantly more genes in the ES cells
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(Figure 2B). In order to ensure a fair comparison between the

two methods, we quantified reproducibility for each method

separately, using the same criteria as previously described by

Islam et al. (2011), and found that with CEL-Seq, significantly

lower noise was detected across biological replicates for both

cell types tested (Figures 2C and S2C). Finally, principal compo-

nent analysis based on CEL-Seq data better distinguishes

between cell types than the corresponding STRT data (Fig-

ure S2D). Biological variation between replicates is a confound-

ing factor when trying to establish the performance of a method.

We therefore also compared the two methods based on expres-

sion levels of exogenously introduced RNA (see below) and

found that CEL-Seq provided more reproducible measurements

(Figure S2E).

CEL-Seq Is Highly Sensitive and Reproducible
In order to determine CEL-Seq’s sensitivity and reproducibility,

we analyzed different amounts of purified C. elegans RNA from

mixed embryonic stages, eliminating biological variability

present between single cells and allowing us to use different dilu-

tions of the same RNA. We prepared stepwise dilutions, from

40 pg of total RNA down to levels representative of mammalian

single cells (�5 pg). In parallel we sequenced a 1 ng RNA sample

from the same preparation for use as a reference. In half of the

samples, we added exogenous ‘‘carrier’’ RNA to test whether

the overall amount of RNA in a reverse-transcription reaction

affects the efficiency of the reverse-transcription step and found

that it did not: the number of reads that mapped to theC. elegans

genome depended only on the amount of C. elegans RNA

present in a given sample (Figure S3A). Each sample also con-

tained a set of 92 spike-in RNAs with defined concentrations,

spanning more than five orders of magnitude (Baker et al.,

2005), which showed a linear response across the entire detec-

tion range (R2 = 0.87 ± 0.04 for the 10 pg samples; Figures 3A

and S3B).
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Figure 3. Sensitivity and Reproducibility of

CEL-Seq

(A) CEL-Seq achieves a linear response over the

entire detection range. The plot indicates the 92

ERCC (Baker et al., 2005) spike-in levels from six

10 pg replicate samples. Averages for each of the

17 groups of spike-ins with the same nominal

concentrationare shownas larger circles. For each

sample the spike-ins were normalized such that

the average expression of the 12th spike-in group

containing 1,000 molecules was set to 1,000. The

fraction of spike-ins in each group without de-

tected expression is shown at the bottom of the

figure. The line indicates an idealized linear rela-

tionship. Systematic deviations from the line for

some spike-ins with high concentrations are likely

due to differences in G/C content.

(B) C. elegans transcript counts per sample based

on linear regression of spike-in expression levels

(5 pg, n = 5; 10 pg, n = 6; 20 pg, n = 5; 40 pg, n = 3).

The number of molecules calculated is directly

proportional to the amount of inputRNA. Error bars

indicate the SD.

(C) CEL-Seq sensitivity. For different amounts of

input RNA, the bars indicate the percentage of

genes detected (at least one read) as a function

of their absolute copy number, calculated based

on the 1 ng reference sample. Error bars indicate

the SDs.

See Figure S3 for additional analyses.
We next invoked the spike-ins to assess CEL-Seq’s reproduc-

ibility and sensitivity based upon absolute molecule counts.

These calculations indicated that 10 pg of the C. elegans RNA

contained approximately 280,000 mRNA molecules (Figure 3B).

Using that number, and the relative expression level of each

gene in the reference sample, we calculated the expected

number of transcripts per gene in each of our dilution series

and binned the genes in each sample according to this number.

Comparison of the different dilutions showed that CEL-Seq’s

absolute sensitivity does not decrease with smaller starting

amounts of RNA (Figures 3C and S3C). For example 50% of all

genes with four to five copies and virtually all genes present in

more than 50 copies per cell were detected, independent of

the total amount of RNA analyzed (Figure 3C). Similarly, the

absolute reproducibility of the method is also not compromised

by smaller starting amounts (Figure S3C). In summary, CEL-

Seq’s performance in estimating a transcript’s abundance

depends solely on its absolute copy number in the sample.

Thus, whereas the IVT imposes a minimal starting amount of

�400 pg total RNA for sufficient yield in a single round, the

reverse-transcription reaction does not have this restriction.

CEL-Seq thus exploits this difference by pooling reverse-tran-

scription reactions together to arrive at the IVT threshold.

We also assessed the required sequencing depth for accurate

transcriptomic data using CEL-Seq. We created 12 technical
Cell Reports 2, 666–673, Se
replicates of 20 pg C. elegans RNA. We

simulated different sequencing depths

and found that at one million reads,

91% of the genes with an average
expression >100 tpm had an expression level within 20% of

that of the averaged expression and that sequencing deeper

did not further improve reproducibility. A total of 250,000 reads

produced results that were already sufficient for good quantifica-

tion and very similar to an order of magnitude higher sequencing

depth (Figure S3D).

Transcriptomic Analysis of Single Cells in the Early
C. elegans Embryo Identifies Differential and New
Expression
We next asked whether CEL-Seq can be used to identify biolog-

ical differences between closely related cells in the C. elegans

embryo. C. elegans embryonic development begins with

unequal cleavages producing founder cells—termed blasto-

meres—some of which are depicted in Figure 4B. The AB and

P1 sister blastomeres were examined 10 min after cell division.

Examining their transcriptomes, we detected 17 genes with

a mean 2-fold difference showing significantly different expres-

sion (p < 0.05, t test, FDR-corrected; Figure 4A). The most highly

expressed of these is mex-3, whose differential expression is

supported by previous work by Draper et al. (1996). Shuffling

the groupings of the triplicates resulted in no differentially ex-

pressed genes. Next, we sought to proceed in developmental

time, using CEL-Seq to further characterize the early embryonic

transcriptome. We collected cells by comparing the germ
ptember 27, 2012 ª2012 The Authors 669
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Figure 4. Dissecting the Early C. elegans Embryo with CEL-Seq

(A) Differential expression analysis in the two-cell stage blastomeres, AB and P1. A t test was made for the 137 genes for which there was expression >100 tpm

and at least 2-fold change between themeans of the triplicates. The 17 genes with p < 0.05 (FDR corrected) are shown along with the mean expression (right) and

standardized expression of triplicates on the left (mean subtracted and SD divided).

(B) The blastomeres examined in this study are abstracted in the cell lineage. The number of new transcripts is indicated under the vertical arrows. The two-sided

arrows indicate the number of differentially expressed genes in the anterior versus the posterior blastomeres, respectively. A list of all differentially expressed and

new transcripts is in Tables S2 and S3, respectively.

(C) Gene expression levels (log10 tpm; see color scale on right) for the indicated genes; cell lineage is as in (B).

(D) Classification of the AB and P1 blastomeres. For the indicated number of replicates used in the training data, the performance of the machine-learning

classifier (see Experimental Procedures) in assigning blastomere identities is shown as a function of the number of genes included for prediction.

See Figure S4 for additional analyses.
lineage to the somatic cells: P1 was allowed to divide to its two

daughter cells, P2 and EMS, which were analyzed, and similarly,

P2 was allowed to divide to P3 and C, which were then analyzed.

We also collected the AB daughter cells. We assayed for differ-

ential distribution of transcripts in these additional cells similarly

to the AB/P1 analysis (Table S2), as well as asking which genes

are newly expressed by comparing with the mother cell (Fig-

ure 4B; Table S3). The differential distribution between AB/P1

and EMS/P2 has also been tested by microarray and regular

RNA-Seq, in both cases using pooled cells, showing good corre-

lation (Figure S4A). New transcription in a particular cell type was

scored when the transcript’s concentration exceeded 10 tpm

and was <1 tpm in the mother cell (median across replicates).

We found that in the four-cell stage, only the EMS cell has

considerable expression of new transcripts. Among these are

med-1 and pes-10, known to be newly expressed in this cell

(Maduro et al., 2001; Seydoux et al., 1996) (Figure 4C). Interest-
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ingly, newly expressed EMS genes are enriched for transcription

factors (4 out of 17; p < 10�3, hypergeometric distribution):med-1

and three ccch genes—ccch-2, F38C2.7, and Y116A8C.19—not

previously known to be expressed this early in the embryo.

The C and P3 cells are born at the eight-cell stage. Again, the

P-lineage cell has new expression of fewer genes than its

somatic sister. The C cell expresses more new genes than

EMS, suggesting that additional repressors are removed with

the progression of development. Importantly, the C and EMS

newly transcribed genes share a highly significant overlap (ten

genes; p < 10�27, hypergeometric distribution; see Figure S4B).

Out of the 35 C genes, 6 are transcription factors (three times

more than expected; p < 10�3, hypergeometric distribution).

This suggests a somatic program evenly kick started upon diver-

gence from P-lineage transcriptional repression, likely by PIE-1

(Seydoux et al., 1996), and a crucial role for specific transcription

factors in early development. Finally, we found early expression
s



of 13 genes in P3 (Table S3); of these, one—scrm-4—is a target

of deps-1, a P granule-associated protein (Spike et al., 2008),

suggesting that CEL-Seq is indeed detecting expression in

a cell previously thought to be transcriptionally inert (Seydoux

et al., 1996).

Finally, we were interested in whether transcriptomic profiles

obtained with CEL-Seq can be used to computationally predict

the identity of unknown cells, as can be the case when analyzing

cells from complex tissues. We reasoned that distinguishing

between the closely related C. elegans sister blastomeres would

pose a veritable challenge and therefore constitute a suitable

test case. In order to achieve additional statistical power, we

analyzed AB and P1 blastomeres from six more embryos. We

built a classifier that uses a training set of sister blastomeres to

choose a specified number of maximally informative genes

(Experimental Procedures). We then used this information to

predict the likely identities of new pairs of sister blastomeres.

Surprisingly, in assessing the performance of our classifier using

cross-validation (Figures 4D and S4C), we found that for both the

two- and the eight-cell stage sisters, predictions can be made

with an average 80%–90% success rate based on data from

only three embryos. Using four or five replicates, the success

rate increased to 90%–100%. For EMS and P2 the classifier still

did far better than guessing, but the lack of high success rates

even with five replicates indicated that a systematic bias or

outlier effect was present in the data. Still, the good success in

highly similar blastomeres underscores the potential of our

method for future transcriptomic applications.

DISCUSSION

Single-cell transcriptomics is poised to revolutionize biological

research andmedical practice (Tang et al., 2011;Wang andBod-

ovitz, 2010), allowing for unbiased and comprehensive cell char-

acterization. It is acknowledged, that whenever possible, linear

amplification by IVT is preferable to exponential amplification

by PCR (Tang et al., 2011). Here, we describe a protocol that

combines the power of linear amplification by IVT, with a pooling

procedure that allows the efficient analysis of many samples in

parallel. We presented evidence that CEL-Seq is a sensitive,

accurate, and reproducible single-cell transcriptomics method.

We tested CEL-Seq on mammalian cells and nematode embry-

onic blastomeres,made extensive use of a suite of spike-ins, and

established the exact sensitivity and reproducibility of the

method using extremely low amounts of purified RNA. Here,

we review the advantages and limitations of the method and

finally consider CEL-Seq’s possible applications.

CEL-Seq’s key advantage over other protocols (Islam et al.,

2011; Tang et al., 2009) arises from its ability to harness the

power of IVT, providing both multiplexing and reproducibility.

By pooling many samples to a single IVT, a single round of ampli-

fication is sufficient, and CEL-Seq provides significantly reduced

hands-on time both for the amplification and downstream pro-

cessing, allowing for the preparation of dozens of samples for

sequencing within 2–3 days. CEL-Seq makes use of commer-

cially available kits for the amplification and sequencing library

preparation; only the bar-coded primers and a few enzymes

need to be obtained separately. This makes for the cost-effec-
Cel
tiveness of CEL-Seq. Furthermore, the protocol is complete

from start to end: the amplification, library construction, and

downstream bioinformatics analysis are seamlessly connected.

The amplification can be done for up to 50 cells (samples) per

day by a single person. The bar-coded primers are simple to

create and manufacture. Because the barcode is 8 bp in length

and can be longer, the number of samples that may have unique

barcodes in a given IVT is essentially unlimited. These converge

to a single sample ready to interface with library preparation

enabling the library preparation for �10 of these, or �500 cells.

The library construction kit is a standard Illumina kit that itself

provides an additional barcode for each library such that multiple

IVTs can be analyzed together on the same sequencing lane.

Finally, we provide our analysis pipeline ready for integration

within the Galaxy framework, such that expression values can

easily be obtained within a matter of hours.

In addition to working with single cells, CEL-Seq comes with

several other desirable properties, such as strand specificity

(>98%of exonic reads come from the sense strand) and barcod-

ing efficiency (>96% of the reads contain barcodes). After ampli-

fication, the CEL-Seq protocol selects for the single 30-most

fragment of each transcript. In contrast to virtually all other

RNA-Seq methods, this greatly simplifies the estimation of

expression levels because no normalization by gene length is

necessary. Thus, it will be of interest to invoke CEL-Seq when-

ever RNA amplification is necessary, even when not working

with single cells.

We found that CEL-Seq outperformed STRT, a previously

introduced PCR-based multiplexed single-cell RNA-Seq

method (Islam et al., 2011), in terms of robustness, sensitivity,

and reproducibility, and suffered from significantly less technical

noise. We note that the two methods examine different ends of

the mRNA transcript: 50 for STRT, but 30 for CEL-Seq. In addition

there may have been unavoidable differences in culturing condi-

tions of the cell types analyzed. However, several lines of

evidence indicate that it is unlikely that these aspects account

for the observed performance differences: (1) expression levels

were not compared directly across the two methods, (2) signifi-

cant differences were found for both cell types, and (3) methods

were also compared based on spike-ins, which are not affected

by these factors.

The limitations of CEL-Seq fall into the categories of specificity

to mRNA, 30 bias, and sensitivity to small copy numbers. CEL-

Seq does not detect miRNAs and other nonpolyadenylated tran-

scripts. This can be seen as an advantage because the bar-

coded transcripts are largely depleted of rRNA (<2%), which

increases the efficiency of the sequenced reads to measure

mRNA levels. Due to its strong 30 bias, the method is severely

limited in its ability to distinguish alternative splice forms.

Another aspect of the 30 localization of the reads is that in species
with genomes that are not well annotated, the reads will map to

unannotated 30 UTRs. This could be remedied to some extent by

artificially extending transcript annotations beyond the anno-

tated 30 end. Finally, a crucial issue with any single-cell gene

expression method is the sensitivity to the detection of lowly ex-

pressed genes. We have calculated that if the transcript is at five

copies, there is a 50% chance of its identification by CEL-Seq.

Relative to RNA-Seq of pooled samples, this may seem less
l Reports 2, 666–673, September 27, 2012 ª2012 The Authors 671



sensitive; however, pooling effectively increases the copy

number that we have shown to be the important parameter for

detection. Nevertheless, CEL-Seq on single cells will capture

variation in the expression levels among cells.

EXPERIMENTAL PROCEDURES

Single-Cell Isolation

C. elegans blastomeres were isolated as previously described by Edgar (1995).

Mammalian cells were obtained by trypsin treatment of adherent cells; see also

the Extended Experimental Procedures. Individual cells (ormedia without a cell

for negative control) were transferred with a micropipette into a 0.5 ml drop of

egg salts or PBS for C. elegans blastomeres or mammalian cells, respectively,

placed on the cap of a 0.5 ml LoBind Eppendorf tube, excess liquid was aspi-

rated off, and frozen in liquid nitrogen. Samples were stored at �80�C.

CEL-Seq Primer Design

The reverse-transcription primer was designed with an anchored polyT,

a unique barcode, the 50 Illumina adaptor, and a T7 promoter. The T7 promoter

sequence was as previously described by Baugh et al. (2001). The Illumina 50

adaptor sequence was as used in the Illumina small RNA kit. The barcodes

were of length eight and designed in groups of four, such that the first five

nucleotides will have equal representation of all four nucleotides to allow for

template generation and crosstalk corrections that are based on the first

four nucleotides read in the Illumina platform. The barcodes were designed

such that each pair is different by at least two nucleotides, so that a single

sequencing error will not produce the wrong barcode. All used primers are

described in the detailed Extended Experimental Procedures.

Linear mRNA Amplification

Ambion’s MessageAmp II aRNA Kit (AM1751) was used with the following

modifications. The polyT primer was replaced with the CEL-Seq primer. The

reverse-transcription reaction was performed at one-tenth volume, with 5 ng

of primer per reaction. A total of 0.2 ml of the primer mixed with 1 ml of water

or 1 ml of a 1:500,000 dilution of the ERCC spike-in kit (a total of 1.2 ml) was

added directly to the lid of the Eppendorf tube where the cell was frozen,

and incubated at 70�C for 10 min (with the lid of the thermal cycler heated to

70�C). The sample was spun to the bottom of the tube midincubation. After

the second-strand synthesis, samples were pooled and cleaned on a single

column before proceeding to the IVT reaction at two-fifths volume for 13 hr.

RNA was fragmented (one-fifth volume of 200 mM Tris-acetate [pH 8.1],

500 mM KOAc, 150 mM MgOAc added) for 3 min at 94�C, and the reaction

was stopped by placing on ice and the addition of one-tenth volume of

0.5 M EDTA, followed by RNA cleanup. The RNA quality and yield were as-

sayed using a Bioanalyzer (Agilent).

Library Construction and Sequencing

Illumina’s directional RNA sequencing protocol was used with the following

modifications. A total of 5 ng of RNA was used as input. The mRNA pull-

down and fragmentation steps were skipped because amplified RNA repre-

sents only mRNA sequences and was already fragmented. Only the 30 Illumina

adaptor was ligated—diluted 1:5 prior to ligation to obtain the appropriate

molar ratio with the reduced amount of RNA. A total of 12 cycles of PCR

was performed with an elongation time of 30 s. Libraries were sequenced on

the Illumina HiSeq2000 according to standard protocols. Paired-end

sequencing was performed, reading at least 15 bases for read 1, and 50 bases

for read 2, and the Illumina barcode when needed.

Expression Analysis Pipeline

Transcript abundances were obtained from the sequencing data using custom

scripts organized into a multistep, paralleled computational pipeline within the

Galaxy framework (Giardine et al., 2005). Briefly, after trimming and filtering,

the paired-end reads were demultiplexed based on the first eight bases of

the first read. For each sample, readsweremapped to theC. elegans reference

genome (WS230; http://www.wormbase.org), counted using htseq-count

(http://www-huber.embl.de/users/anders/HTSeq), and normalized by dividing
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by the total number of counted reads and multiplying with 106. Because CEL-

Seq retains one fragment per transcript, this procedure yields the estimated

gene expression levels in tpm. Absolute copy numbers were obtained by first

performing least-squares linear regression on the spike-in values. The result-

ing factor was used to convert the tpm values to mRNA copy numbers (scripts

available at yanailab.technion.ac.il).

Classification of Blastomere Identities

A machine-learning classifier was devised to predict the identities of pairs of

sister blastomeres, and its performance was assessed using cross-validation.

Briefly, for a given number of samples to be used as training data, and a given

number of genes to be used in the prediction (G), the classifier first ranks genes

according to the significance of their differential expression in the training data

(using a paired t test). TheG-most different genes are selected, and their mean

differences between the classes are normalized by their SD, to yield a refer-

ence vector. For a new set of sister blastomeres, the score for the two possible

classifications is calculated as the Euclidean distance between the differences

normalized by the SD from the training data, and the reference vector. The pre-

dicted classification is chosen according to the smaller distance. The number

of possible combinations of data sets to choose for the training step is N

choose k, where k is the number of embryos to be used, and N is the total

number of embryos analyzed. For each k, all such possibilities are tested,

and the average success rate is reported.
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