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Abstract

A directed triplewhist tournament on v players, briefly DT W h(v), is said to have the three person property if no two games
in the tournament have three common players. We briefly denote such a design as a 3P DT W h(v). In this paper, we show that a
3P DT W h(v) exists whenever v > 17 and v ≡ 1 (mod 4) with few possible exceptions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A whist tournament W h(v) for v = 4n (or 4n + 1) is a schedule of games (a, b, c, d) where the unordered pairs
{a, c}, {b, d} are called partners, the pairs {a, b}, {c, d}, {a, d}, {b, c} are called opponents, such that

(1) the games are arranged into 4n − 1 (or 4n + 1) rounds, each of n games;
(2) each player plays in exactly one game in each round (or all rounds but one);
(3) each player partners every other player exactly once;
(4) each player opposes every other player exactly twice.

The whist tournament problem was introduced by Moore [32]. Its existence attracted a lot of researchers such
as Wilson, Baker, Hartman et al. A complete solution is given in [7] and [9]. Ever since the existence of whist
tournaments was completely settled, the focus has turned to whist tournaments with additional properties. Such special
whist tournaments include at least directedwhist tournaments, triplewhist tournaments, whist tournaments with the
three-person property, and Z -cyclic whist tournaments. As more and more results have been obtained, the attention
has turned to whist tournaments that satisfy more than one of the above-mentioned criteria simultaneously (see, for
example, [8,11]). In what follows, for convenience, we shall provide a brief description of such types of tournaments
and the known results associated with them.

∗ Corresponding author. Tel.: +86 571 87953674; fax: +86 571 87953832.
E-mail address: gnge@zju.edu.cn (G. Ge).

0166-218X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.10.027

http://www.elsevier.com/locate/dam
mailto:gnge@zju.edu.cn
http://dx.doi.org/10.1016/j.dam.2007.10.027


2656 R.J.R. Abel et al. / Discrete Applied Mathematics 156 (2008) 2655–2665

A whist tournament is said to have three person property, denoted by 3PW h(v) as in [18], if any two games do
not have three common players. It was Hartman who first discussed this property in [28]. If we regard games in a
3PW h(v) as blocks, we obtain a super-simple (v, 4, 3)-BIBD (we call it a subdesign of the 3PW h(v)). This kind of
design was introduced and studied by Gronau and Mullin [27] and also studied by Chen [14,15]. Such designs with
resolvable property were investigated by Ge and Lam [23] and Zhang and Ge [38]. For the existence of 3PW h(v)s,
Finizio et al. [18–20] obtained several infinite classes and some examples. In [8], Anderson and Finizio gave an
asymptotic result. Subsequently, a complete solution was obtained in papers by Lu and Zhang [30] and Ge and
Lam [24]. More formally, we state their results in the following theorem.

Theorem 1.1 ([30,24]). Necessary conditions for the existence of a 3PW h(v), are v ≡ 0, 1 (mod 4) and v ≥ 8.
These conditions are also sufficient with one definite exception for v = 12.

We may think of (a, b, c, d) as the cyclic order of the four players sitting round a table. We refer to the pairs
{a, b} and {c, d} as pairs of opponents of the first kind, and the pairs {a, d} and {b, c} as pairs of opponents of the
second kind. We also refer to b as the left-hand opponent of a and as the right-hand opponent of c, and similar
definitions apply to each of a, b, c, d . A directedwhist tournament DW h(v) is a W h(v) in which each player is a
left- (resp., right-) hand opponent of every other player exactly once. A DW h(v) is associated with what has been
referred to as a resolvable (v, 4, 1)-perfect Mendelsohn design or briefly a (v, 4, 1)-RPMD (see, for example, [31,
12]). A basic necessary condition for the existence of a DW h(v) is v ≡ 0, 1 (mod 4). It is fairly well known [12] that
a DW h(v) exists for all v ≥ 5 whenever v ≡ 1 (mod 4). On the other hand, the results for the existence of a DW h(v)

whenever v ≡ 0 (mod 4) are still not conclusive. It is known [36,37] that a DW h(v) exists for all v ≥ 4 whenever
v ≡ 0 (mod 4), except for v = 4, 8, 12 and with at most 27 possible exceptions of which the largest is 188. More
specifically, we have the following

Theorem 1.2 ([12,36,37]). Necessary conditions for the existence of a DW h(v) are v ≡ 0, 1 (mod 4) and v ≥ 4.
These conditions are also sufficient except for v = 4, 8, 12 and possibly for v ∈ {16, 20, 24, 32, 36, 44, 48, 52,

56, 64, 68, 76, 84, 88, 92, 96, 104, 108, 116, 124, 132, 148, 152, 156, 172, 184, 188}.

For the existence of a DW h(v) with the three person property, briefly denoted by 3P DW h(v), Finizio [18] was able
to obtain several infinite classes and some examples where v ≡ 1 (mod 4). Subsequently, for this case, a conclusive
result was given by Bennett and Ge [11] and we now have the following theorem.

Theorem 1.3 ([18,11]). There exists a 3P DW h(v) for all v > 5, where v ≡ 1 (mod 4).

A triplewhist tournament T W h(v) is a W h(v) in which each player is an opponent of the first (resp., second)
kind exactly once with every other player. The triplewhist tournament problem was first introduced by Moore [32] in
1896. For a long time there was no progress until Baker [9] proved in 1975 that a T W h(v) exists for v = 4, 8, 16,
24 and for all large v, v ≡ 1(mod 4) and v ≡ 0, 4, 12 (mod 16). In 1997, much progress was made by Lu
and Zhu in [29]. They proved that the necessary condition for the existence of a T W h(v), namely v ≡ 0 or
1 (mod 4), is also sufficient with 2 definite exceptions, namely v = 5, 9, as well as 15 possible exceptions, namely
v ∈ {12, 56} ∪ {13, 17, 45, 57, 65, 69, 77, 85, 93, 117, 129, 133, 153}. Subsequent improvements were made by Ge
and Zhu in [26], Ge and Lam [25], and finally by Abel and Ge [5]. We summarize the known results for T W h(v) in
the following theorem.

Theorem 1.4 ([5]). Necessary conditions for the existence of a T W h(v), are v ≡ 0, 1 (mod 4) and v ≥ 4. These
conditions are also sufficient except for v = 5, 9, 12, 13 and possibly for v = 17.

The above theorem was recently extended to the case of T W h(v)s with the three person property (briefly denoted
by 3PT W h(v)) by Ge [22]. Concretely, we have the following theorem.

Theorem 1.5 ([22]). The necessary conditions for the existence of a 3PT W h(v), namely, v ≡ 0, 1 (mod 4) and
v ≥ 8, are also sufficient except for v = 9, 12, 13 and possibly for v = 17.

Whist tournaments which are simultaneously both triplewhist and directedwhist are called directed triplewhist
tournaments and denoted briefly by DT W h(v). These were first investigated by Anderson and Finizio in [8]. In
addition to the above, the following asymptotic result of Anderson and Finizio is contained in Theorem 4.1 of [8].
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Theorem 1.6. There exists a 3P DT W h(v) for all sufficiently large v ≡ 1 (mod 4).

In this paper, we shall investigate the problem of existence of 3P DT W h(v)s for the case where v ≡ 1 (mod 4).
From our earlier stated results, it is evident that a 3P DT W h(v) does not exist for v = 4, 5, 8, 9, 12, 13. In fact, to
date, there are no known small examples of a 3P DT W h(v) where v ≡ 0 (mod 4) and the general problem is far from
being resolved. Our goal is to establish the existence of a 3P DT W h(v) for all v > 17, where v ≡ 1 (mod 4) with
just a few possible exceptions.

Another problem of current interest mentioned earlier in [19] relates to the existence of Z -cyclic whist tournaments.
A W h(v) is said to be Z -cyclic if the players are the elements in Zv when v ≡ 1 (mod 4) and in Zv−1 ∪ {∞} when
v ≡ 0 (mod 4), and the rounds of the tournament are arranged so that each round is obtained from the previous
round by adding 1(mod m) where m = v − 1 if v ≡ 0 (mod 4) and m = v if v ≡ 1 (mod 4). An interesting
feature of a Z -cyclic whist tournament is that the entire tournament can be described by what is usually referred to as
the initial round of the tournament. In the process of establishing our main results, we shall also provide a plethora
of examples of Z -cyclic 3P DT W h(v)’s. In passing, it is also worth mentioning the fact that our results provide
triplewhist tournaments that are also resolvable Mendelsohn designs, and which give rise to a pair of self-orthogonal
Latin squares with a common symmetric orthogonal mate [8]. For general information on whist tournaments see the
survey paper of Anderson [6].

2. Recursive constructions

To describe our recursive constructions, we need the following auxiliary designs. For the general background on
design theory, the reader is referred to [13].

Suppose that S is a set of players, and H = {S1, S2, . . . , Sn} is a set of subsets (called holes), which form a partition
of S. Let si = |Si | and s = |S|. A holey round with hole Si is a set of games (a, b, c, d) which partition the set S \ Si .
A whist tournament frame with three person property (briefly 3PW h-frame) of type {s1, s2, . . . , sn} is a schedule of
games (a, b, c, d), where the unordered pairs {a, c}, {b, d} are called partners, pairs {a, b}, {c, d}, {a, d}, {b, c} are
called opponents, such that

(1) the games are arranged into s holey rounds; for each i there are si holey rounds with hole Si , each containing
(s − si )/4 games;

(2) each player in hole Si plays in exactly one game in each of s − si holey rounds;
(3) each player partners every other player in distinct holes exactly once;
(4) each player opposes every other player in distinct holes exactly twice;
(5) any two games have at most two players in common.

A 3PW h-frame of type {s1, s2, . . . , sn} will be called a directed triple whist tournament frame of the same type,
briefly 3P DT W h-frame, if each player is a left- (resp., right-) hand opponent of every other player exactly once and
simultaneously an opponent of the first (resp., second) kind exactly once with every other player.

We shall use an “exponential” notation to describe types: so type tu1
1 · · · tum

m denotes ui occurrences of ti , 1 ≤ i ≤ m
in the multiset {s1, s2, . . . , sn}. It is easy to see that a 3P DT W h-frame(1v) with v ≡ 1 (mod 4) is just a 3P DT W h(v).

A pairwise balanced design (PBD) is a pair (X, A) such that X is a set of elements (called points), and A is a set
of subsets (called blocks) of X , each of cardinality at least two, such that every unordered pair of points is contained
in a unique block in A. If v is a positive integer and K is a set of positive integers, each of which is not less than 2,
then we say that (X, A) is a (v, K )-PBD if |X | = v, and |A| ∈ K for every A ∈ A. The integer v is called the order
of the PBD. Using this notation, we can define a BIBD B(k, 1; v) to be a (v, {k})-PBD. We shall denote by B(K ) the
set of all integers v for which there exists a (v, K )-PBD. For convenience, we define B(k1, k2, . . . , kr ) to be the set of
all integers v such that there is a (v, {k1, k2, . . . , kr })-PBD.

A group divisible design (or GDD), is a triple (X,G,B) which satisfies the following properties:

1. G is a partition of a set X (of points) into subsets called groups;
2. B is a set of subsets of X (called blocks) such that a group and a block contain at most one common point;
3. Every pair of points from distinct groups occurs in exactly λ blocks.
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The group type (or type) of the GDD is the multiset {|G| : G ∈ G}. As with 3PW h-frames, we shall use an
“exponential” notation to describe group-type.

A GDD with block sizes from a positive integer set K is called a (K , λ)-GDD. When K = {k}, we simply write
k for K . When λ = 1, we simply write K -GDD for a (K , λ)-GDD. A (k, λ)-GDD with group type 1v is a balanced
incomplete block design, denoted by (v, k, λ)-BIBD.

A GDD or a BIBD is said to be resolvable if its blocks can be partitioned into parallel classes each of which spans
the set of points. We denote them by (K , λ)-RGDD or (v, k, λ)-RBIBD.

A transversal design (TD) TD(k, n) is a GDD of group type nk and block size k. A resolvable TD(k, n) (denoted by
RTD(k, n)) is equivalent to a TD(k +1, n). It is well known that a TD(k, n) is equivalent to k −2 mutually orthogonal
Latin squares (MOLS) of order n. In this paper, we mainly employ the following known results on TDs and PBDs.

Lemma 2.1 ([4,2]).

1. An RTD(4, n) exists for all n ≥ 4 except for n = 6 and possibly for n = 10.
2. A TD(q + 1, q) exists, where q is a prime power.
3. For all integers v where 63 ≤ v ≤ 92 or v ≥ 343, there exists a (v, {7, 8, 9})-PBD.

Wilson’s fundamental construction on G DDs [34] can be adapted to obtain the following construction for
3P DT W h-frames.

Construction 2.2 (Weighting). Let (X,G,B) be a GDD with index unity, and let w : X → Z+
∪ {0} be a weight

function on X. Suppose that for each block B ∈ B, there exists a 3P DT W h-frame of type {w(x) : x ∈ B}. Then there
is a 3P DT W h-frame of type {

∑
x∈G w(x) : G ∈ G}.

To obtain our main results, we shall use the following basic recursive constructions, which are modifications of
constructions for RGDDs and RBIBDs. Proofs for these can be found in [21]. Here, we just need to do the routine
check for the three person property.

Construction 2.3 (Inflating 3P DT W h-frames by RTDs). If a 3P DT W h-frame of type hu and an RTD(4, m) both
exist, then there exists a 3P DT W h-frame of type (mh)u .

Construction 2.4 (Frame Constructions). Suppose that there is a 3P DT W h-frame with type T = {ti : i =

1, 2, . . . , n}. Suppose also that there exists a 3P DT W h(1 + ti ) for i = 1, 2, . . . , n. Then there exists a 3P DT W h(u)

where u = 1 +
∑n

i=1 ti .

Construction 2.5 (Generalized Frame Constructions). Suppose that there is a 3P DT W h-frame with type T = {ti :

i = 1, 2, . . . , n}. Let b > 0. If there exists a 3P DT W h-frame of type 1ti b1 for i = 1, 2, . . . , n − 1, then there exists
a 3P DT W h-frame of type 1u−tn (tn + b)1 where u =

∑n
i=1 ti . Furthermore, if a 3P DT W h(tn + b) exists, then a

3P DT W h(u + b) exists.

3. Direct constructions

The constructions used in this paper will combine both direct and recursive methods. For most of our direct
constructions, we adapt the familiar difference method, where a finite abelian group is used to generate the set of
blocks for a given design. That is, instead of listing all the blocks of the design, we shall list a set of base blocks and
generate the others by an additive group and perhaps some further automorphisms.

Lemma 3.1. A 3P DT W h(v) exists for each v ∈ {25, 125}.

Proof. For v = 25, the required design is over Z5 × Z5. The initial round of games is given by the following base
blocks:

((4, 4), (0, 1), (0, 2), (4, 2)), ((2, 1), (2, 4), (3, 2), (4, 1)), ((1, 4), (3, 3), (1, 0), (3, 0)),
((3, 1), (2, 3), (0, 4), (4, 3)), ((2, 0), (0, 3), (1, 3), (3, 4)), ((1, 2), (1, 1), (2, 2), (4, 0)).

For v = 125, the required design is over GF(125). Let x be a primitive element of GF(125) satisfying
x3

= x2
+ 2. The initial round of games is obtained by multiplying the block (x, x + 1, x2

+ 2x, 3x2
+ 3x) by x4t for

0 ≤ t ≤ 30. �



R.J.R. Abel et al. / Discrete Applied Mathematics 156 (2008) 2655–2665 2659

Lemma 3.2. A Z-cyclic 3P DT W h(v) exists for each v ∈ {33, 45, 57, 65, 69, 77, 81, 85, 93, 105}.

Proof. The following table displays a suitable initial round of games for all the given values of v:

v Initial round games

33 (3, 14, 23, 20), (27, 26, 29, 21), (11, 31, 32, 13), (28, 22, 4, 6), (12, 8, 16, 7),
(10, 5, 17, 24), (9, 30, 1, 19), (15, 25, 18, 2).

45 (20, 15, 14, 11), (18, 12, 35, 1), (5, 38, 19, 2), (44, 42, 26, 13), (16, 34, 39, 4),
(33, 29, 31, 8), (40, 3, 30, 6), (41, 32, 22, 37), (36, 10, 23, 43), (17, 24, 9, 25),
(7, 21, 27, 28).

57 (20, 3, 8, 6), (10, 52, 26, 46), (1, 34, 51, 47), (13, 42, 41, 33), (55, 7, 9, 28),
(50, 11, 23, 16), (2, 5, 21, 27), (45, 32, 22, 17), (18, 54, 36, 14), (56, 44, 25, 48),
(53, 39, 4, 29), (35, 24, 37, 38), (31, 15, 30, 40), (43, 12, 19, 49).

65 (1, 29, 50, 12), (11, 23, 38, 47), (54, 2, 25, 58), (53, 46, 56, 16), (61, 18, 6, 5),
(48, 24, 63, 42), (19, 55, 7, 49), (26, 45, 4, 59), (33, 27, 14, 64), (60, 43, 21, 3),
(28, 36, 20, 31), (62, 13, 51, 17), (37, 40, 35, 39), (44, 9, 10, 30), (32, 34, 52, 57),
(15, 41, 22, 8).

69 (1, 46, 44, 56), (11, 13, 9, 4), (29, 19, 49, 35), (15, 40, 18, 53), (37, 65, 45, 58),
(48, 67, 8, 16), (64, 38, 30, 23), (36, 5, 32, 55), (43, 52, 7, 10), (60, 28, 3, 42),
(68, 20, 31, 14), (17, 59, 6, 12), (27, 63, 50, 39), (57, 61, 26, 66), (47, 62, 22, 21),
(34, 54, 51, 33), (2, 24, 41, 25).

77 (1, 31, 35, 32), (2, 69, 75, 30), (6, 27, 39, 67), (23, 48, 43, 41), (17, 26, 66, 15),
(61, 3, 14, 22), (7, 42, 76, 64), (16, 33, 19, 24), (20, 51, 34, 10), (13, 50, 37, 38),
(55, 70, 49, 8), (28, 12, 63, 57), (52, 18, 68, 45), (71, 60, 25, 47), (44, 5, 46, 59),
(11, 40, 21, 65), (56, 74, 73, 53), (72, 9, 54, 4), (36, 29, 62, 58).

81 (1, 54, 65, 31), (2, 45, 71, 55), (3, 30, 36, 10), (7, 27, 18, 12), (44, 29, 17, 58),
(50, 51, 26, 5), (39, 78, 37, 40), (49, 20, 74, 16), (11, 33, 48, 73), (38, 69, 56, 60),
(75, 6, 22, 57), (59, 72, 80, 13), (4, 67, 23, 53), (46, 35, 15, 77), (76, 68, 8, 52),
(79, 47, 24, 41), (61, 28, 62, 64), (9, 14, 43, 19), (63, 70, 66, 21), (25, 34, 32, 42).

85 (1, 5, 70, 67), (28, 7, 42, 11), (12, 74, 62, 54), (38, 10, 35, 68), (2, 17, 4, 84),
(8, 52, 23, 9), (27, 59, 75, 20), (6, 53, 31, 77), (50, 61, 14, 83), (21, 41, 65, 48),
(34, 79, 47, 49), (78, 71, 22, 82), (3, 32, 80, 37), (36, 58, 81, 30), (60, 72, 26, 39),
(63, 64, 73, 55), (18, 45, 19, 13), (57, 33, 51, 16), (24, 15, 43, 69), (56, 46, 44, 25),
(29, 66, 76, 40).

93 (58, 21, 74, 65), (70, 22, 39, 12), (60, 78, 56, 31), (63, 48, 91, 49), (4, 17, 29, 10),
(32, 20, 23, 86), (66, 27, 14, 35), (64, 50, 6, 38), (7, 90, 30, 54), (88, 42, 1, 68),
(82, 84, 18, 52), (11, 61, 80, 79), (43, 40, 41, 45), (8, 81, 47, 36), (62, 57, 73, 24),
(55, 83, 5, 46), (77, 69, 37, 72), (26, 33, 9, 71), (16, 76, 87, 34), (25, 2, 44, 15),
(53, 59, 67, 89), (51, 13, 85, 28), (92, 75, 19, 3).

105 (45, 74, 18, 104), (35, 90, 20, 79), (31, 78, 71, 28), (16, 61, 52, 22), (51, 40, 17, 41),
(65, 2, 33, 86), (34, 38, 24, 63), (32, 100, 88, 87), (42, 15, 37, 12), (30, 101, 81, 4),
(73, 25, 77, 72), (66, 53, 14, 55), (44, 67, 50, 48), (89, 5, 56, 46), (62, 27, 85, 47),
(76, 11, 83, 68), (57, 64, 102, 99), (13, 69, 96, 8), (97, 36, 54, 60), (19, 93, 95, 6),
(98, 7, 39, 21), (91, 59, 23, 43), (103, 10, 75, 84), (92, 70, 29, 3), (49, 82, 58, 94),
(9, 1, 26, 80). �

Lemma 3.3. A Z-cyclic 3P DT W h(v) exists for each v ∈ {49, 97, 121, 133, 169, 193}.

Proof. These are obtained like the designs in the previous lemma, except that a multiplier of order 3 or 5 is used.
For v = 121, the initial round is obtained by multiplying the blocks below by 3i for 0 ≤ i ≤ 4. For the other
values, we give a multiplier w of order 3; the initial round is then obtained by multiplying the given blocks by wi for
0 ≤ i ≤ 2. �
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v w Initial games

49 18 (10, 14, 1, 32), (4, 12, 15, 35), (31, 44, 38, 24), (16, 41, 26, 36).

97 35 (19, 73, 43, 94), (29, 60, 95, 9), (67, 66, 70, 44), (51, 18, 52, 62),
(20, 47, 37, 5), (1, 53, 55, 15), (84, 90, 59, 38), (75, 8, 41, 22).

121 (109, 59, 118, 12), (1, 78, 107, 32), (93, 25, 50, 58), (7, 23, 11, 52),
(103, 18, 62, 102), (8, 45, 66, 10).

133 11 (57, 103, 115, 66), (12, 51, 86, 128), (3, 96, 24, 77), (102, 36, 93, 107),
(47, 56, 79, 20), (119, 129, 37, 42), (10, 121, 70, 52), (34, 67, 21, 117),
(76, 120, 9, 80), (27, 85, 55, 74), (17, 2, 39, 50).

169 22 (23, 63, 62, 59), (82, 121, 96, 41), (3, 36, 50, 45), (11, 54, 8, 128),
(130, 139, 21, 67), (48, 55, 75, 140), (46, 76, 91, 15), (152, 4, 32, 69),
(9, 105, 40, 30), (102, 74, 150, 97), (25, 117, 108, 6), (119, 56, 163, 92),
(141, 61, 26, 68), (22, 44, 93, 19).

193 84 (44, 73, 113, 110), (128, 4, 142, 111), (5, 68, 52, 47), (12, 69, 9, 132),
(2, 17, 41, 150), (25, 39, 40, 27), (70, 100, 108, 3), (15, 36, 172, 80),
(63, 124, 98, 114), (82, 65, 180, 144), (127, 38, 11, 179), (95, 117, 103, 183),
(109, 174, 135, 190), (16, 20, 14, 92), (165, 24, 57, 176), (42, 139, 189, 106).

Lemma 3.4. There exists a Z-cyclic 3P DT W h(v) for v prime, v ≡ 1 (mod 4) and 29 ≤ v ≤ 241.

Proof. For v = 97 and 193, see Lemma 3.3. For the other values of v, let x be any primitive element in GF(v). For
v ≡ 5 (mod 8) the initial round is obtained by multiplying one initial block by x4t for 0 ≤ t < (v − 1)/4:

v Initial block v Initial block v Initial block v Initial block
29 (1, 3, 13, 8) 37 (1, 2, 4, 17) 53 (1, 2, 11, 34) 61 (1, 2, 4, 10)

101 (1, 2, 4, 98) 109 (1, 2, 8, 64) 149 (1, 2, 4, 18) 157 (1, 2, 4, 116)

173 (1, 2, 4, 11) 181 (1, 2, 12, 63) 197 (1, 2, 6, 18) 229 (1, 2, 4, 145)

For v ≡ 9 (mod 16) the initial round is obtained by multiplying two initial blocks by x8t for 0 ≤ t < (v − 1)/8:

v Initial blocks v Initial blocks v Initial blocks v Initial blocks
41 (1, 2, 4, 17) 73 (1, 3, 9, 14) 89 (1, 3, 9, 22) 137 (1, 2, 4, 17)

(3, 12, 5, 22) (11, 63, 31, 25) (5, 54, 41, 13) (3, 47, 89, 116)

233 (1, 3, 9, 14)

(5, 35, 84, 159)

For v ≡ 17 (mod 32) the initial round is obtained by multiplying four initial blocks by x16t for 0 ≤ t < (v − 1)/16:

v Initial blocks v Initial blocks
113 (1, 2, 4, 10) (5, 58, 81, 94) 241 (1, 2, 4, 7) (12, 86, 130, 185)

(3, 6, 13, 23) (9, 59, 100, 63) (3, 8, 19, 25) (10, 17, 139, 202) �

Summarizing the results of Lemmas 3.1–3.4, we have the following lemma:

Lemma 3.5. There exists a 3P DT W h(v) for all v ≡ 1 (mod 4) where 25 ≤ v ≤ 241, with the possible exceptions of
v ∈ {117, 129, 141, 145, 153, 161, 165, 177, 185, 189, 201, 205, 209, 213, 217, 221, 225, 237}.

Lemma 3.6. A 3P DT W h-frame of type 4n exists for each n ∈ {7, 8, 9, 10, 11}.

Proof. These designs are over Z4n−4 ∪{∞0, ∞1, ∞2, ∞3}. All points in the first block are distinct (mod 4); therefore
for any i ∈ {0, 1, 2, 3}, adding i, i + 4, i + 8, . . . , i + 4n − 8 to this block produces a partial parallel class missing the
infinite points. The other blocks form a partial parallel class missing the group {0, n − 1, 2(n − 1), 3(n − 1)}. Develop
all the given blocks (mod 4n − 4). �
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n Initial games

7 (0, 1, 3, 10), (1, 4, 17, 8), (7, 5, 2, 22), (3, 11, 16, ∞0), (∞1, 21, 13, 23),
(9, 20, 19, ∞2), (15, 10, 14, ∞3).

8 (0, 10, 13, 11), (20, 26, 16, 15), (27, 24, 8, 19), (6, 22, 9, 4), (25, 1, 23, ∞0),
(18, 3, 12, ∞1), (∞2, 17, 13, 5), (∞3, 10, 11, 2).

9 (0, 14, 13, 7), (28, 17, 5, 6), (25, 12, 23, 27), (19, 2, 15, 22), (10, 20, 11, 14),
(29, 31, 26, ∞0), (21, 1, 7, ∞1), (9, 18, 4, ∞2), (∞3, 13, 30, 3).

10 (0, 10, 29, 31), (22, 19, 23, 11), (14, 34, 26, 21), (15, 16, 29, 35), (4, 12, 24, 10),
(6, 2, 1, 8), (7, 30, 33, ∞0), (20, 5, 31, ∞1), (∞2, 17, 32, 13), (∞3, 25, 3, 28).

11 (0, 17, 31, 34), (12, 39, 1, 5), (17, 9, 21, 22), (26, 15, 33, 27), (3, 36, 11, 35),
(37, 6, 2, 24), (34, 32, 13, 18), (29, 8, 31, ∞0), (∞1, 7, 38, 23), (∞2, 19, 16, 4),
(28, 14, 25, ∞3).

Lemma 3.7. A 3P DT W h-frame of type 4n81 exists for each n ∈ {7, 8, 9, 10}.

Proof. These designs are over Z4n ∪ {∞0, ∞1, ∞2, . . . ,∞7} and are obtained like those in the previous lemma. All
points in each of the first two blocks are distinct (mod 4); therefore each of these blocks generates four partial parallel
classes missing the infinite points. The other blocks form a partial parallel class missing the group {0, n, 2n, 3n}. �

n Initial games

7 (0, 22, 11, 9), (0, 9, 10, 15), (24, 6, 8, ∞0), (∞1, 19, 3, 23), (26, 9, 27, ∞2),
(2, 17, 25, ∞3), (13, 10, 5, ∞4), (∞5, 16, 22, 18), (12, 11, 15, ∞6), (∞7, 1, 4, 20).

8 (0, 26, 7, 17), (0, 25, 14, 31), (21, 18, 6, 17), (31, 13, 11, ∞0), (∞1, 5, 27, 7),
(15, 10, 28, ∞2), (23, 25, 2, ∞3), (1, 29, 4, ∞4), (∞5, 14, 20, 19), (22, 9, 12, ∞6),
(∞7, 30, 3, 26).

9 (0, 26, 11, 33), (0, 23, 17, 22), (1, 34, 22, 30), (2, 31, 12, 28), (29, 8, 6, ∞0),
(∞1, 7, 35, 5), (15, 19, 20, ∞2), (∞3, 17, 13, 25), (32, 21, 16, ∞4), (∞5, 4, 24, 26),
(11, 10, 23, ∞6), (∞7, 3, 14, 33).

10 (0, 9, 15, 38), (0, 15, 6, 1), (24, 28, 1, 12), (37, 35, 2, 16), (17, 11, 8, 9),
(13, 29, 14, ∞0), (∞1, 31, 15, 18), (4, 36, 32, ∞2), (∞3, 25, 3, 22), (39, 21, 7, ∞4),
(∞5, 33, 38, 26), (19, 6, 23, ∞6), (∞7, 5, 34, 27).

Lemma 3.8. A 3P DT W h-frame of type gum1 exists for all (g, u, m) ∈ {(6, 9, 0), (8, 5, 0), (8, 5, 4), (8, 5, 8),

(24, 7, 36)}.

Proof. For type 69, the given design is over Z54. Develop (mod 54) the following blocks, which form a partial parallel
class missing the group {0, 9, 18, . . . , 45}:

(2, 49, 19, 50), (25, 33, 53, 20), (7, 3, 17, 51), (38, 13, 16, 46),
(26, 23, 30, 15), (28, 12, 35, 24), (48, 42, 10, 47), (52, 40, 21, 11),
(41, 6, 22, 8), (4, 32, 44, 43), (31, 29, 1, 14), (5, 37, 39, 34).

For type 85, the required design is over (Z4 × Z8) ∪ {∞0, ∞1, . . . ,∞7} and the groups on the non-infinite points
are Z4 × {i, i + 4} for 0 ≤ i ≤ 7. The second coordinates of the points in each of the first two blocks are all distinct
(mod 4); hence these blocks each generate 4 partial parallel classes missing the infinite points. The others form a
partial parallel class missing the group Z4 × {0, 4}.

((2, 0), (0, 1), (0, 3), (3, 2)), ((3, 0), (3, 6), (3, 7), (2, 1)), ((3, 5), (1, 2), (2, 3), ∞0),
(∞1, (1, 7), (3, 1), (2, 2)), ((2, 6), (2, 1), (3, 7), ∞2), (∞3, (0, 6), (1, 3), (2, 5)),
(∞4, (3, 6), (1, 5), (3, 3)), ((0, 7), (3, 2), (0, 5), ∞5), (∞6, (2, 7), (0, 2), (0, 1)),
(∞7, (1, 1), (1, 6), (0, 3)).
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For types 85m1, m = 4, 8, the given designs are over Z40 ∪ {∞0, ∞1, . . . , ∞m−1}. Develop the blocks below
(mod 40). The partial parallel classes missing the infinite points here are obtained by adding i, i + 4, . . . , i + 36 to the
first block (for 0 ≤ i ≤ 3) when m = 4, or by adding i, i + 8, . . . , i + 32 to the first two blocks (for 0 ≤ i ≤ 7) when
m = 8. The other base blocks form a partial parallel class missing the group {0, 5, 10, . . . , 35}.

m Initial games

4 (0, 26, 29, 23), (22, 19, 23, 1), (38, 34, 2, 11), (33, 16, 7, 9), (18, 6, 12, 4),
(8, 24, 17, 36), (21, 28, 29, ∞0), (32, 31, 13, ∞1), (∞2, 3, 14, 27), (∞3, 39, 37, 26).

8 (0, 12, 29, 33), (19, 22, 10, 23), (3, 29, 7, 16), (33, 12, 26, 34), (∞0, 17, 9, 11),
(∞1, 4, 1, 2), (∞2, 32, 13, 24), (∞3, 14, 38, 31), (36, 19, 8, ∞4), (23, 39, 37, ∞5),
(6, 28, 22, ∞6), (21, 27, 18, ∞7).

For type 247361, the given design is over Z168 ∪ {∞0, ∞1, . . . ,∞35}. Multiply the following blocks by 1, 25 and
252

= 121, then develop the resulting 54 blocks (mod 168). Also, for i = 0, 1, 2, . . . , 11, replace ∞i by ∞12+i and
∞24+i when multiplying a block by 25 and 252 respectively. The 36 partial parallel classes missing the infinite points
are obtained by adding i, i + 4, . . . , i + 164 (for 0 ≤ i ≤ 3) to each of the first three blocks and their multiples. The
other base blocks and their multiples form a partial parallel class missing the group {0, 7, 14, . . . , 161}.

(0, 71, 150, 69), (0, 13, 163, 26), (0, 114, 27, 29), (44, 59, 144, 110), (128, 5, 106, 94),
(4, 80, 138, 36), (∞0, 67, 142, 12), (∞1, 68, 29, 2), (∞2, 57, 151, 24), (∞3, 26, 123, 3),
(∞4, 87, 71, 25), (∞5, 10, 158, 19), (45, 61, 37, ∞6), (73, 141, 89, ∞7), (55, 114, 54, ∞8),
(33, 65, 52, ∞9), (16, 15, 40, ∞10), (155, 30, 143, ∞11). �

4. Recursive constructions: The case v ≤ 253

In Section 3, some direct constructions were given for 3P DT W h(v) where 25 ≤ v ≤ 241, with some possible
exceptions. In this section, we shall provide recursive constructions for some of these possible exceptions. Throughout
the rest of this paper, we shall let V denote the set {v: a 3P DT W h(v) exists}.

Lemma 4.1. {161, 201, 205, 217, 221, 225, 237, 245, 249, 253} ⊂ V .

Proof. The first four of these make use of frames obtained in Lemma 3.8. For v = 161, 201 and 217, we apply
Construction 2.3 inflating 3P DT W h-frames of types 85, 85 and 69 by 4, 5 and 4 respectively. This gives 3P DT W h-
frames of types 325, 405 and 249. Now adjoin an infinite point to these frames and fill in the groups of sizes 32, 40 and
24 with a 3P DT W h(t) for t = 33, 41 or 25. For 205, we adjoin an infinite point to a 3PDTWh-frame of type 247 361,
and fill in the groups with a 3P DT W h(25) or a 3P DT W h(37). For 221 ≤ v ≤ 253, we start with a TD(8, 7) and
apply Construction 2.2. In the first seven groups, we give all points a weight of four. In the last group, we give the
points a weight of zero, 4 or 8 so that we have a total weight of 4t where 6 ≤ t ≤ 14. Here 3P DT W h-frames of
type 4n for n ∈ {7, 8} are needed, as well as the 3P DT W h-frame of type 4781. These all exist by Lemmas 3.6 and
3.7. We then adjoin one infinite point to the resulting 3P DT W h-frame of type 287(4t)1 by using a 3P DT W h(29) or
3P DT W h(4t + 1) for 6 ≤ t ≤ 14 to fill in the holes. This completes the proof. �

Summarizing the foregoing, we have now proved the following:

Lemma 4.2. If v ≡ 1 (mod 4) and 25 ≤ v ≤ 253, then a 3P DT W h(v) exists, except possibly for v ∈

{117, 129, 141, 145, 153, 165, 177, 185, 189, 209, 213}.

5. Recursive constructions: The case v ≥ 253

All designs in this section are obtained using the 3P DT W h-frames of type 4n for n ∈ {7, 8, 9, 10, 11} given in
Lemma 3.6. First, we will need the following working lemma.

Lemma 5.1. Suppose that 1 ≤ x ≤ 4 and a TD (7 + x, m) exists. Suppose also that there exists 3P DT W h(4t + 1)

for t = m, a1, a2, a3, . . . , ax where 0 ≤ ai ≤ m for 1 ≤ i ≤ x. If v = 28m + 4(a1 + a2 + · · · + ax ) + 1, then there
exists a 3P DT W h(v).
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Proof. Truncate x groups in TD(7 + x, m) to sizes ai , 1 ≤ i ≤ x , to obtain a {7, 8, . . . , 7 + x}-GDD of type
m7a1

1a2
1
· · · ax

1. Applying Construction 2.2 with weight 4, we then adjoin one infinite point to the resulting
3P DT W h-frame by using 3P DT W h(4t + 1) for t = m, a1, . . . , ax to fill in the holes. This produces the desired
designs. Here 3P DT W h-frames of type 4n for n ∈ {7, 8, . . . , 7 + x} are needed as input designs; these all exist by
Lemma 3.6. The proof is complete. �

Lemma 5.2. If v ≡ 1 (mod 4) and 249 ≤ v ≤ 365 or v ≥ 1369, then v ∈ V .

Proof. Lemma 2.1 guarantees the existence of an (n + 1, {7, 8, 9})-PBD for all n where 62 ≤ n ≤ 91 or n ≥ 342. By
deleting one point from this PBD, we create a {7, 8, 9}-GDD of order n and of type 6u1 7u2 8u3 , where the exponents are
non-negative integers not all equal to zero. Next we give all points of this GDD weight 4 and apply Construction 2.2
and the results of Lemma 3.6 to produce a 3P DT W h-frame of order 4n and of type 24u128u2 32u3 . Now we have a
3P DT W h(t) for t = 25, 29, 33, as guaranteed by Lemma 3.5. So we apply Construction 2.4 to adjoin an infinite
point and fill in the holes of the resulting 3P DT W h-frame to obtain the desired 3P DT W h(v) for the stated values
of v ≡ 1 (mod 4). �

Lemma 5.3. If v ≡ 1 (mod 4) and 333 ≤ v ≤ 1485, then v ∈ V .

Proof. Apply Lemma 5.1 with the values of m and x shown below, ai = 0 or 6 ≤ ai ≤ m, with ai ≤ 27 if m ≥ 27.
This gives v ∈ V , for v within the intervals given. Here a 3P DT W h(4t + 1) is required for t ∈ {m, 6, 7, . . . , 27} to
fill in the holes and all of these exist by Lemma 4.2.

Range for v

[333, 485]: m = 11, x = 4
[473, 705]: m = 16, x = 4
[669, 1013]: m = 23, x = 4
[781, 1189]: m = 27, x = 4
[1061, 1485]: m = 37, x = 4. �

Combining the results of Lemmas 4.2, 5.2 and 5.3, we have now established the following theorem.

Theorem 5.4. There exists a 3P DT W h(v) for all v ≥ 25, where v ≡ 1 (mod 4), with the possible exceptions of
v ∈ {117, 129, 141, 145, 153, 165, 177, 185, 189, 209, 213}.

6. Directed triplewhist tournaments and SOLSSOMs

A quasigroup is an ordered pair (Q, ·), where Q is a set and (·) is a binary operation on Q such that the equations

a · x = b and y · a = b (1)

are uniquely solvable for every pair of elements a, b ∈ Q. A quasigroup is called idempotent if the identity

x · x = x (2)

is satisfied for all x ∈ Q. If the identity

(x · y) · (y · x) = x (3)

holds for all x, y ∈ Q, then it is called a Schröder quasigroup. If the identity

(x · y) · (y · x) = y (4)

holds for all x, y ∈ Q, then the quasigroup is said to satisfy Stein’s third law.
For a finite set Q, it is well known that the multiplication table of the quasigroup defines a Latin square; that is,

a Latin square can be viewed as the multiplication table of the quasigroup with the headline and sideline removed.
The order of the quasigroup is |Q|. Two quasigroups of the same order are orthogonal if when the two corresponding
Latin squares are superposed, each symbol in the first square meets each symbol in the second square exactly once. A
quasigroup (Latin square) is called self-orthogonal if it is orthogonal to its transpose. For more information on Latin
squares, the interested reader may refer to the book of Dénes and Keedwell [16].
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We define a t-SOLSSOM of order v (t-SOLSSOM(v)) to be a set of 2t + 1 mutually orthogonal Latin squares
A1, A2, . . . , At , B1, B2, . . . , Bt , C such that Ai = BT

i and C = CT . Here SOLSSOM stands for self-orthogonal
Latin squares with a symmetric orthogonal mate. When t = 1, the term SOLSSOM (rather than 1-SOLSSOM) is more
commonly used. The existence problem for SOLSSOM(v) has been investigated for many years and the solution now
is almost complete. More specifically we have the following result [3]:

Theorem 6.1. If v is a positive integer, then a SOLSSOM(v) exists, except for v ∈ {2, 3, 6} and possibly for
v ∈ {10, 14}.

More generally, we also have the following result on 2-SOLSSOMs from [1].

Theorem 6.2. A 2-SOLSSOM(v) exists for all v ≥ 701, with at most 183 possible exceptions below this value.
Further, if v ≡ 0 (mod 8), then a 2-SOLSSOM (v) exists except possibly for v ∈ {24, 40, 48}, and if v ≡ 1 (mod 2),
then a 2-SOLSSOM (v) exists except for v = 3, 5 and possibly for v ∈ {15, 21, 33, 35, 39, 51, 65, 87, 123, 135}.

Schröder quasigroups and quasigroups satisfying Stein’s third law are well known to be self-orthogonal (see, for
example, [33]). Moreover, it is also known that the existence of a DW h(v) implies the existence of an idempotent
quasigroup satisfying Stein’s third law, and which has a symmetric orthogonal mate, that is, a SOLSSOM(v).
Similarly, the existence of a T W h(v) implies the existence of an idempotent Schröder quasigroup of order v with
a symmetric orthogonal mate, that is, a different SOLSSOM(v). Evidently, the existence of a DTWh(v) implies
the existence of two different SOLSSOMs sharing the same symmetric mate. For more information relating to
these interesting associations, the reader is referred to [8,10,12]. One immediate consequence of Theorem 5.4 is
the following result:

Theorem 6.3. For all v ≥ 25, where v ≡ 1 (mod 4), with the possible exceptions of v ∈ {105, 117, 129, 141, 145,

153, 165, 177, 185, 189, 205, 209, 213}, there exists a DT W h(v), which implies the existence of two different
SOLSSOM (v) with the same mate.

We wish to remark that Theorem 6.3 should be viewed more as an interesting observation, as was done in [8],
rather than providing any significant improvements to Theorems 6.1 and 6.2. Clearly, the 2 SOLS(v) with the same
symmetric orthogonal mate (SOM) arising from a DTWh(v) cannot provide a 2-SOLSSOM(v), since approximately
half of their entries are identical. If one wishes to combine the results of Theorems 6.2 and 6.3, we obviously have the
following:

Theorem 6.4. For all v ≥ 5, where v ≡ 1 (mod 4), with the exception of v = 5 and the possible exception of v = 21,
there exist two different SOLSSOM (v) with the same mate.

7. Concluding remarks

As already mentioned in the Introduction, the results for the existence of a DW h(v) whenever v ≡ 0 (mod 4) are
still not conclusive, and the existence of a 3P DW h(v) is an even more open problem for this case. It is fairly well
known [35] that a Z -cyclic (v, 4, 1)-perfect Mendelsohn design does not exist whenever v ≡ 0 (mod 4). Consequently,
a Z -cyclic (v, 4, 1)-RPMD or equivalently a Z -cyclic DW h(v) does not exist whenever v ≡ 0 (mod 4). So it would
seem natural to consider the existence of Z -cyclic 3P DW h(v)s for v ≡ 1 (mod 4). The results in [8] essentially
provided an infinite class of Z -cyclic DT W h(v) with v = p, a prime, p ≥ 29 and p ≡ 5 (mod 8). It was also shown
in [8] that there is a Z -cyclic 3P DT W h(p) for p = 29, 37. In [17], it was shown that a Z -cyclic 3PT W h(p) exists
for any prime p ≡ 1 (mod 4), with the exception of p = 5, 13, 17. In Lemma 3.4 of this paper, it was shown that there
exists a Z -cyclic 3P DT W h(p) with p a prime, 29 ≤ p ≤ 241 and p ≡ 1 (mod 4). It is conceivable that a Z -cyclic
3P DT W h(p) exists for any prime p ≡ 1 (mod 4), with the exception of p = 5, 13, 17. However, there appears to be
no easy way of obtaining a Z -cyclic DT W h(p) for p a prime of the form 2m

+ 1, since there is then no multiplier of
odd order in Z p that can be used. The most recent results and progress on this problem can be found in [39].
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