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It is well known that the right posterior parietal cortex (PPC) is involved in attentional processes, includ-
ing binding features. It remains unclear whether PPC is implicated in top-down and/or bottom-up
components of attention. We aim to clarify this by comparing performance of seven PPC patients and
healthy controls (HC) in a visual search task involving a conflict between top-down and bottom-up
processes. This task requires essentially a bottom-up feature search. However, top-down attention
triggers feature binding for object recognition, designed to be irrelevant but interfering to the task. This
results in top-down interference, prolonging the search reaction time. This interference was indeed found
in our HCs but not in our PPC patients. In contrast to HC, the PPC patients showed no evidence of
prolonged reactions times, even though they were slower than the HCs in search tasks without the
conflict. This finding is an example of paradoxical functional facilitation (PFF) by brain damage. The
PFF effect enhanced our patients’ performance by reducing the top down interference. Our finding
supports the idea that right PPC plays a crucial role in top-down attentional processes. In our search tasks,
right PPC induces top-down interference either by directing spatial attention to achieve viewpoint invari-
ance in shape recognition or by feature binding.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Clinical studies reported ample evidence that patients with
posterior parietal cortex (PPC) damage can suffer from a variety
of deficits in spatial attention (e.g., Corbetta, Patel, & Shulman,
2008; Husain, 2001; Riddoch et al., 2010; Vallar, 2007). Typically
patients have been described with neglect, extinction (Heilman,
Watson, & Valenstein, 1985; Karnath, 1988), and impairment in
spatial working memory (Husain, 2001; Pisella, Berberovic, &
Mattingley, 2004).

A recent review suggested that the inferior and the superior
right parietal cortex are often implicated in these impairments
(see Vandenberghe, Molenberghs, & Gillebert, 2012 for review).
However, lesion studies and imaging studies of healthy subjects
documented discrepant findings regarding the anatomical sub-
strate for selective attention. Lesion studies have highlighted the
role of the right inferior parietal and posterior temporal cortex
(such as the right angular gyrus and the right temporoparietal
junction). Neuroimaging studies, reported activation of the middle
segment of the intraparietal sulcus (IPS) in attentional processing
(Corbetta & Shulman, 2002; Vandenberghe, Molenberghs, &
Gillebert, 2012) .

This apparent discrepancy may arise for a number of different
reasons. Lesions may functionally affects remote attentional net-
works outside the structurally lesioned area. For example, it may
involve the IPS, which is known to be involved in endogenous
attentional control (Corbetta, Patel, & Shulman, 2008).

Visual search tasks are often used to investigate spatial atten-
tional mechanisms in both healthy controls and neurological pa-
tients. We briefly outline the related background about attention
and visual search before reviewing relevant visual search studies
in patients. In general, attention has both top-down and bottom-
up components (e.g., Itti & Koch, 2001; Treisman & Gelade,
1980). Bottom-up attention is driven by visual inputs, operates
exogenously or automatically regardless of observers’ task goal
(Corbetta & Shulman, 2002; Itti & Koch, 2001; Theeuwes, 2010;
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Treisman & Gelade, 1980). For example, a vertical bar among many
horizontal bars can capture bottom-up attention due to its unique
basic (lower level) feature value (orientation), which makes it
salient. It has been suggested that primary visual cortex underlies
bottom-up attentional selection (Li, 2002).

In contrast, top-down attention is voluntarily driven by the
observers’ task goal and often involves higher-level processes such
as object shape recognition, which requires feature binding (Itti &
Koch, 2001; Treisman & Gelade, 1980). For example, in looking for
a letter ‘T’ among letter ‘L’s, one has a template of the ‘T’ shape in
mind while the ‘attentional spotlight’ scans the visual image. In
this task, top-down attention is essential since the target and
non-targets do not differ in any basic, low level, feature like orien-
tation or color of bar elements, and therefore observers cannot rely
on any bottom-up saliency to distinguish the target. Top-down
attention has been suggested to involve a network of frontal and
parietal areas (Corbetta & Shulman, 2002).

In terms of sensory inputs, a visual search can be a feature or a
non-feature search. In a feature search, e.g., to find a vertical bar
among horizontal bars, the target has a unique basic feature, such
as the orientation or color of a bar element, which is absent in the
non-targets. This basic target feature makes a target salient by an
amount that increases with the contrast between the unique target
feature and the non-target features. Since highly salient locations
attract attention even if observers do not know the target identity,
bottom-up processes play an essential role in feature searches. In a
non-feature search, each basic feature in the target is also present
in non-targets, so the target cannot be salient by bottom-up pro-
cesses relying on basic features. For example, searching for a ‘T’
among ‘L’s is a non-feature search, since both the target and non-
target have the same two basic features: one is vertical orientation
and the other is horizontal orientation (of bars). Without bottom-
up salience to guide attention automatically to the target, non-fea-
ture searches require top-down task-dependent factors, such as
the knowledge of the target shape (by a particular configuration
of basic features), to find the target location. A conjunction search
is a particular type of non-feature search, in which each of the tar-
get features is present in non-targets and the target is distin-
guished only by a unique conjunction of basic features. For
example, searching for a red-vertical bar among red-horizontal
and green-vertical bars is a conjunction search.

In terms of ease of the task, a search can be an efficient or an
inefficient search. A feature search can be efficient or inefficient,
when the unique basic feature in the target is very different, or
only slightly different, from the features in the non-targets. For
example, a vertical target bar is easy to find among horizontal
non-targets, but is difficult to find among bars tilted only 5� clock-
wise from vertical, even though in both cases the target has a un-
ique vertical orientation absent in the non-targets. Meanwhile, a
non-feature search can be made easier than a difficult feature
search when the target can be easily distinguished by its high level,
non-basic, properties such as a distinct shape.

In general, both bottom-up and top-down attentional processes
are involved in typical visual searches. Bottom-up process can take
advantage of the bottom-up target saliency when the target has a
unique basic feature, while the top-down process helps by identi-
fying and distinguishing the target in high level properties such as
shape, and by additional task strategies and decisions. Fig. 1 illus-
trates examples of feature and non- feature searches, including a
conjunction search.

In neurological patients, spatial attention impairments can
often manifest in visual search tasks as an inability to perform con-
junction search (e.g., Dent, Lestou, & Humphreys, 2010; Müller-
Plath, Ott, & Pollmann, 2010; Treisman & Gelade, 1980). Studies
of patients documented that the PPC is involved in conjunction
searches . Indeed, patients with unilateral PPC damage had
impairments in contra-lesional conjunction search (see Riddoch
et al., 2010 for review). These patients, whilst unable to find a
unique conjunction of features, were able to identify a target
defined by a unique single feature (e.g., Eglin, Robertson, & Rafal,
1989; Riddoch & Humphreys, 1987). This was so even when the
conjunction search was easier than a single feature search
(Humphreys, Hodsoll, & Riddoch, 2009).

Transcranial Magnetic Stimulation (TMS) studies show an
involvement of the right PPC in conjunction search (Ashbridge,
Walsh, & Cowey, 1997; Ellison, Rushworth, & Walsh, 2003; Ellison
et al., 2004; Muggleton, Cowey, & Walsh, 2008; Nobre et al., 2003;
Walsh, Ashbridge, & Cowey, 1998), especially when the task is
novel or not practiced so extensively that it might have become
automatized (Walsh, Ashbridge, & Cowey, 1998). Another study re-
ported that repetitive transcranial magnetic stimulation (rTMS)
over the right PPC, interfered selectively with a non-feature search
for a T amongst Ls compared to a feature search for a X amongst Ls
(Rosenthal et al., 2006).

Impairments in non-feature searches, in particular in conjunc-
tion searches, have been interpreted as reflecting impairment in fea-
ture binding. Three clinical examples support this interpretation.

Patients with Balint-Holmes’ syndrome are unable to identify
one object at a time in a cluttered scene or to bind features of an
object together (Friedman-Hill, Robertson, & Treisman, 1995;
Humphreys et al., 2000; Vallar, 2007).

Binding deficits have been reported as illusory conjunctions for
stimuli presented in contralesional space in patients with unilate-
ral parietal lesions (Cohen & Rafal, 1991).

In contrast, patients with semantic dementia, a neurodegenera-
tive disease somewhat sparing the parietal cortex, showed facilita-
tion in conjunction searches (Viskontas et al., 2011).

Visual search tasks usually adopted in behavioral, lesion, or
neuroimaging studies do not allow to unambiguously identify
the contribution of bottom-up and top-down attentional pro-
cesses. This is because typically the measurements adopted are
reaction times (RT) and accuracy, and both top-down and bot-
tom-up processes are involved in either measure. A noticeable
exception is represented by the study of Zhaoping and Guyader
(2007). The authors developed a visual search task (task A, Fig. 2
see also Fig. 1 a) involving a conflict between the bottom-up and
top-down attentional processes. In this task, the target is unique
in bottom-up feature – hence the search is a feature search – but
not in higher-level shape. Specifically, the target is a uniquely ori-
ented bar, capturing bottom-up attention with its lower level ori-
entation feature. Meanwhile, the target bar is also part of an
object whose shape is identical to those of the non-target objects.
Consequently, top-down attention vetoes the bottom-up selection.
During the search, observers’ gaze was initially attracted to the tar-
get by its bottom-up salience. Often the gaze subsequently aban-
doned the target to search elsewhere, demonstrating the
interference by the top-down process, which recognizes the object
shape. We define this as the top-down interference to the task. This
interference is manifested by a longer reaction time to report the
target, particularly by the long latency between the gaze arrival
to target and subject’s report of the target. Top-down interference
is absent in a control task (task B in Fig. 2, see also Fig. 1 b) in which
there is no conflict between bottom-up and top-down processes,
because the target is not only salient by the unique orientation
(this is a basic, bottom-up, low level, feature) of one of its bars
but also distinct in its unique shape. Therefore the RTs are not pro-
longed in this control task. One can use the difference between the
RTs in the two tasks to measure the strength of top-down interfer-
ence in task A.

Note that both tasks A and B are feature searches, since in both
cases, the target has a uniquely oriented bar which is absent in the
non-targets. Hence, bottom-up saliency makes target attract



Fig. 1. Four examples of experimental stimuli in visual search studies. In each example, the target is the item in the center of the quadrant. Easy or difficult searches are
indicated by darker or lighter background shading, respectively. (a) An example of feature search. The unique feature in the target is a 45� right oriented bar which is absent in
the non-targets. Target and non-target do not differ in higher-level shape. (b) Another example of feature search. The unique feature in the target is a 20� right oriented bar
which is absent in the non-targets.Target and non-target differ in their higher-level shape. (c) An example of conjunction search which is a special case of a non-feature
search. Each of the target features (the vertical or the right oriented bar) is present in non-targets. The target is distinguished only by a unique conjunction of basic features.
Hence, there is no distinction either in basic feature or in higher-level shape between target and non-target. (d) Another example of non-feature search. Both the target
features (the vertical and the horizontal bar) are present in all non-targets. The target is distinguished only by a unique configuration of basic features into a shape. Hence, the
target non-target distinction is only at the higher-level shape.

Fig. 2. Task A and task B experimental stimuli. Task A and B differed only in the
angle, 45� and 20�, respectively, between the two bars in the target. Task-irrelevant,
horizontal and vertical, bars made the orientation singleton much harder to find in
condition A than in condition B. Note that task A and task B correspond to (a) and
(b) in Fig. 1.
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attention in both searches. In particular, the unique, smaller angle
between the two bars in the target of task B is not a basic level fea-
ture, but a high level, object shape, property. Hence, this unique
angle does not make the target in task B more salient in a bot-
tom-up manner. Indeed, tasks A and B require the same RT for gaze
to localize target during search (Zhaoping & Guyader, 2007). How-
ever, task A requires a much longer RT for observers to report the
target. In principle, object shape recognition is unnecessary for
either task A or B, if observers could ignore the shape information
to let the bottom-up saliency of the target dictate their task deci-
sion. Nevertheless, in practice, top-down interference due to shape
recognition typically occurs, especially in inexperienced observers.

A rTMS study in healthy controls (HC) adopted the visual search
tasks described above (Zhaoping & Guyader, 2007). A significant
reduction in the top-down interference (measured by the reduc-
tion in the RT to report the target) following rTMS over the right
but not left parietal cortex was reported (Oliveri et al., 2010). Inter-
estingly, rTMS over the right PPC had no effect on the performance
in the control task, which involves no top-down interference (and
can be done by bottom-up processes only). These results suggested
an involvement of right parietal cortex in top-down attention only.
This suggestion has been supported by a subsequent study show-
ing that rTMS over parietal cortex unmasked bottom-up selection
of stimuli with higher values of low-level features in HC (Ossandón
et al., 2012).

On the basis of these rTMS results, one could expect that pa-
tients with right parietal lesions may have impairment in top-
down attention only, if one assumes that rTMS causes an effect
in the brain similar to that caused by the neurological lesion. How-
ever, disruption to neural activity caused by rTMS is both transient
and acute, not allowing plastic reorganization of the brain.
Whereas lesions can cause disturbance to function that may be
more, or less, widespread than the disturbance to anatomy due
to compensatory plasticity occurring over time (Pascual-Leone,
Walsh, & Rothwell, 2000). Hence, it remains an open question
whether patients with right parietal lesions will exhibit facilitation
(compared to healthy controls) in tasks susceptible to top-down
interference, but not in tasks relying mainly on bottom-up atten-
tion without top-down interference. This study aims to find the an-
swer to this open question. We used the same visual search tasks
previously adopted in the HC studies (Oliveri et al., 2010; Zhaoping
& Guyader, 2007). We investigated the performance of seven pa-
tients with right parietal lesions and compared it with age and
education matched HC.
2. Material and methods

2.1. Participants

2.1.1. Patients
Seven right-handed patients (4 male, 3 female) (mean

age = 47 ± 17 years, mean level of education = 12 ± 4 years) with
focal right posterior hemisphere damage were identified through
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the database of Ospedale Riuniti Villa Sofia-Cervello (Palermo) and
Centro Studi e Ricerche in Neuroscienze Cognitive (Cesena). Inclu-
sion criteria were: (1) age between 18 and 75 years; (2) level of
education at least 8 years; (3) no history of previous psychiatric
disorder or alcohol or drugs abuse; (4) no hemianopsia and (5)
right parietal lesions identified on CT or MRI scan. Informed con-
sent was obtained for each patient.

Patients’ demographic and clinical characteristics are summa-
rized in Table 1.

2.1.2. Healthy Controls
The HC group consisted of 14 right-handed healthy subjects

matched for age (mean age = 49 ± 13 years) and education (mean
level of education = 11 ± 3 years) to the patients. No HCs had any
history of neurological or psychiatric impairments.

All subjects, HCs and patients, had normal or corrected to nor-
mal vision.

2.2. Neuropsychological assessment

A battery of neuropsychological tests standardized for Italian
population (except for the Conventional Subtests from the
Behavioral Inattention Test, BIT, Wilson, Cockburn, & Halligan,
1987) was administered to six of the patients (Carlesimo, Caltagi-
rone, & Gainotti, 1996; Carlesimo et al., 2002; Giovagnoli et al.,
1996; Vallar et al., 1994). For one patient (Pt 4), time limitation
prevented the administration of the neuropsychological battery.
Informal testing indicated that he did not have neglect.

The neuropsychological tests assessed the following cognitive
domains: general intellectual functioning (Colored Raven’s Pro-
gressive Matrices, Raven, 1956), word retrieval (Object Subtests
from Esame Neuropsicologico per l’Afasia, ENPA, Capasso & Miceli,
2001), verbal and non verbal memory (Recognition Memory Test,
RMT- Word and Building, Smirni et al., 2010), executive functions
(Trial Making Test, AITB, 1944) and perception (BIT, Wilson,
Cockburn, & Halligan, 1987; Bell cancellation, Gauthier, Dehaut,
& Joanette, 1989).

The neuropsychological tests results are summarized in Table 2.
All patients had normal general intellectual functioning, nomi-

nal and executive functions. Verbal and non verbal memory were
preserved in all patients except for patient 1, who had impairments
in both verbal and non verbal memory. All patients obtained
normal scores on perceptual tasks.

2.3. Experimental investigation

2.3.1. Visual search task
As in the previous studies (Oliveri et al., 2010; Zhaoping &

Guyader, 2007), the task was to search for a uniquely oriented ob-
lique bar in the stimulus image. The image contained many ‘X’-like
shapes, each was made by intersecting an oblique bar and a cardi-
nal (horizontal or vertical) bar, see Fig. 2. Only the oblique bars
were task relevant, all of them were uniformly oriented 45� from
Table 1
Patients’ demographic and clinical characteristics.

Patients

Pt 1 Pt 2 Pt 3

Gender M F M
Age (years) 53 40 73
Education (years) 8 13 17
Etiology Stroke Stroke Stroke
Lesion location R Par/Temp R Par/Bas G R Par/Bas
Time since lesion (days) 60 210 11
Motor deficit L hemiparesis L hemiparesis L hemipar

Pt = patient; M = male; F = female; R = right; L = left; Par = parietal cortex; Temp = tempo
vertical, except for the target bar which was oriented in the oppo-
site direction from vertical. In task A, the target bar was tilted 45�
from vertical, but in task B, it was oriented only 20� from vertical or
horizontal such that the X-shape containing the target bar was
thinner than all other X-shapes in the image. Therefore, task A
and B differed only in the X shape containing the target bar, but
were otherwise identical in other characteristics of their stimuli.
In both tasks, the target bar was salient by having a unique orien-
tation feature in the image, attracting bottom-up attention. Mean-
while, the X-shape containing the target in task A was a rotated
version of all the non-target X-shapes, i.e., all the X-shapes in the
search array had identical shape. This caused confusion at the ob-
ject shape recognition level whereas the task was at the orientation
feature detection level. In contrast, in task B, the X-shape contain-
ing the target bar was uniquely thinner than all distractor X-
shapes. Thus, the top-down interference in task A was absent in
task B.
2.3.2. Stimuli
Each stimulus display, viewed on a 13 inch monitor at a dis-

tance of 40 cm, had 161 X-shapes in an 11 rows x 15 columns ar-
ray, spanning in corresponding 16� and 21� in visual angle. The
stimulus was modified from the original one used in Zhaoping
and Guyader (2007) and Oliveri et al. (2010) by a reduction of
75% in the number of search items. Like in the previous studies,
in each trial, the position of each ‘X’-like shape was randomly jit-
tered from its corresponding position in a regular 11 � 15 grid.
Each stimulus bar was 0.14� � 1� in visual angle and 48 cd (can-
dela)/m2 in brightness.

All the X-like shapes were white against a black background.
The target could appear randomly at any of the grid positions, ex-
cept in the central 3 columns of the search array or any of the
boundary locations of the array.

In each trial, the fixation stimulus was a bright cross at the cen-
ter of the black background (Zhaoping & Guyader, 2007).
2.3.3. Procedure
Stimuli were presented to participants on the screen of the

computer. Each subject performed at least 15 trials for each task
(task A and task B). The trials for the two tasks were randomly
interleaved. Participants were informed that the uniquely oriented
target bar could be randomly tilted to the left or right in each trial,
and that the horizontal and vertical bars should be ignored. Partic-
ipants were instructed to use their right hand to press a left or right
button, with their index or middle fingers respectively, to indicate
whether the target was in the left or right half of the display. They
were told to press the button as soon as possible at the start of the
session.

To minimize other top-down influences, we asked the partici-
pants not to search by looking around systematically. Before the
experimental session, there was a training phase, involving 2 trials
for task A and 2 trials for task B.
Pt 4 Pt 5 Pt 6 Pt 7

M F M F
33 59 46 22
8 17 8 13
Stroke Meningioma Meningioma Tumor

G R Par/Occ R Par/Occ R Par R Par/Occ
15 600 480 60

esis Absent R arm Tremor Absent Absent

ral cortex; Bas G = basal ganglia; Occ = occipital cortex.



Table 2
Neuropsychological tests scores.

Patients

Cognitive domain Task performed Pt 1 Pt 2 Pt 3 Pt 5 Pt 6 Pt 7

General intellectual functioning CRPM§ (N = 36) 25.3 24.8 30 21.7 32 36
Word retrieval Object Subtest§ (N = 10) 10 10 10 10 10 10
Verbal memory RMT-Word§ (N = 30) 20.78* 25.07 27.6 n.t. n.t. 27.9
Non verbal memory RMT-Building§ (N = 30) 13.74* 26.06 25.78 n.t. n.t. 26.9
Executive functions Trail Making Test Part B� 263 104 73 100 32 n.t.
Perception Conventional Subtest (BIT)£ (N = 146) 135 146 146 144 146 146

Line crossing£ (N = 36) 36 36 36 36 36 36
Letter cancellation£ (N = 40) 34 40 40 40 40 40
Figure and shape copying£ (N = 3) 3 3 3 2 3 3
Line bisection£ (N = 9) 9 9 9 9 9 9
Bell cancellation§ D omissions left–right 0 0 0 0 0 0

Pt = patient; n.t. = not tested; § = scores are age and education corrected; * = pathological score (below the lower limit of 95% tolerance interval measured in the normal
population); � = Reaction Times in sec.; £ = raw scores; D = number of omission in the left hemispace-number of omission in the right hemispace; CRPM, Colored Raven’s
Progressive Matrices; RMT, Recognition memory test memory; BIT, Behavioural Inattention Test.

Fig. 3. Healthy controls and right parietal patients’ performance in the visual search
tasks regarfless of the target location. Error bars represent standard error of the
mean. (a) Accuracy; (b) averaged RTs.

78 G.R. Mangano et al. / Vision Research 97 (2014) 74–82
Each trial started with a fixation stimulus lasting 600 ms, fol-
lowed by blank black screen lasting 200 ms, and then followed
by the search display. The search stimulus stayed on the screen till
the participant’s button press.

Button presses and Reaction times (RTs) were recorded using
PsyScope for Mac OS X.

2.4. Data analysis

For each task (A or B), we calculated accuracy (Accuracy (A) or
Accuracy (B)), which is the proportion of correct button presses,
and the averaged RTs (RT(A) or RT(B)) of the correct button presses.
Hence, trials with incorrect button presses were not included for
the RTs analysis. In addition, we calculated an asymmetry index
(AI) on the RT, defined as the RT difference between the two tasks
as a fraction of their average RTs, i.e. [RT(A) � RT(B)]/[RT(A) +
RT(B)]). According to a previous study (Zhaoping & Frith, 2011), a
positive value of this asymmetry index reveals the top-down
interference.

It is well known that lateralized attentional biases can occur
following a right parietal damage. We therefore analyzed the above
3 parameters (accuracy, averaged RTs, asymmetry index) first
irrespectively as to whether the target location was in the right
or in the left half of the display, second separately as to whether
the target location was in the right or in the left half of the display.

We compared the accuracy and the averaged RTs in task A and
in task B within and between the two groups of participants (right
parietal patients and HC). A further analysis compared the asym-
metry index between the two groups of participants.

The data was analyzed using a two tailed t-test; the level of
significance was set at p < .05.

3. Results

Overall analysis of responses irrespectively to the target
location.

3.1. Accuracy

HC were significantly less (t = �2.76, p = .01) accurate in task A
than in task B which has no top-down interference. The right pari-
etal patients tended to be somewhat less accurate in task A than in
task B, although their accuracy difference did not reach signifi-
cance (t = �2.38, p = .054) (see Fig. 3a).

For each task, patients and controls were not significantly dif-
ferent in their accuracies (t = �.89, p = .38 for task A; t = �.75,
p = .46 for task B).
3.2. Averaged RTS

The HC’ RTs were significantly longer in task A than in task B
(t = 3.30, p = .005), demonstrating top-down interference in task
A. In contrast, for the patients group, there were no significant
difference between the RTs for the two tasks (t = 1.43, p = .20).

The HC group showed top-down interference in both RT and
accuracy measures, whereas the patient group had interference
in neither RT nor accuracy measures.

In task B, the patients’ RTs were significantly longer than the
controls’ RTs (t = 2.26, p = .03), demonstrating that patients were
generally slower in typical visual search tasks which do not involve
a conflict between bottom-up and top-down attentional processes.

However, in task A, there was no significant difference between
the RTs for the two subject groups (t = �.50, p = .61) (see Fig. 3b).
We would like to suggest that this is due to two opposing factors:
one is the slower search by the patients (than the controls) in the
baseline task B, the other is stronger top-down interference in
controls (than in the patients) in task A.

Since patients and controls were roughly comparable in accura-
cies, their RT difference in task B cannot be accounted for a speed-
accuracy trade off.

One could argue that the lack of a significant RT difference
between tasks for the patients is due to their smaller sample size
(N = 7) compared to the HC group (N = 14). We conducted a further
analysis by randomly drawing seven subjects from the HC group to
match this sample size. This random drawing was repeated 1000
times, each time we compared RTs between the two tasks using
the random smaller (N = 7) HC group and obtained a p value for
this comparison. On averaging the 1000 random drawings, the



G.R. Mangano et al. / Vision Research 97 (2014) 74–82 79
average p value was .04, suggesting that there is a genuine differ-
ence between the patient group and the HC group.

3.3. Asymmetry index

To further compare the two subject groups on their top-down
interference in task A, we calculated their asymmetry indices for
the RTs. This asymmetry index is a useful measure for the interfer-
ence in the face of different baselines between different subject
groups. This is particularly since we expect, and indeed observed,
a slower baseline RT (for task B) for the patient group. Additionally,
once we obtain asymmetry indices for observers of each group, we
can compare between groups without worries about different sam-
ple sizes for different groups. Specifically, we obtained N = 7 asym-
metry indices of the RTs for N = 7 patients, and similarly for the
N = 14 HCs. Comparing the N = 7 indices for the patients with the
N = 14 indices of the HCs, we find that HCs have a significantly lar-
ger asymmetry index on average (t = �2.66, p = .01) (see Fig. 4).

These results are consistent with the conclusion from the RTs
analysis that the patients have a much weaker top-down interfer-
ence compared with the controls.

3.4. Analysis of responses with target located in the left half of the
display

3.4.1. Accuracy
Both HC and the right parietal patients were significantly less

accurate in task A than in task B (t = �3.36, p = .005; t = �2.47,
p = .04, respectively). For each task, controls and patients were
not significantly different in their accuracies (t = �.89, p = .38 for
task A; t = �.19, p = .85 for task B) (see Fig. 5a).

3.4.2. Averaged RTS
As in the overall analysis, the HC’ RTs were significantly longer

in task A than in task B (t = 3.79, p = .002). In contrast, for the pa-
tients group, there were no significant difference between the
RTs for the two tasks (t = .99, p = .36).

The patients’ RTs were significantly longer than the controls’
RTs in task B, (t = 2.28, p = .03) whereas there was no significant
difference between the RTs for the two subject groups in task A
(t = �.08, p = .93) (see Fig. 5b).

3.4.3. Asymmetry index
As in the overall analysis, comparing the N = 7 indices for the

patients with the N = 14 indices of the HCs, we find that HCs have
a significantly larger asymmetry index on average (t = �2.26,
p = .03) (see Fig. 5c).
Fig. 4. Healthy controls and right parietal patients’ RTs Asymmetry index in the
visual search tasks regardless of the target location. Error bars represent standard
error of the mean.
In summary, the analysis for when the target was located in the
left half of the display replicated the results of the overall analysis
except that patients were significantly less accurate in task A than
in task B (as the HC). We would like to suggest that this reflects the
pattern of omissions that right parietal patients show in the con-
tralesional hemifield during a difficult visual search task.

3.5. Analysis of responses with target located in the right half of the
display

3.5.1. Accuracy
Both HC and the right parietal patients tended to be somewhat

less accurate in task A than in task B, although their accuracy dif-
ference did not reach significance (t = �1.81, p = .09; t = �1.26,
p = .25; respectively). There were no significant differences in accu-
racy between patients and controls in either tasks (t = �.67, p = .51;
t = .78, p = .44, respectively) (see Fig. 5d).

3.5.2. Averaged RTS
Both the HC’ and the right parietal patients’ RTs were signifi-

cantly longer in task A than in task B (t = 2.73, p = .01; t = 2.83,
p = .02, respectively) demonstrating top-down interference in task
A. There were no significant differences between the RTs patients
and the RTs controls in either tasks (t = �.70, p = .48; t = 1.70,
p = .10, respectively) (see Fig. 5e).

3.5.3. Asymmetry index
The AI of Patients tended to be smaller than the HCs although

this difference did not reach significance (t = �2.02, p =.056) (see
Fig. 5f).

In summary, when the target was located in the right half of the
display, the performance of the patients was not significantly dif-
ferent from that of their matched control sample.

There were no significant differences between patients and con-
trols neither in accuracy nor RTs, nor in AI. The AI of patients
tended to be smaller than that of the HCs although this difference
did not reach significance.
4. Discussion

In this study, we investigated the performance of seven right
parietal lesion patients without neglect and their age and educa-
tional matched HC, on two visual search tasks (task A and task B)
previously used in HC (Zhaoping & Guyader, 2007) and rTMS stud-
ies (Oliveri et al., 2010). Both tasks are unique feature search tasks,
with task A but not task B, susceptible to top-down interference.
The results of the HCs are in line with the previous behavioral study
(Zhaoping & Guyader, 2007). Specifically, the patients’ matched HCs
had significantly longer RT and were less accurate in task A than
task B, demonstrating top-down interference in task A.

The results on the right PPC patients confirm our expectation that
damage to the right parietal cortex impairs top-down attentional
processes. Indeed, our right PPC patients did not have a significantly
longer RT and were not less accurate, in task A than in task B. In other
words, their performance was significantly different from that of
their matched control sample. This significant difference is unlikely
caused by a difference between the sample sizes of the two groups.
Our analysis by matching sample sizes demonstrated that the HCs
but not the patients had significantly longer RT in task A than task
B. Additionally, our asymmetric index analysis showed that HC
group had significantly larger top-down interference than the
patients.

Since time from lesion occurrence was not homogeneous in our
patients’ sample, we cannot exclude that the reported findings are
a combination of reduction of functional activity in the right PPC



Fig. 5. Healthy controls and right parietal patients’ performance in the visual search tasks in the left and right hemifield. Error bars represent standard error of the mean. (a)
Accuracy with target located in the left half of the display; (b) averaged Rts with target located in the left half of the display; (c) RTs Asymmetry index with target located in
the left half of the display; (d) accuracy with target located in the right half of the display; (e) averaged Rts with target located in the right half of the display; (f) RTs
Asymmetry index with target located in the right half of the display.
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(for subacute patients) and widespread changes in functional
activity across the left and right PPC (for chronic patients).

Interestingly, we documented a difference in the performance
between the left and the right visual fields.

The analysis of responses when the target was located in the left
half of the display replicated the results of the overall analysis.
Indeed, although their accuracy for task A was lower in the left
hemifield, patients showed a smaller asymmetry index in this
hemifield. When the target was located in the right half of the
display, the performance of the patients was not significantly
different from that of their matched control sample. There were
no significant differences between patients and controls neither
in accuracy nor RTs (nor in AI). Thus, it appears that the reduced
interference observed in the patient group in the overall analysis
is driven by performance in the left visual field suggesting a
spatially specific reduction rather than a generalized reduction in
top-down interference.

Our reported differences between the left and right visual fields
are in line with neurological literature showing that patients with
unilateral PPC damage had impairments in conjunction search
predominantly in contra-lesional visual field (Riddoch et al.,
2010; List et al., 2008). The absence of top-down interference in
our PPC patients compared to the HCs are in line with the findings
of Ossandón et al. (2012) and more closely with those of Oliveri
et al. (2010). Our previous rTMS study in healthy controls reported
that rTMS on right PPC caused a reduction in the top-down inter-
ference. However, our lesion study also revealed something not
found in the rTMS study. Namely right PPC lesion patients are
slower in the control task B which relied mainly on bottom-up
attention. rTMS over the right PPC of healthy controls instead
had no effect on this task. This difference in results may be ac-
counted in terms of a generalized slowing in speed of information
processing caused by the sub-cortical damage present in some of
our PPC patients or by the right PPC lesion or both. Alternatively,
it can also be argued that the slower reaction time in task B may
simply be to the presence of brain damage, regardless lesion loca-
tion. Future studies enrolling patients with focal lesion not involv-
ing the right PPC are needed to shed light on this.

An increasing number of studies have reported paradoxical
functional facilitation (PFF) effects in brain damaged patients
(e.g. Etcoff et al., 2000; Graf & Masson, 1993; Kapur, 1980, 1996;
Ladavas, Petronio, & Umiltà, 1990; Morgan et al., 2012; Moscov-
itch, Winocur, & Behrmann, 1997; Oliveri et al., 1999; Vuilleumier
et al., 1996). PFF effects typically describe enhanced performance
following brain damage. Thus, for example, a PFF effect has been
documented in patients with semantic dementia performing a con-
junction search task. These patients were faster than HC in a con-
junction search task when a large number of distractors were
present. The authors suggested that this PFF effect may be under-
pinned by enhanced functioning in the dorsal frontoparietal atten-
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tion network which is thought to be largely spared in semantic
dementia (Viskontas et al., 2011). The PFF effect in our patients
complements the findings reported in the semantic dementia pa-
tients. The right parietal lesion of our patients has impaired the
top down attentional function which is necessary for the non-fea-
ture search but it is detrimental for optimal performance in our
feature search task A.

The lack of top-down interference in our patients may be
caused by deficits in one or both of the following processes: one
is feature binding to form object shapes, the other is rotational
invariance in shape recognition. We recall that top-down interfer-
ence in our task A arises because observers confuse the X-shape
containing the target with the X-shape for the non-targets. For
the X-shape to form, two separate bars have to be combined in a
particular configuration, i.e., intersect each other at their mid-
points – this is feature binding. For the X-shape containing the
target bar to be confused with the other X-shapes, even though
the former has a unique orientation and so is a rotated version
of the others, the X-shapes should be turned into an abstract shape
property which does not contain the information about its
orientation – this is rotational invariance in shape recognition.
Rotational invariance in shape recognition helps us to recognize
an object regardless of its viewpoint, in particular, regardless of
the orientation of the image of this object.

It has been shown that top-down attention is necessary for
rotational invariance in shape recognition (Stankiewicz, Hummel,
& Cooper, 1998). Studies on patients with right parietal lesions, re-
ported impairments in recognition of objects viewed from an
unconventional angle (Davidoff & Warrington, 1999; Warrington
& James, 1988; Warrington & Taylor, 1973). In addition, selective
impairments of mirror image discrimination have been reported
in patients with bilateral parietal lesions (Davidoff & Warrington,
2001; Turnbull & McCarthy, 1996). If our patients are impaired in
identifying X-shapes at different orientations, they should lack
the rotational invariance necessary for top-down interference, con-
sistent with our data.

Alternatively, the lack of interference in our patients might be
caused by their deficit in feature binding, which has been sug-
gested to involve the right parietal cortex (Corbetta & Shulman,
2002; Treisman & Gelade, 1980). Our patients may be unable to
bind two oriented bars into the X shape and consequently unable
to achieve shape recognition when feature binding is required,
regardless of whether they can achieve viewpoint invariance in
their recognition. This is in line with the previous studies reporting
that right parietal patients had impairment in non-feature, con-
junction, searches (Eglin, Robertson, & Rafal, 1989; Riddoch &
Humphreys, 1987; Riddoch et al., 2010).

Both of these interpretations – rotational invariance in shape
recognition and feature binding – require intact top-down atten-
tional processes. Our finding does not enable us to pinpoint exactly
which, or whether both, of these two components underlie the lack
of top-down interference in our patients. Future studies are needed
to address this issue further.
5. Role of the funding source
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