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I. INTRODUCTION 

In this paper we shall consider the following nth order equation 

X(“)(l) =f(t, x(c), Ax(t)) (1.1) 

together with the right focal point (the nomenclature comes from 
polynomial interpolation) boundary conditions 

x”‘(U) = A I? O<idk-1 

x(i)(b) = Bi, kdidn- I, 
(1.2) 

where n > 2, 1 d k <n - 1 is fixed. In (l.l), x(t) stands for (x(t), x’(t) ,..., 
xcn- ‘j(t)) and A is a continuous operator which maps C’” “[a, 61 into 
C[a, b]. The functionfis assumed to be continuous in all of its arguments. 

The problem (1.1 ), (1.2) includes several particular cases, for example, 
the boundary value problem for differential equations if A = 0, considered 
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in [6, 7, 9-19, 22, 231, for the integro-differential equations of Volterra 
type if 

Ax(t) = sf g(t, s, x(s)) ds 
0 

for the integro-differential equations of Fredholm type if 

Ax(x) = !*" g(t > 3, x(s)) ds 
u 

and so on. For the related problems also see [ 14, 8, 20 and references 
therein]. 

The plan of this paper is as follows: In Section 2, we state some lemmas 
which are needed in Section 3 to obtain necessary and sufficient conditions 
for the existence and uniqueness of the solutions of (l.l), (1.2). In Sec- 
tion 3, we also provide a priori conditions so that the sequence {xJ~)) 
generated from Picard’s iterative method (3.13) converges to the unique 
solution x*(t) of the boundary value problem (l.l), (1.2). In practical 
evaluation of this sequence only an approximate sequence {y,(t)} is con- 
structed which depends on approximating f and A by some simpler 
function and operator. In Section 4, we shall find y,, + I(t) by 
approximating f and A by f, and A, following relative and absolute error 
criterian and obtain necessary and suffkient conditions for the convergence 
of (y,(t) 3 to the solution. In Section 5, we consider several examples 
which dwell upon the importance of our results. 

2. SOME BASIC LEMMAS 

LEMMA 2.1 [6]. The Green’s function gk(t, s) of the boundary value 
problem 

x(I’) = 0 (2.1) 

x”‘(a) = 0, O<i<k-1 (2.2) 

x”‘(b) = 0, k<i<n-1 (2.3) 

can be written as 

g,(t, s) = (n _ * )! 1 
:F: (“T’) (t-a)‘(a-s)“-‘+‘, s<t 

1 
(2.4) 

-yg; (“y ‘) (t-a)‘(a-s)“-‘- ‘, s>,t 
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and 

(-lygp(t,s)~O, O<ibk--1 (2.5) 

( -l)“-;gp(t s) >o > A? k<i<n-1 (2.6) 

on [a, b] x [a, 151, where gp’(t, s) denotes the ith derivative (#/ati) gk(t, s). 

LEMMA 2.2 [6]. Let x(t)E @‘[a, b], satisfying (2.2), (2.3) then 

I x”‘(t) 1 < Ci,,(b - a)“-’ ,yF:b I x”“(t) I, O<i<n- 1, (2.7) 
. . 

where 

1 
=(n- k<i<n-1. 

In (2.7) the constants Ci,,, 0 6 i < n - 1 are the best possible as they are 
exact for the function 

(a-b)“-‘(t-a)’ 

and only for this function up to a constant factor. 

LEMMA 2.3. The unique polynomial of degree (n - 1) satisfying (1.2) is 

LEMMA 2.4 [S, 211. Let B be a Banach space and let r >O; 3(x,, r) = 
{xEB: I/x-x,IIdr}. Let T: $(x,,r)-+Band 

(i) for all x, y E S( x0, r), II TX - Ty /I <M I/x - y 11, where 0 6 M < 1, 

(ii) ro=(1-a)~‘~~Txo-xo~~,<r.Then,(1)Thasafixedpointx*in 
s(x,, ro), (2) x* is the unique fixed point of T in 3(x,, r), (3) the sequence 
IX,,, > defined by x, + 1 = TX, ; m = 0, 1, 2,.., converges to x* with 
IIx*-xX,II<~mro, (4) for any xES(xo,ro), x*=lim,,, TX, (5) any 
sequence {X,} such that x,, E s(x,, Pro); m = 0, 1, 2 ,... converges to x*. 
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3. EXISTENCE AND UNIQUENESS 

THEOREM 3.1. Suppose that 

(i ) K, > 0, 0 6 i 6 n - 1 be given real numbers and Do = 
{x(t) E C’” “[a,b]: jx”‘(t)J,<2K,, O<ibn-1) also, 

I f(t> x(t), Ax(t))1 G Q on [a, bl x Do, 

(ii) max uGIGh If’!:‘!,(t)1 GK,, O<i<n- 1, 
(iii) (b-a)<(Ki/QC,ki)“““, O,<i,<n--1. 

Then, the boundary value problem (1.1 ), (1.2) has a solution in D,. 

ProoJ: The set 

Bra, b] = {x(t)~ C”‘-I’ [a,b]: IIx”‘II f2K,,Odi<n-I}, 

where IIx’~)I( =max,,,,, I x”‘(t) I is a closed convex subset of the Banach 
space C”’ ~ ’ ’ [a, b]. Co&ider an operator T: C’“- “[a, b] + C’“‘[a, b] as 

(TX)(t) = P,,- I(t) + j-” g/At, s) .f(s, x(s), AX(S)) ds. II 
(3.1) 

Obviously any fixed point of (3.1) is a solution of (l.l), (1.2). 
We note that (TX)(t) - P,_ ,(t) satisfies the conditions of Lemma 2.2 

and (TX)‘“‘(~) - PrLI(t) = (TX)‘“‘(~) = f(t, x(t), Ax(t)). Thus, for all 
x(t) E Bra, b] it follows that II (TX)“” - Pt!, II d Q. Hence, we find 

(1 (TX)“’ - Pjil 1 (( d Ci,; Q(b -a)+‘, O<i<n-1 

which also implies that 

II (TX)“’ 11 6 /I Pj:l l /I + C$Q(b - a)“--’ 

<K,+K,=2K,,O<i<n-1. (3.2) 

Thus, T maps B[a, b] into itself. Further, the inequalities (3.2) imply that 
the sets {(TX)“‘(Z): x(t)EB[a, b]}, O<i<n- 1 are uniformly bounded 
and equicontinuous on [a, b]. Hence m[a, b] is compact follows from the 
Ascoli-Arzela theorem. The Schauder fixed point theorem is applicable and 
a fixed point of (3.1) in Do exists. 

COROLLARY 3.2. Assume that the function f( t, x(t), Ax(t)) on [a, b] x 
C”- ‘[a, b] satisfies the condition 
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n-l 

If(t,X(t),Ax(t)))~co+ 1 c;+1 Jx(‘)(t)~~(‘) 
i=o 

+ yg; j” h;(t, s) 1 x(j)(s) /p(i) ds, (3.3) 
0 

where O<cr(i)<l, O</I(i)<l, O<i<n-1, ci, O<i<n--1 are non- 
negative constants; hi( t, s), 0 < i < n - 1, are nonnegative integrable functions 
and s”Pa<t<b C;I~ JS: hit 3 1 d t s s < co. Then, the boundary value problem 
(l.l), (1.2) has a solution. 

Proof: Sincefsatisfies (3.3) it follows that on II,, 

n-l 
I f(4 x(t), ‘wt)) I G co + c c;+ ,W,Y” 

i=o 
t1 I 

+ c (2K;)B(” sup 
,=O 

s ’ hi( t, s) ds = A4 (say). 
u<r<h (1 

Now, Theorem 3.1 is applicable by choosing Ki, 0 6 i < n - 1, sufficiently 
large so that 

Theorem 3.1 is a local existence theorem whereas Corollary 3.2 does not 
require any condition on the length of the interval or the boundary con- 
ditions (global existence). The question: what happens if in the inequality 
(3.3) the constants a(i) = /I(i) = 1, 0 6 i6 n - I? is considered in our next 
result. 

THEOREM 3.3. Suppose that the inequality (3.3) with cc(i) = p(i) = 1, 
OGibn-1 is satisfied on [a,b]xD,, where D,={x(t)~@-‘)[a,b]: 
Ix(‘)(t)l G maxoGrih IP;‘,(t)(+C;,,(b-a)“-‘(c,+p)/(l-a), 0 < i < 
n- 1) and 

n-l 

p= max rrGt<h z. ci+1 IEw)l 

+ sup nfl j-” hi(t, s) I P:’ 1(s) ) ds, 
u<I<b i=o (I 

h,(t,s)ds 
> 

C$(b-a)“-‘< 1. 

Then, the boundary value problem (1.1) (1.2) has a solution in D, . 
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Proof: The boundary value problem (l.l), (1.2) is equivalent to the 
problem 

P’(t) =f(c Y(f) + PM- I(t), A(Y(f) + pn--. I(t))) (3.4) 

y”‘(U) = 0, O<i<k-1 

y”‘(b) = 0, k<i<n-1. 
(3.5) 

We define A4 as the set of functions n times continuously differentiable 
on [a, b] and satisfying the boundary conditions (3.5). If we introduce in 
~4 the norm11 YII =max,.,., 1 y’“‘(t) / then, A4 becomes a Banach space. 
We shall show that the mapping T: A4 + A4 defined by 

(TY)(~) = j-” gk(t> s)J’(s, ~(3) + P, ,($I, A(Y(s) + P,, ,(s))) ds (3.6) 
u 

maps the ball S = {y(t) E M: I/ y /I < (c,, + p)/( 1 - rx)} into itself. For this, 
let y(t) E S then from Lemma 2.2, we have 

/ Jqt)I < c);,j(b-u)~7-~~’ O<i<n-I 

and hence 

O<i<n-1 

which implies that (t, y(t)+P,, ,(t))~ [a,b] x D,. 
Further, from (3.6) we have 

II (TY) II = max I f(h y(t) + P,,- ,(t), A(Y(~) + P,- I(t)))l a<r<h 

<co+ 1 ci+1 Iy”‘(q+Pj:‘,(+ 
,=O 

,1 I h 
+ ,I;, I<, k(t, s) I Y”‘(S) + PK ,b) I ds 

?1- I 
<co+ 1 ci+1 

i=O 

IPy’,(t)l +c;,,,_.,+i~] 

+:;;j)z,(r,s) 
i 

IP~~,(s)I+C:~~(~-U)~-‘~ ds 
1 

co + P 
dco+p+a l-U 

co +P =-- 
I-C! 
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Thus, it follows from Schauder’s fixed point theorem that T has a fixed 
point in S. This fixed point y(t) is a solution of (3.4), (3.5) and hence the 
boundary value problem (1.1 ), (1.2) has a solution x(t) = y(r) + P,- ,(t). 

THEOREM 3.4. Suppose that the boundary value problem ( 1.1 ), (2.2), 
(2.3) has a nontrivial solution x(t) and the condition (3.3) is satisfied with 
cO=O, a(i)=/?(i)=l, O<i<n-1, on [a,h]xD,, where 

D, = {x(t)&+” [a,b]: ~x’i’(t)~<C~,j(h-a)“~im,O<i~n-l} 

and m = max,, r Gh 1 x(“‘(t) I. Then, it is necessary that a > 1. 

Proof Since x(t) is a nontrivial solution of the boundary value problem 
(1.1 ), (2.2) (2.3) it is necessary that m # 0. Further, Lemma 2.2 implies that 
(t, x(t)) E [a, b] x D,. Thus, we have 

m=uy:h l-3’)l=oy~, I f(t, 4th Ax(t)) I . , \ . 

‘1:: Ci+l Ix”‘(t)1 +‘:z: 1]:h,(t,S) I-X(~)(S)/ ds] ,I- I 
6 C (Ci+ 1 + SUP 

i=O N < I < h s ' h;(t, s) ds) C$(h-a)” ‘) m 
0 / 

=am 

and hence c( 3 1. 
The conditions of Theorem 3.4 ensure that in (3.3) at least one of the 

Ci+1 or hi(t, s), 0 d id n - 1, will not be zero, otherwise x(t) will coincide 
on [a, 61 with a polynomial of degree at most (n - 1) and will not be a 
nontrivial solution of (1.1 ), (2.2), (2.3). Further, x(t) E 0 is obviously a 
solution of ( 1.1) (2.2) (2.3) and if c( < 1 then, it is also unique. 

DEFINITION. The function f (t, x(t), Ax(t)) is said to be of Lipschitz 
class, if for all (t, x(t)), (t, y, (t))e [a, b] x C(“- “[a, 61 the following 
inequality is satisfied 

If(t, x(t),Ax(t))-f(t,y(t),Ay(t)) I 
n -- 1 

< 1 L; 1 x(;)(t) - y”‘(l) 1 
*=O 

+ 1:: jb hi(t, S) I x(‘)(s) - y”‘(s) 1 ds. (3.7) 
u 
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THEOREM 3.5. Let the function f(t, x(t), Ax(t)) be of’ Lipschitz class. 
Then, if 

19=~f’ L,+ sup jhhi(t,s)ds C&(h-a)“P’<l (3.8) 
i=O o</<h 0 

the boundary value problem (1.1 ), (1.2) has a unique solution for any A;, 
Odi<k-1, and B,, k<i<n-1. 

Proof We shall show that the mapping T defined on the Banach space 
it4 in Theorem 3.3 is contracting. For this, let y(t), z(t) E M then, from 
(3.6) (3.7), and Lemma 2.2, we have 

U-Y)“?) - (Tz)‘“‘(f) =f(c y(f) + P,- l(f), A(y(t) 

+ PI, 1(t))) - “04 z(t) 

+ Pn- ,(l)> A(z(f) + Pm- 1(l))) 

and hence 

II (TY) - (Tz) II = u~;:b I .f(t, y(f) + P,,- ,(r), A(y(t) + P,- ,(t))) 
. . 

-f(f>z(f)+P,z-,(t), A(z(f)+P,. ,(t)))I 

L 

,I- I 
yns’,“, c L, I y(‘)(t)--z(‘)(t)1 

. . ,=O 

+ ‘1;; j; hi(t, s) I y”‘(s) -Z(~)(S) I ds 1 
L, + sup [” h;(t, s) ds 

n<t<h u 

x ,tyb I y”‘( t ) - z”)(C) 1 
. . 

68 Il.!-211. 

Thus, the mapping T in A4 has a unique fixed point and this is equivalent 
to the existence and uniqueness of the solutions for the boundary value 
problem (l.l), (1.2). 

If the functionf(t, x(t), Ax(t)) satisfies the Lipschitz condition (3.7) only 
over a compact region then Theorem 3.5 cannot be applied. To deal with 
such a situation we need the following: 
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DEFINITION. A function Z(t) E C”‘)[a, b] is called an approximate 
solution of the boundary value problem ( 1.1 ), (1.2) if there exist 6 and e 
nonnegative constants such that 

max ix(“)(t)-f(t,x(t),Ax(t))lf6 
OGlGh (3.9) 

and 
max \Pci[ (t)-H”! n 1 II I (t)I 

u<r<h 

d &Ck.((b - a)” - ‘, O<ifn-1, (3.10) 

where P ,, ,(t) is the (n - 1) th degree polynomial satisfying 

Py! ,(a) = .f”)(U) 

Pj:! ,(b) = P(b): 

O<i<k-1 

k<i<n- 1, 

i.e., 

)I- k-l 

+ c 
/=O 

The approximate solution x(t) can be expressed as 

X(f) = p,,- 1(r)+ 1” &(f, .~)Cf(S, fqs), Ax(s)) + V(J)1 & (3.11) 
u 

where q(t)=P”(t)-f(t, n(t), A%(t)) and max,,,,, Iv(t)1 66. 

THEOREM 3.6. Let there exists an approximate solution Z(t) of the boun- 
dary value problem (1.1 ), (1.2) and 

(i) the function f(t, x(t), Ax(t)) satisfies the Lipschitz condition (3.7) 
on [a, b J x D,, where 

x(t)~C(“-‘)[a, b]: Ix”‘(c)-x”‘(t)1 <A’ CL 
Ct,,(b - a)” 

(ii) 8< 1 and 

(1 -8)-‘(E+6)C~,o(b-u)“~N. (3.12) 
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(1) 
%C No), 
(1 -%)--I 

(2) 

(3) 

converges 

(4) 
x*(t). 

(5) 
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following holds: 

There exists a solution x*(t) of the problem (1.1 ), (1.2) in 
where s( X, N,) = {x(t) E C(‘* ’ ) [a,b]: I/?c-ZIIdN,} and N,= 
I/x, -x 11, also 

I/x/I = max 
i 

C:,o(b - a)’ 

c:,i 
max Ix”‘(t)1 . 

OSl<?Z- I UCl<h I 

x*(t) is the unique solution qf the problem (1.1 ), (1.2) in s(X, N). 

The Picards sequence {x,,,(t)} defined b> 

-x,+ I(t) = P,,- I(t) + [” g/At, s).f(s, x,(s), Ax,(s)) ds 
Jll (3.13) 

x0(t) = X(t); m = 0, l,..., 

to x*(t) with 

//x* - x,, II d %“N, 

For x0(t) = x(t) E s( X, No) the iterative process (3.13) converges to 

Any sequence {.?,,Jt)} such that x,,(t) E 3(x,,, %“N,); m = 0, l,... 
converges to x*(t). 

Proof: We shall show that the operator T: S(X, N) + C”“[a, b] defined 
in (3.1) satisfies the conditions of Lemma 2.4. For this, let x(t) E 3(X, N) 
then, from the definition of 11.11, we have 

C:,o(b - a)’ 

CL 
1 xti’( t) - Y”‘(t) I d I/ x - X 11 6 N 

and hence 

I x”)(t) - P(t) 1 6 c:,, N 
Cf,,(b - a)’ ’ 

O<i<n-I 

which implies that x(t) E D,. Further, if x(t), y(t) E D, then, 
(Tx)( t) - (Ty)( t) satisfies the conditions of Lemma 2.2, and we get 

I(Tx)‘i)(t)-(Tyj(“(t)I 

d C;,;( b - a)” ’ ,y& I f(t, x(t), Ax(t)) -f(t, Y(t)3 AY(l))l . . 
PI- I 

GC~,,(b-o,“~iuyy, . . 1 ~~I.d’)(t)--(j)(t)I ,=o 
+ 1;: 1” hilt, 3) I x(“(s) - y”‘(s) 1 ds 

0 1 
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6 C;,i (b - a)” -’ nf 
/=O 

Lj + sup 5” h,(t, S) ds 
uGl<h f~ 

‘l.j 
x C;.,(h - a)’ II=Yll 

and hence 

ci~o~k~ ‘I’ 1 (TX)(f)(t) - (Ty)(i)(t) 1 
PI,, 

<If,: (Lj+~,:uph?Ihh,(r,s)dr) 

x c;, j(h - a)” ’ /I x - y II, O<i<n-1 

from which it follows that 

II((OII 60 IIX-.A. 

Further, from (3.1) and (3.11), we have 

(E)(t)-.qt)=(Tx,)(t)-x,(t) 

Obviously, the function z(t) = - si gk(t, S) u](s) ds satisfies the conditions 
of Lemma 2.2 and z’“‘(t)= -q(t), thus rnaxQGIGh Iz’“)(t)l = 
max,<,<b Ill d6, and hence Iz”‘(t)l dC$(b--~)“~‘& O<i<n- 1. 
Using these inequalities and (3.10) in (3.14), we obtain 

and hence 

or 
II (TX,) - x0 II < (E + 6) qo(b - a)” (3.15) 
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which is from (3.12) same as 

(1 -W’ /I(Txo)-x, II div. 

Thus the conditions of Lemma 2.4 are satisfied and conclusions (l))(5) 
follow. 

4. CONVERGENCE OF THE APPROXIMATE ITERATES 

In Theorem 3.6 conclusion (3) ensures the convergence of the sequence 
{x,(t)} obtained from the iterative scheme (3.13) to the unique solution 
x*(t) of the boundary value problem (1.1 ), (1.2). However, in practical 
evaluation this theoretical sequence {xJf)} is approximated by the com- 
puted sequence, say, (y,(t)}. To find y, + r(t); the function f and operator 
A are approximated by some simpler f, and A,. Therefore, the computed 
sequence (y,J t)} satisfies the iterative process 

ye(t) = *q)(t) = $t), m = 0, l,.,.. 

For all y,,(t) obtained from (4.1) we shall assume that the inequalities 

max I .f;,(c I,, Amy,,(t)) -f(c y,(t), &y,(t)) I 
u<r<h 

6 A <,y~;~ I f(c y,(t), Amy,(t)) I (4.2) 
. . 

and 

d v "yh I f(l? Y,(t)? Ayrm(t)) I (4.3) 
. . 

are satisfied, where A and V are nonnegative constants. Inequalities (4.2) 
and (4.3) corresponds to the relative error in approximatingf and A by f,,, 
and A,,,, respectively. 

THEOREM 4.1. Let there exist an approximate solution Z(t) of the boun- 
dary value problem (l.l), (1.2) and the inequalities (4.2), (4.3) be satisfied, 
also 

(i) the function ,f(t, x(t), Ax(t)) satisfies the Lipschitz condition (3.7) 
on [a, bl x D, 
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(ii) Or =(l+d+V+dV)B<l and 

N, =(l-0,))‘(~+6+(d+V+dV)F)C~,,(b-a)”<N, 

where F=maxrrG,., If(t, x(t), AjZ(t))l. 

Then, the following holds: 

( 1) all the conclusions ( 1 t( 5) of Theorem 3.6 hold, 

(2) the sequence {y,(t)} obtainedfrom (4.1) remains in 3(X, N,), 

(3) the sequence {y,,,(t)} conuerges to x*(t) the solution of (l.l), (1.2) 
if and only if 

lim a, = 0, 
m-0 

(4.4) 

where 

a, = 
Ii 

~m+W',,-&-j+~ gdf, s)f(s, Y,(S), AY,(s)) ds u 

(4) a bound on the error is given by 

xuy:b I f(& y,(f), A~,(t))l CZ,,(b- a)‘? (4.5) . . 

Proof: Since 0, < 1 implies 0 < 1 and N, > (1 - O))‘(E + 6) Ci,o(b - a)” 
the conclusions of Theorem 3.6 are satisfied and part (1) follows. 

To prove (2) we note that X(~)E s(X, rl), and if yl(t), y2(f),..., y,Jt) are 
in S(X, rl), then it suffices to show that y, + , (t) E s(X, r,). For this, from 
(4.1) and (3.11), we have 

Y,+l(t)-x(t)=P,~,(t)-P,~,(t) 

+I" gk(t,S)Cf,(S,Ym(S),AmYrn(S)) u 

-f(s, +I, 4s))- il(s)l ds 

and hence from Lemma 2.2, we get 

1 yg+,(t)-x”‘(t)I 

<(~+6)Ci,~(b-a)“-’ 

+C~,i(b-O"-'a~~~, If,(t, I,, A,y,(t))-f(t,x(t),AjZ(t))~ . . 

109/126/l-S 
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-At, y,(t), A,n~,,,(t))l 

+ uy2h I .f(c ytn(f), Amy,(t)) -At, y,(t), Ay,(t)) I 
\ \ 

+.y$ I f(L y,(t)> AY,(~)) -.f(t, x(t), Ax(t)) II , \ 

d (E + 6) CQh -a)” ’ 

1 + A +V+ A V ay2h I f(c y,(t), AY,(~)) 
. . 

-J’(f, $t), A%(t)) I +(d+V+dV)“~~~~If’(ts(t),Ax(t))ll . . 

<((E+~+(A+V+AV)F)C,~J~-a)“-’ 

+C;,,(b-u)” ‘(l+A+V+AV) 

which is same as 

C;,,(b - a)’ 1 yZ’+ ,(t) - .P( t) 1 

CL 

+(l+d+V+AV)BN,, Odi<n-1 

or 

II Y m+, -x/16(1-8,)N, +O,N, =N,. 

This completes the proof of part (2). 
Next, we shall prove part (3). From the definition of x, + ,(t) and 

ym, ,(f), we have 
x m+l(~)-Y,+,(~)= -Ym+1 (t) + p,- I(f) + j” gk(f, s) 

u 
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and hence as earlier, we find 

II x m+l -~,+,Il~~,+~ll~,-~,II. (4.6) 

Now following inductive arguments inequality (4.6) provides that 

II x f?l+1 -ym+, I( d f P-27,. 
I=0 

(4.7) 

Using (4.7) in the triangle inequality, we get 

IIx*-.YY,+I II 6 f @+‘a,+ II-GlfL -xx* (I. (4.8) 
,=O 

In the right side of (4.8), Theorem 3.6 ensures that lim, j ~ (I x, + I - x* II 
= 0. Thus, the condition (4.4) is necessary and sufficient for the convergence 
of the sequence (y,(t)} to x*(t) follows from Toeplitz lemma “for any 
06a-c 1, lets, =CyZn_,cc mmm ‘a;; m = 0, l,... then, lim,, _ r S, = 0 if and only 
if lim, _ a, d, = 0”. 

Finally, we shall prove part (4). For this, we note that 

x*(f) - Ym, I(f) = j” tTk(f, s)C.f( s, x*(s), Ax*(s)) -fh Y,(J), AY&)) 
u 

+.fk Y,(S)> AYnh)) -f(h Y,(S)? AmYrA)) 

+.fbT Y,(S), A,Ymb))-fmk Y,(S), A,Y,b))l A 

and hence, we find 

IIx*-.Yy,+I II <(A +v+‘4 yy, I.f(c Yrn(~)~ Aym(t))l . \ 

x Ci,o(b -a)” + 0 II Ym - x* II 

from which (4.5) easily follows. 
If instead of inequalities (4.2), (4.3) we assume 

and 

max rrS/<h I f,(h ~~(0, A,Y&)) -fk Y,M A,Y,(~)) I <A (4.9) 

max I f(t, y,(t), Amy,(f)) -f(c Y,(~L AY,(~)) I <V (4.10) 
a<r<b 

which corresponds to an absolute error in approximating f and A by f, 
and A,,, then, we have 
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THEOREM 4.2. Let there exists an approximate solution X(t) of the boun- 
dary value problem (l.l), (1.2) and the inequalities (4.9), (4.10) be satisfied, 
also 

(i) the function f(t, x(t), Ax(t)) satisfies the Lipschitz condition (3.7) 
on [a, b] x D, 

(ii) 8< 1 and 

N,=(1-0))‘(~+~+d+V)C$(b-a)“6N. 

Then, the following hold: 

(1) all the conclusions of Theorem 3.6 hold, 

(2) the sequence {y,Jt)} obtainedfrom (4.1) remains in 3(X, IV,), 

(3) the conclusion (3) of Theorem 4.1 holds, 

(4) a bound on the error is given by 

II x* -Y,+III~~~-~~~‘C~IIY~+~-Y~II+(~+~)C~,~(~-~)’~]. 
Proof The proof is contained in Theorem 4.1. 

5. SOME EXAMPLES 

Here, we shall provide few examples which are sufficient to convey the 
importance of our results. 

EXAMPLE 5.1. Consider the boundary value problem 

xc4)( t) = t2x( t) cos x(t) + j; 1 ;ji’; s2 ds (5.1) 

x(0) = 1, x’(0) = x”( 1) = x”‘( 1) = 0. (5.2) 

Obviously, P3(t) = 1 and D, = {x(t) E C[a, b]: I x(t) I < 2K,} and hence 
Q = 2& + 4K$ C& = $. Th us, from Theorem 3.1 the problem (5.1), (5.2) 
has a solution if 

l<K, and t (2K0 + 4Kz,) 6 K,, 

i.e., 1 < K, < 1.5. 

EXAMPLE 5.2. For the boundary value problem 

x’4’(t)=$x5(t)+jb’ x(;)f;;;s)ds (5.3) 

x(1)=$ x’(l)= -;, 
1 

x”(2) = 12’ x”‘(2) = -f (5.4) 
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we have P3(t)=& (38-29t+8t2- t3) and hence max,9,c2 IP3(t)l <i. 
Thus, the problem (5.3) (5.4) has a solution in D,, = {x(t) E C[a, b]: 
Ix(t)1 <X0) if 

+Ko and $ [A (2&J5 + 2&l d&l, 

i.e ., $ 6 K, 6 1.173813435 . . . . 

EXAMPLE 5.3. For the integro-differential equation 

xc4’(t) = sin t + x3j4( t) cos(e -.‘(‘)) - 1’ s2 sin x(s) ds 
II 

together with the boundary conditions (1.2) Corollary 3.2 ensures the 
existence of at least one solution in D, = {x(t) E C[a, b]: 1 x(t) 1 < 00 > as 
long as Ai, 0 d i< k - 1; Bi, k 6 i< 3 (k = 1, 2, or 3) and (b-a) are finite. 

EXAMPLE 5.4. Consider the integro-differential equation 

f 
’ x’4’(t)=t2x(t)sinx(t)+ePr2+sint+ - 4s) ds 

0 l+t+s 
(5.5) 

together with the boundary conditions (5.2). For the right side of (5.5) the 
inequality (3.3) with a(0) = p(O) = 1 is satisfied for all x(t) E C[O, 11, and 
c,=2, c, =l, &(t,s)ds=j:,l/(l+t+s)ds<l. Thus, t)=Q(l+l)<l 
and hence Theorem 3.3 implies that (5.5), (5.2) has at least one solution 
x*(t) in {x(t)EC[O, 11: Ix(t)1 < co}. Further, since P3(t)= 1, we find 
p d 2 and the same theorem provides that 

Ix*(t)1 6 1+4(2+2)/(1-a,=:. 

EXAMPLE 5.5. For the boundary value problem 

x(4)(t) = 2x(t) - cash t+2~~sinh(t-s)x(s)ds-/feP”2”‘ds (5.6) 
0 

x(0) = 1, x’(())=O, XII ; = -1, x”’ ; 2 
0 fi 0 ,l;i 

(5.7) 

we take X(t) = cos t so that E = 0 and 

6= max cost-2cost+cosht 
0 < I < n/4 

-2j’ 
f 

sinh(t-s)cossds+ eecoS2’ds 
0 I 0 

=oE:;,4 l~;e.‘l”ds~ <0.78539.8163..., 
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thus, we can take 6 =0.786. Further, in D, = {x(t)~C[O,7~/4]: 
Ix(t)-cost1 <N}, we find L, =2 and 

s 

n/4 

sup h,(t,s)ds< sup 
osrsa/4 0 

,,<,<x,4~on’4 [2sinh(t-s)+2(N+ l)] 
. . 

z 2( 1.325 + N). 

Hence, for the problem (5.6), (5.7) the conditions of Theorem 3.6 are 
satisfied provided 

H=$[2+2(1.325+N), i 4<1 
0 

and 

(1-f)) '(o.786);(g4<N. 

Both of these inequalities are satisfied if 

16 
8N 4 4 

4.65N+2N2+0.786 ii ' 0 

(5.9) 

(5.10) 

The inequality (5.10) easily provides that 0.048285554... 6 N 6 
8.139080272.... Thus, the problem (5.6), (5.7) has a unique solution x*(r) in 
D, = {x(t) E C[O, 7t/4] : 1 x(t) ~ cos t 1 6 8.139080272... } and the iterative 
scheme 

xI,J~,(1)=2x,,(z)-coshr+2~‘sinh(t-s)x,,,(s)dv-[~e ';(."ds 
0 

x,,+,(O)= 1, x:,+,(0)=0, xi;,+, ; = -1, x;,, (;)=’ 
0 J2 4 

converges to x*(t). Further, we conclude that 

Ix*(t)-cos tl <0.048285554.... 
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