THE DIAGONAL COMULTIPLICATION ON HOMOLOGY

K.J. HORADAM
School of Mathematical and Physical Sciences, Murdoch University, Perth, Western Australia 6150, Australia*

Communicated by H. Bass
Received November 1979

1. Introduction

This paper describes the diagonal comultiplication (or cup coproduct) defined on integral homology modules of groups. Analysis of this coproduct should provide a new method of testing for non-isomorphism of groups which have isomorphic integral homology modules; here, the dimension two coproduct is applied to this problem.

The first part (Section 2) is couched in terms of groupnets (Brandt groupoids) and shows two things: that there exists a cup product defined on the integral cohomology of any groupnet, extending that for groups, and that there exists a comultiplication defined on the integral homology of any group, natural up to dimension two, which gives the homology modules the structure of a commutative graded co-ring.

In the second part (Sections 3 and 4), this diagonal comultiplication Ω is constructed to dimension two, and the information it carries about the lower central series of a group G is investigated. Modulo torsion in $H_{1}(G ; \mathbf{Z}), \Omega_{2}$ induces an abelian group homomorphism with cokernel G_{2} / G_{3}, which distinguishes between large classes of groups, in particular the one-relator groups with non-trivial multiplicator, and the finitely-generated nilpotent groups of class two whose relators are all in the commutator subgroup.

2. Diagonal maps

Groupnets generalise groups and provide a very natural means of describing groups which are graph products (fundamental groups of graphs of groups in the terminology of Bass and Serre).

For the groupnet theory involved see [1] and for exposition of the theory of ringnets and the homology theory of groupnets see [5]. The following notation is employed: for any groupnet $A, T A$ is the trivial A-module and $\mathbf{Z A}$ is the

[^0]groupringnet of A. If A is connected, its (co)homology with coefficients in $T A$ is the same as the integral (co)homology of the loop group of A.
2.1. Definition. For a groupnet A, the diagonal map $\Delta: A \rightarrow A \times A$ is defined as $\Delta(a)=(a, a)$ for a in A. It associates, so that the induced ringnet morphism also does:

If C is a free A-resolution of $T A$, then $C \otimes_{\mathrm{z}} C$ is a free $A \times A$-resolution of $T A \otimes_{\mathrm{z}} T A$. The next result is an immediate consequence of the regular comparison theorem [5,6.1]. (The definition of $\chi(\Delta)$-homotopy of chain maps, where $\chi(\Delta)$ is the constant ringnet homotopy induced by Δ, is given in [5,4.2]. It extends the usual definition of homotopy of chain maps between complexes over a ring by accounting for chain maps between complexes over different rings.)
2.2. Lemma. If C is a free A-resolution of $T A$ for a groupnet A, there exists a Δ-chain map $\omega: C \rightarrow C \otimes_{\mathrm{z}} C$ such that $\partial \omega_{0}=\bar{\Delta} \partial$, where $\bar{\Delta}$ is the induced Δ-morphism $\bar{\Delta}: T A \rightarrow$ $T A \otimes_{\mathbf{Z}} T A$. Moreover, any two such chain maps are $\chi(\Delta)$-homotopic.

Any Δ-chain map $\omega: C \rightarrow C \otimes_{\mathrm{z}} C$ lifting $\bar{\Delta}: T A \rightarrow T A \otimes_{\mathrm{z}} T A$ which satisfies $\omega(c)=c \otimes c$ for all generators c of the A-module C_{0} is called a diagonal approximation; clearly such maps exist.
2.3. Lemma. The diagonal map $\Delta: A \rightarrow A \times A$ induces a homology map

$$
H_{*}(\Delta): H_{*}(A ; T A) \rightarrow H_{*}\left(A \times A ; T A \otimes_{\mathbf{Z}} T A\right)
$$

and a cohomology map $H^{*}(\Delta): H^{*}(A \times A ; L) \rightarrow H^{*}(A, L)$ for any left $A \times A$-module L.

Proof. Let C be any free A-resolution of $T A$, and let $\omega: C \rightarrow \otimes_{z} C$ be any Δ-chain map lifting $\overline{\bar{L}}: T A \rightarrow T A \otimes_{\mathbf{Z}} T A$. Then

$$
\bar{\Delta} \otimes \omega: T A \otimes_{A} C \rightarrow\left(T A \otimes_{\mathbf{Z}} T A\right) \otimes_{A \times A}\left(C \otimes_{\mathbf{Z}} C\right)
$$

determines the homology map and $\langle\omega, L\rangle: \operatorname{hom}_{\mathbf{A} \times \mathbf{A}}\left(C \otimes_{\mathbf{Z}} C, L\right) \rightarrow \operatorname{hom}_{A}(C, L)$ determines the cohomology map.

The diagonal map induces a cohomology map

$$
H^{*}(A ; L) \otimes_{\mathbf{Z}} H^{*}(A ; L) \rightarrow H^{*}\left(A ; L \otimes_{\mathbf{Z}} L\right)
$$

for any left A-module L. It is the composite map

$$
\begin{aligned}
& H^{*}(A ; L) \otimes_{\mathbf{Z}} H^{*}(A ; L) \xrightarrow{p} H^{*}\left(\operatorname{hom}_{\mathbf{A}}(C, L) \otimes_{\mathbf{Z}} \operatorname{hom}_{\boldsymbol{A}}(C, L)\right) \xrightarrow{H^{*}(\eta)} \\
& H^{*}\left(A \times A ; L \otimes_{\mathbf{Z}} L\right) \xrightarrow{H^{*}(\mathcal{A})} H^{*}\left(A ; L \otimes_{\mathbf{Z}} L\right),
\end{aligned}
$$

where $H^{*}(\eta)$ is the homology map induced from

$$
\eta: \operatorname{hom}_{A}(C, L) \otimes_{\mathbf{z}} \operatorname{hom}_{A}(C, L) \rightarrow \operatorname{hom}_{A \times A}\left(C \otimes_{\mathbf{Z}} C, L \otimes_{\mathbf{z}} L\right)
$$

with $[\eta(f \otimes g)]\left(c \otimes c^{*}\right)=f(c) \otimes g\left(c^{*}\right)$, for a projective A-resolution C of $T A$. The map p is a specific example of the external homology product, defined for any standard right R-complex K and any standard left R-complex L to be the map

$$
p: H(K) \otimes_{R} H(L) \rightarrow H\left(K \otimes_{R} L\right)
$$

given by tensor extension of

$$
p([u] \otimes[v])=[u \otimes v] \quad \forall[u] \in H_{k}(K), \quad[v] \in H_{l}(L)
$$

When $L=T A, H^{*}\left(A ; L \otimes_{\mathrm{z}} L\right)$ may be replaced by $H^{*}(A ; L)$ and the diagonal map induces the cup product

$$
\cup: H^{*}(A ; T A) \otimes_{\mathbf{Z}} H^{*}(A ; T A) \rightarrow H^{*}(A ; T A)
$$

As in the case when A is a group, the cup product induces a commutative graded ring structure on the cohomology module $H^{*}(A ; T A)$.

The next two results restate those for groups (see, for example, [7, V.10.4, V.8.6]).
2.4. Theorem (the Künneth formula). If A is a connected groupnet there is a split short exact sequence

$$
\begin{align*}
& 0 \rightarrow[H(A ; T A) \otimes H(A ; T A)]_{n} \xrightarrow{\bar{G}} H_{n}\left(A \times A ; T A \otimes_{\mathbf{Z}} T A\right) \\
& \rightarrow\left[\operatorname{Tor}_{1}(H(A ; T A), H(A ; T A))\right]_{n-1} \rightarrow 0 \tag{D2.1}
\end{align*}
$$

for each n in \mathbf{Z} (although the splitting is not natural).

The map \bar{p} is the composition of the external homology product with the middle four interchange' isomorphism:

$$
\left(T A \otimes_{A} C_{p}\right) \otimes_{\mathbf{Z}}\left(T A \otimes_{A} C_{q}\right) \cong\left(T A \otimes_{\mathbf{Z}} T A\right) \otimes_{A \times A}\left(C_{p} \otimes_{\mathbf{Z}} C_{q}\right)
$$

for all nonnegative integers p and q.
2.5. Corollary. If A is a connected groupnet there is a natural isomorphism

$$
\left[H(A ; T A) \otimes_{\mathbf{Z}} H(A ; T A)\right]_{n} \cong H_{n}\left(A \times A ; T A \otimes_{\mathbf{Z}} T A\right), \quad 0 \leqslant n \leqslant 2
$$

2.6. Corollary. The diagonal map $\Delta: A \rightarrow A \times A$ for a connected groupnet A induces $\Omega: H_{*}(A ; T A) \rightarrow H_{*}(A ; T A) \otimes_{\mathbf{Z}} H_{*}(A ; T A)$. In dimensions 0,1 and 2 it is unique; in higher dimensions it is unique to within the splitting isomorphism of the Künneth Formula.

Such a homology map is called a diagonal comultiplication. It induces a graded co-ring structure on the homology module $H_{*}(A ; T A)$ which commutes (that is, $a \cdot b=(-1)^{\operatorname{deg} a \operatorname{deg} b} b \cdot a$ always) and associates to within the splitting isomorphism of Theorem 2.4, by [4, 5.2.12].

As usual with proofs involving the comparison theorem, the existence of a required chain map is comparatively easy to demonstrate but its construction is often difficult. There is always a diagonal approximation for the bar resolution of a group [7, VIII.9, Exercise 1]; this construction is, of course, extremely cumbersome to manipulate on the homology level. Explicit construction to dimension two of a simpler diagonal approximation is given in Section 3.

3. The Gruenberg approximation

In this section a diagonal approximation for any group is evaluated to dimension 2, using the Gruenberg resolution [3, p. 218] and thus requiring knowledge of a free presentation of the group. The corresponding diagonal comultiplication is then calculated.
3.1. The Gruenberg approximation. Let $1 \rightarrow R \rightarrow F \stackrel{\pi}{\rightarrow} G \rightarrow 1$ be a free presentation of a group G and let X and Y be free generating sets for F and R respectively. If

$$
\mathscr{G}=\mathbf{Z} G \otimes_{F} \mathscr{F} \otimes R / R_{2} \rightarrow \mathbf{Z} G \otimes R / R_{2} \xrightarrow{\partial_{2}} \mathbf{Z} G \otimes_{F} \mathscr{F} \xrightarrow{\partial_{1}} \mathbf{Z} G \rightarrow \mathbf{Z}
$$

is the left version of the Gruenberg resolution define the maps $\omega: \mathscr{G} \rightarrow \mathscr{G} \otimes \mathscr{G}$ on its free generators as follows:

$$
\begin{aligned}
& \omega_{0}(1)=1 \otimes 1 \\
& \omega_{1}(1 \otimes(x-1))=1 \otimes(1 \otimes(x-1))+(1 \otimes(x-1)) \otimes x, \quad \forall x \in X
\end{aligned}
$$

and

$$
\begin{aligned}
& \omega_{2}\left(1 \otimes\left(y+R_{2}\right)\right)= 1 \otimes\left(1 \otimes\left(y+R_{2}\right)\right)+\left(1 \otimes\left(y+R_{2}\right)\right) \otimes 1 \\
&+\sum_{i=1}^{n} \varepsilon_{i}\left\{\left(1 \otimes\left(\sum_{j} \frac{\partial u_{i}}{\partial x_{j}}\left(x_{j}-1\right)\right)\right) \otimes\left(1 \otimes u_{i}\left(x_{i}-1\right)\right)\right\} \\
& \forall y=\prod_{i=1}^{n} x_{i}^{\varepsilon_{i}} \in Y
\end{aligned}
$$

Here u_{i} is Fox's i th initial section and

$$
y-1=\sum_{i=1}^{n} \varepsilon_{i} u_{i}\left(x_{i}-1\right)=\sum_{i} \frac{\partial y}{\partial x_{j}}\left(x_{i}-1\right)
$$

as an element of \mathscr{F} (see [2, Section 2]).
It may be checked that this is a diagonal approximation when extended freely by Δ-action. In particular,

$$
\begin{aligned}
&\left(\omega_{1} \partial_{2}-(\partial \otimes \partial)_{2} \circ \omega_{2}\right)\left(1 \otimes\left(y+R_{2}\right)\right)=\sum_{i=1}^{n} \varepsilon_{i}\left\{\left(1 \otimes u_{i}\left(x_{i}-1\right)\right) \otimes\left(\pi\left(u_{i} x_{i}\right)-1\right)\right\} \\
&+\sum_{i=1}^{n} \varepsilon_{i}\left\{\left(1 \otimes\left(\sum_{i} \frac{\partial u_{i}}{\partial x_{j}}\left(x_{i}-1\right)\right)\right) \otimes \pi\left(u_{i}\right)\left(\pi\left(x_{i}\right)-1\right)\right\}
\end{aligned}
$$

and this sum equals zero, for, by induction on n,

$$
\begin{aligned}
& \sum_{i=1}^{n} \varepsilon_{i}\left\{u_{i}\left(x_{i}-1\right) \otimes\left(u_{i} x_{i}-1\right)\right\}+\sum_{i=1}^{n} \varepsilon_{i}\left\{\left(\sum_{i} \frac{\partial u_{i}}{\partial x_{j}}\left(x_{j}-1\right)\right) \otimes u_{i}\left(x_{i}-1\right)\right\}= \\
&=(y-1) \otimes(y-1)
\end{aligned}
$$

in $\mathscr{F} \otimes \mathbf{Z} F$.
Some notational considerations follow. Let w be a word in the free group F on generating set X. For each pair of generators (x, y) of F, the symbol $\langle w ; x, y\rangle$ denotes the integer $\varepsilon\left(\partial^{2} w / \partial x \partial y\right)$, where $\varepsilon: \mathbf{Z F} \rightarrow \mathbf{Z}$ is the augmentation map of the group ring $\mathbf{Z} F$. For each generator x of F, the symbol $\langle w, x\rangle$ denotes the integer $\varepsilon(\partial w / \partial x)$. That is, for $x \neq y,\langle w ; x, y\rangle$ is the exponent sum in w of occurrences of x preceding each occurrence of y^{+1}, minus the exponent sum of occurrences of x preceding each occurrence of y^{-1}. For example,

$$
\left\langle x y^{-2} x^{2} y ; x, y\right\rangle=(-1)+(-1)+3=1
$$

By induction on the length of w, it may be shown that

$$
\langle w ; x, x\rangle=\frac{1}{2}\langle w, x\rangle(\langle w, x\rangle-1)
$$

and

$$
\langle w ; x, y\rangle+\langle w ; y, x\rangle=\langle w, x\rangle\langle w, y\rangle
$$

3.2. The diagonal comultiplication. Suppose $\Omega: H_{*}(G ; \mathbf{Z}) \rightarrow H_{*}(G ; \mathbf{Z}) \otimes_{\mathbf{Z}}$ $H_{*}(G ; \mathbf{Z})$ is induced from the Gruenberg approximation (3.1). In dimension 2 it is evaluated as follows. Let $\eta: R \cap F_{2} /[R, F] \cong H_{2}(G ; \mathbf{Z})$ be the Hopf isomorphism, and suppose $r \in R \cap F_{2}$. The elements of X appearing in r may be ordered by correspondence with a finite subset of the integers. If

$$
r \equiv \prod_{i=1}^{k} y_{i}^{\delta_{i}} \text { modulo }[R, F] \text { for } y_{j} \text { in } Y \text { and } \delta_{j}= \pm 1
$$

then

$$
\begin{aligned}
& \Omega_{2} \eta(r[R, F])= \\
& \quad=\sum_{y} \sum_{x<y} \sum_{i=1}^{k} \delta_{i}\left\langle y_{i} ; x, y\right\rangle\left\{\pi(x) G_{2} \otimes \pi(y) G_{2}-\pi(y) G_{2} \otimes \pi(x) G_{2}\right\} \\
& \quad=\sum_{y} \sum_{x<y}\langle r ; x, y\rangle\left\{\pi(x) G_{2} \otimes \pi(y) G_{2}-\pi(y) G_{2} \otimes \pi(x) G_{2}\right\},
\end{aligned}
$$

when the image of Ω_{2} is restricted to $H_{1}(G ; \mathbf{Z}) \otimes H_{1}(G ; \mathbf{Z})$.

4. The diagonal comultiplication and the lower central series

In this section the information carried by the diagonal comultiplication in dimension 2 is investigated, and its application to testing non-isomorphism for various large classes of groups is explained.

Because the restricted image of Ω_{2} actually lies inside the symmetric difference $H_{1}(G ; \mathbf{Z}) \nabla H_{1}(G ; \mathbf{Z})$ of $H_{1}(G ; \mathbf{Z})$, for our purposes an induced abelian group homomorphism $\mathscr{D}(G)$ replaces Ω_{2}. Notation is that of Section 3.
4.1. Definition. The map $\mathscr{D}(G): H_{2}(G ; \mathbf{Z}) \rightarrow H_{1}(G ; \mathbf{Z}) \wedge H_{1}(G ; \mathbf{Z})$ is given by

$$
\mathscr{D}(G) \circ \eta(r[R, F])=\sum_{\mathrm{y}} \sum_{x<y}\langle r ; x, y\rangle \pi(x) G_{2} \wedge \pi(y) G_{2}
$$

for $r \in R \cap F_{2}$.
If $\phi: H_{1}(G ; \mathbf{Z}) \nabla H_{1}(G ; \mathbf{Z}) \rightarrow H_{1}(G ; \mathbf{Z}) \wedge H_{1}(G ; \mathbf{Z})$ is the homomorphism which maps $x \otimes y-y \otimes x$ to $x \wedge y$, then $\mathscr{D}(G)$ is induced from Ω_{2} modulo torsion in $H_{1}(G ; \mathbf{Z})$. If G is any group with a presentation in which $R \subseteq F_{2}$, then $H_{1}(G ; \mathbf{Z})$ is torsion-free and ϕ is an isomorphism.

That $\mathscr{D}(G)$ is a homomorphism, is an incidental result of the lemma below.

4.2. Lemma. Coker $\mathscr{D}(G)=G_{2} / G_{3}$ for any group G.

Proof. There are isomorphisms

$$
\mu: F_{2} / F_{3}[R, F] \cong H_{1}(G ; \mathbf{Z}) \wedge H_{1}(G ; \mathbf{Z})
$$

induced by $\left[f, f^{*}\right] F_{3}[R, F] \mapsto \pi(f) G_{2} \wedge \pi\left(f^{*}\right) G_{2}$ and

$$
F_{2} / F_{3}\left(R \cap F_{2}\right) \cong G_{2} / G_{3}
$$

induced by $\left[f, f^{*}\right] F_{3}\left(R \cap F_{2}\right) \mapsto\left[\pi(f), \pi\left(f^{*}\right)\right] G_{3}$. Consider the diagram

where the group morphisms in the top row are induced by inclusion and $[],\left(g G_{2} \wedge g^{*} G_{2}\right)=\left[g, g^{*}\right] G_{3}$. The top row is exact and it is apparent the right hand square commutes. Let r be as above. It is possible to write $r=r^{*} f^{*}$, where $f^{*} \in F_{3}$,

$$
r^{*}=\prod_{i=1}^{n}\left[x_{i}, y_{i}\right]^{\varepsilon_{i}}
$$

$\left\{x_{i}, y_{i}: 1 \leqslant i \leqslant n\right\} \subseteq X, \quad \varepsilon_{i}= \pm 1 \quad$ and $\quad x_{i}<y_{i}, \quad 1 \leqslant i \leqslant n . \quad$ Clearly $\quad \mu \alpha(r[R, F])=$ $\sum_{i=1}^{n} \varepsilon_{i}\left\{\pi\left(x_{i}\right) G_{2} \wedge \pi\left(y_{i}\right) G_{2}\right\}$, so that for any distinct pair of generators x, y appearing in r with $x<y$, the coefficient of $\pi(x) G_{2} \wedge \pi(y) G_{2}$ under $\mu \alpha$ is $\left\langle r^{*},[x, y]\right\rangle$, the exponent sum of commutator $[x, y]$ in r^{*}. A counting argument considering the contribution of each appearance of y in f^{*} shows that

$$
\langle r ; x, y\rangle=\left\langle r^{*} ; x, y\right\rangle
$$

and an inductive argument on n shows that

$$
\left\langle r^{*} ; x, y\right\rangle=\left\langle r^{*} ;[x, y]\right\rangle
$$

Thus $\mathscr{D}(G) \circ \eta=\mu \circ \alpha$.
Hence Ω_{2} is connected with the third term of the lower central series of G. However, analysis of the diagonal comultiplication provides a finer classification of groups than is given by the first two factor groups of their lower central series, that is, it gives a new method of testing for non-isomorphism of groups with isomorphic first and second integral homology modules.

As mentioned earlier, $\mathscr{D}(G)$ carried the same information as the diagonal comultiplication if G has a free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ with $R \subseteq F_{2}$. Such groups include the one-relator groups with non-trivial multiplicator: their diagonal comultiplication is completely analysed elsewhere [6]. Here we analyse the finitely generated nilpotent class 2 groups of this kind.
4.3. Lemma. Let G be a finitely generated nilpotent group of class 2 which has a free

Proof. Let $F^{*}=F / F_{3}$ and $R^{*}=R / F_{3}$ so that $1 \rightarrow R^{*} \rightarrow F^{*} \xrightarrow{\boldsymbol{m}} G \rightarrow 1$ is exact, $F_{2}^{*}=$ F_{2} / F_{3} and $R^{*} \subseteq F_{2}^{*}$. There is a diagram

with exact rows, and vertical maps all induced from π. The central one is an isomorphism. Clearly the right-hand square commutes. For any group H, there is an
isomorphism $\psi: \wedge_{2} H_{1}\left(H / H_{2} ; \mathbf{Z}\right) \rightarrow H_{2}\left(H / H_{2}, \mathbf{Z}\right)$, and the homomorphism $H \rightarrow$ H / H_{2} induces $\psi \circ \mathscr{D}(H)$, so that the lefthand square is induced from

and must commute. Since [,] is an isomorphism, $\mathscr{D}\left(F^{*}\right)=0$. Consequently, $\operatorname{Im} \mathscr{D}(G)=\operatorname{Ker}[,] \equiv \operatorname{Ker}\left(F_{2}^{*} \rightarrow G_{2}\right)=R^{*}$.

To characterise these groups completely, it is necessary to determine the invariants of $\mathscr{D}(G)$, that is, to abstract that information contained in the diagonal comultiplication which is independent of ismorphisms of the first two homology modules. This poses a difficult and as yet unsolved problem in matrix theory. Partial solutions are available on the assumption that $H_{2}(G ; \mathbf{Z})$ is free abelian (for example if G in (4.3) is torsion-free and cd $G \leqslant 2$). For then, if G is a group with $H_{2}(G ; \mathbf{Z}) \cong \mathbf{Z}^{n}$ and $H_{1}(G ; \mathbf{Z}) \cong \mathbf{Z}^{m}$ and comultiplication $\Omega: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{m} \otimes \mathbf{Z}^{m}$, the problem is to determine the form of a canonical representative of the set of all skew-symmetric linear maps $\Gamma: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{m} \otimes \mathbf{Z}^{m}$ for which there exist isomorphisms $\alpha: \mathbf{Z}^{n} \cong \mathbf{Z}^{n}$ and $\beta: \mathbf{Z}^{m} \cong \mathbf{Z}^{m}$ such that $\Gamma \circ \alpha=\beta \otimes \beta \circ \Omega$. This canonical form has been established for all m with $n=1$ (see [6]) and for all n with $m=2$ and $m=3$. Work is current for $m=4$ and $n=2$.

Acknowledgement

I wish to thank Dr. C.R. Leedham-Green for many helpful discussions.

References

[1] R.H. Crowell and N. Smythe, The subgroup theorem for amalgamated free products, HNNconstructions and colimits, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, Lecture Notes in Mathematics 372 (Springer-Verlag, Berlin, 1974) 241-280.
[2] R.H. Fox, Free differential calculus I: Derivation in the free group ring, Ann. of Math. 57 (2) (1953) 547-560.
[3] P.J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics 4 (Springer-Verlag, Berlin, 1971).
[4] K. J. Horadam, The homology of groupnets, Ph.D. thesis, Australian National University, Canberra, Australian Capital Territory (1977).
[5] K.J. Horadam, The mapping cylinder resolution for a groupnet diagram, J. Pure Appl. Algebra 15 (1979) 23-40.
[6] K.J. Horadam, A quick test for non-isomorphism of one-relator groups, Proc. Amer. Math. Soc., to appear.
[7] S. MacLane, Homology, Die Grundlehren der Mathematischen Wissenschaften 114 (SpringerVerlag, Berlin, 1963).

[^0]: * Current address: Math. Dpt., Monash University, Clayton, Victoria 3168, Australia.

