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1. Introduction 

This paper describes the diagonal comultiplication (or cup coproduct) defined on 
integral homology modules of groups. Analysis of this coproduct should provide a 
new method of testing for non-isomorphism of groups which have isomorphic 
integral homology modules; here, the dimension two coproduct is applied to this 
problem. 

The first part (Section 2) is couched in terms of groupnets (Brandt groupoids) and 
shows two things: that there exists a cup product defined on the integral cohomology 
of any groupnet, extending that for groups, and that there exists a comultiplication 
defined on the integral homology of any group, natural up to dimension two, which 
gives the homology modules the structure of a commutative graded co-ring. 

In the second part (Sections 3 and 4), this diagonal comultiplication R is con- 
structed to dimension two, and the information it carries about the lower central 
series of a group G is investigated. Modulo torsion in Hr(G; Z), Rz induces an 
abelian group homomorphism with cokernel GZ/G3, which distinguishes between 
large classes of groups, in particular the one-relator groups with non-trivial multi- 
plicator, and the finitely-generated nilpotent groups of class two whose relators are 
all in the commutator subgroup. 

2. Diagonal maps 

Groupnets generalise groups and provide a very natural means of describing 
groups which are graph products (fundamental groups of graphs of groups in the 
terminology of Bass and Serre). 

For the groupnet theory involved see [l] and for exposition of the theory of 
ringnets and the homology theory of groupnets see [5]. The following notation 
is employed: for any groupnet A, TA is the trivial A-module and ZA is the 
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groupringnet of A. If A is connected, its (co)homology with coefficients in TA is the 
same as the integral (co)homology of the loop group of A. 

2.1. Definition. For a groupnet A, the diagonal map A: A + A x A is defined as 
A(a) = (a, a) for a in A. It associates, so that the induced ringnet morphism also 
does: 

ZA 
A 

l ZAQZA 

ZA&ZA -ZA@Zi@ZA 
A@1 

If C is a free A-resolution of TA, then C&C is a free A x A-resolution of 
TA 0~ TA. The next result is an immediate consequence of the regular comparison 
theorem [5,6.1]. (The definition of x(A)-homotopy of chain maps, where x(A) is the 
constant ringnet homotopy induced by A, is given in [5, 4.21. It extends the usual 
definition of homotopy of chain maps between complexes over a ring by accounting 
for chain maps between complexes over different rings.) 

2.2. Lemma. If Cis a free A-resolution of TA for a groupnet A, there exists a A-chain 

map w : C + C Oz Csuch that au0 = ia, where d is the induced A-morphism 6: TA --, 

TA Oz TA. Moreover, any two such chain maps are x(A)-homotopic. 

Any A-chain map w: C-, C Oz C lifting A: TA + TA Oz TA which satisfies 
W(C) = c @ c for all generators c of the A -module CO is called a diagonal approxima - 

tion ; clearly such maps exist. 

2.3. Lemma. The diagonal map A : A -+ A x A induces a homology map 

H,(A):H,(A; TA)+H,(A x A; TA Oz TA) 

and a cohomology map H*(A) : H*(A x A ; L)+ H*(A, L) for any left A X A-module 
L. 

Proof. Let C be any free A-resolution of TA, and let W: C + @:z C be any A-chain 

map lifting z: TA + TA 0~ TA. Then 

J&J: TAO~C+(TAOZTA)OA~A(COZC) 

determines the homology map and (w, L) : homAxA(C& C, L) + homA(C, L) 

determines the cohomology map. 0 

The diagonal map induces a cohomology map 

H*(A; L) Oz H*(A; L) + H*(A; L Oz L) 
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for any left A-module L. It is the composite map 

H*(A; L) Oz H*(A; L) -% H*(homA(C, L) Oz homA(C, L)) E 

H*(AxA;L&L)- u*“’ H*(A; L &L), 

where H*(n) is the homology map induced from 

n: homA(C, L) Oz homA(C, L)+ homAX,(C Oz C, L OZL), 

with [n(f@ g)](c 0 c*) =f(c) 0 g(c*), for a projective A-resolution C of TA. The 
map p is a specific example of the external homology product, defined for any standard 
right R-complex K and any standard left R-complex L to be the map 

p: H(K) OR H(L) + H(K OR L) 

given by tensor extension of 

p([ulO [VI) = [u 0 01 V[UlE Hk w, [ul E H,(L). 

When L = TA, H*(A; L Oz L) may be replaced by H*(A; L) and the diagonal map 
induces the cup product 

u:H*(A; TA)&H*(A; TA)+H*(A; TA). 

As in the case when A is a group, the cup product induces a commutative graded ring 
structure on the cohomology module H*(A; TA). 

The next two results restate those for groups (see, for example, [7, V.10.4, V.8.61). 

2.4. Theorem (the Kiinneth formula). If A is a connected groupnet there is a split 

short exact sequence 

+ [Tori(H(A; TA), H(A; TA))],-, + 0 

(D2.1) 

for each n in Z (although the splitting is not natural). 

The map p is the composition of the external homology product with the ‘middle 

four interchange’ isomorphism: 

(TA @a C,,)& (TA @A C,)z(TA Oz TA)OA~A (Cp @zC~) 

for all nonnegative integers p and q. 

2.5. Corollary. If A is a connected groupnet there is a natural isomorphism 

[H(A; TA)&H(A; TA)],sH,,(AxA; TA&TA), O<ncl. 
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2.6. Corollary. The diagonal map A: A + A x A for a connected groupnet A induces 

R:H,(A; TA)*H,(A; TA) & H,(A; TA). I n d imensions 0, 1 and 2 it is unique; 

in higher dimensions it is unique to within the splitting isomorphism of the Kiinneth 

Formula. 

Such a homology map is called a diagonal comultiplication. It induces a graded 
co-ring structure on the homology module H,(A; TA) which commutes (that is, 
a*b=(-1) dega deg “b * a always) and associates to within the splitting isomorphism 
of Theorem 2.4, by [4, 5.2.121. 

As usual with proofs involving the comparison theorem, the existence of a 
required chain map is comparatively easy to demonstrate but its construction is often 
difficult. There is always a diagonal approximation for the bar resolution of a group 
[7, VIII.9, Exercise 11; this construction is, of course, extremely cumbersome to 
manipulate on the homology level. Explicit construction to dimension two of a 
simpler diagonal approximation is given in Section 3. 

3. The Gruenberg approximation 

In this section a diagonal approximation for any group is evaluated to dimension 2, 
using the Gruenberg resolution [3, p. 2181 and thus requiring knowledge of a free 
presentation of the group. The corresponding diagonal comultiplication is then 
calculated. 

3.1. The Gruenberg approximation. Let 1 + R + F 36 + 1 be a free presentation 
of a group G and let X and Y be free generating sets for F and R respectively. If 

is the left version of the Gruenberg resolution define the maps w : S+ % 0 3 on its 
free generators as follows: 

wo(1) = 10 1; 

w*(10(x-1))=10(1@(x-1))+(10(x-1))0x, VXEX; 

and 
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Here Ui is FOX’S ith initial section and 

y-lCigl ejUi(xi_l)=f~(Xj-1) 
I 

as an element of 9 (see [2, Section 21). 
It may be checked that this is a diagonal approximation when extended freely by 

A-action. In particular, 

and this sum equals zero, for, by induction on n, 

= (y - 1) 0 (y - 1) 

in 9OZF. 

Some notational considerations follow. Let w be a word in the free group F on 
generating set X For each pair of generators (x, y) of F, the symbol ( w ; x, y > denotes 
the integer ~(d~w/ax ay), where E:ZF* Z is the augmentation map of the group 
ring ZF. For each generator x of F, the symbol (w, x) denotes the integer E(&v/~x). 
That is, for x f y, (w; x, y) is the exponent sum in w of occurrences of x preceding 
each occurrence of y+i, minus the exponent sum of occurrences of x preceding each 
occurrence of y-l. For example, 

By induction on the length of W, it may be shown that 

(w ; x, x) = %v, X>((% x> - I) 

and 

(w; x, y)+(w; y, x) = (w, x)(w, Y). 

3.2. The diagonal comultiplication. Suppose (l:H.+.(G; Z)+H,(G; Z)C& 
H,(G; Z) is induced from the Gruenberg approximation (3.1). In dimension 2 it is 
evaluated as follows. Let 7 : R A F2/[R, F] = H2(G; Z) be the Hopf isomorphism, 
and suppose rc R n F2. The elements of X appearing in r may be ordered by 
correspondence with a finite subset of the integers. If 

r E jfil yp modulo [R, F] for yj in Y and Sj = f 1, 



170 

then 

K.J. Horadam 

~2do7, Fl) = 

=; dI 4(yi; x, y)b(x)GzOdy)Gz- ~b)G20r(x)Gt~ 

= F .;, (7; x, y)b(x)G2 0 7r(y)G2- n(y)Gz 0 r(x)G2}, 

when the image of Rz is restricted to Hi(G; Z) @ H1(G; Z). 

4. The diagonal comultiplication and the lower central series 

In this section the information carried by the diagonal comultiplication in dimen- 
sion 2 is investigated, and its application to testing non-isomorphism for various large 
classes of groups is explained. 

Because the restricted image of R2 actually lies inside the symmetric difference 

HI(G;.Z)VHl(G; Z) of H,(G; Z), for our purposes an induced abelian group 
homomorphism d(G) replaces 02. Notation is that of Section 3. 

4.1. Definition.Themap9(G):H2(G;Z)+HI(G;Z)~HI(G;Z) isgiven by 

a(G)~?(r[R,Fl)=~=~~(r; x, y)+)Gz~ dy)Gz, 

for rcR nF2. 
If q5 :H1(G; Z)VH1(G; Z)+ H,(G; Z) A H,(G; Z) is the homomorphism which 

maps x 0 y - y 0 x to x A y, then 9(G) is induced from O2 moduIo torsion in 
Hl(G; Z). If G is any group with a presentation in which R E F2, then Hr(G; 2) is 
torsion-free and 4 is an isomorphism. 

That d(G) is a homomorphism, is an incidental result of the lemma below. 

4.2. Lemma. Coker 9(G) = GIIGs for any group G. 

Proof. There are isomorphisms 

p:F2/F3[R, F]=HI(G; Z) AHl(G; Z) 

induced by [f, fC]FJR, F] t+ df)G;! A 7r(f*)G2 and 

FdFdR nF2) = WG3 

induced by [f, fr]F3(R n Fz) H [r(f), 7r(fC)]G3. Consider the diagram 

H2(G; Z),a(,,-IMG;,Z) A HI(G; Z)-G2/G3 - 1 
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where the group morphisms in the top row are induced by inclusion and 
[ ,] (gGz A g*G*) = [g. g*]Gs. The top row is exact and it is apparent the right hand 
square commutes. Let r be as above. It is possible to write r = r*fC, where f” E FJ, 

{xi,yi:lsiQn}cX, ri =ztl and xi <yi, 1 sic n. Clearly p(~(r[R, F])= 

xy_, ei{r(xi)Gz A r(yi)Gz}, so that for any distinct pair of generators x, y appearing 
in r with x < y, the coefficient of rr(x)G~ A r(y)Gt under ~(r is (r*, [x, y]), the 
exponent sum of commutator [x, y] in f*. A counting argument considering the 
contribution of each appearance of y in f” shows that 

(r; r, Y> = tr*;x, Y> 

and an inductive argument on n shows that 

(r*; x9 Y) = b*; rx, Yl). 

Thus 9(G)on = POa. Cl 

Hence 0, is connected with the third term of the lower central series of G. 
However, analysis of the diagonal comultiplication provides a finer classification of 
groups than is given by the first two factor groups of their lower central series, that is, 
it gives a new method of testing for non-isomorphism of groups with isomorphic first 
and second integral homology modules. 

As mentioned earlier, 9(G) carried the same information as the diagonal comul- 
tiplication if G has a free presentation 1 +R-,F+G+lwithR~Fr.Suchgroups 

include the one-relator groups with non-trivial multiplicator: their diagonal comul- 
tiplication is completely analysed elsewhere [6]. Here we analyse the finitely 
generated nilpotent class 2 groups of this kind. 

4.3. Lemma. Let G be a finitely generated nilpotent group of class 2 which has a free 

resolution 1 + R + F + G + 1 with R c Fz. Then G is determined solely by 9(G). 

Proof. Let F* = F/F3 and R* = R/F3 so that 1 + R * + F* 36 + 1 is exact, Fz = 

FJF3 and R* c FT. There is a diagram 

H2(G; Z) -=+/j2H1(G;Z)~G2-1 

I I- I 
KU=*; Z) -A2 HI(F*; Z)T F; - 1 

with exact rows, and vertical maps all induced from H. The central one is an 
isomorphism. Clearly the right-hand square commutes. For any group H, there is an 
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isomorphism CL: /jz H1(H/Hz; Z) + H2(H/H2, Z), and the homomorphism H + 
H/Hz induces $0 9(H), so that the lefthand square is induced from 

G - G/G, 

and must commute. Since [,] is an isomorphism, CB(F*) = 0. Consequently, 
Imkd(G)=Ker[,]zKer(FT +G*)=R*. Cl 

To cbaracterise these groups completely, it is necessary to determine the invariants 
of .9(G), that is, to abstract that information contained in the diagonal comul- 
tiplication which is independent of ismorphisms of the first two homology modules. 
This poses a difficult and as yet unsolved problem in matrix theory. Partial solutions 
are available on the assumption that H2(G; Z) is free abelian (for example if G in 

(4.3) is torsion-free and cd G s 2). For then, if G is a group with Hl(G; Z) z Z” and 
HI(G; Z)=Z” and comultiplication R :Z” +Z’“OZ”‘, the problem is to deter- 
mine the form of a canonical representative of the set of all skew-symmetric linear 
maps ~:Z”+Z”OZ” for which there exist isomorphisms (Y : Z” = Z” and 
p:Z”= Z” such that roa = pOpon. This canonical form has been established 
for all m with n = 1 (see [6]) and for all n with m = 2 and m = 3. Work is current for 
m=4andn=2. 
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