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INTRODUCTION 

It was noted in [ll, 123 that there is a close interrelation between the 
local theory of lattices over a classical order and torsion-free modules over 
an artinian algebra with respect to a hereditary torsion theory. This 
connection is most apparent if the order A is a subhereditary order. This 
means that there exists a hereditary order r such that 

rad(r) c II c f. 

In this case the study of n-lattices is closely related to the study of the 
socle-projective modules over the algebra 

9 = Urad(O UraW) 
0 1 /i/rad(I’) ’ 

(These modules were also studied by Simson [ 131 and Nishida [6], and in 
[7].) The aim of this note is to elaborate on this connection. 

The most prominent examples are the generalized Backstrom-orders 
which were treated extensively in [7]; in this case 9 is a hereditary 
algebra. These generalized Backstrom-orders seem to play the same role 
from the point of view of integral representations as do the hereditary 
algebras in the artinian situation. In the artinian case the theory of simply 
connected algebras of finite representation type, i.e., the Auslander-Reiten 
quiver is connected, and every T-orbit passes through a projective module 
is via the tilting theory [S, 33 closely related to the representation theory of 
hereditary algebras. We hope that a similar connection can be established 
between generalized Backstrom-orders of finite representation type and 
orders, whose Auslander-Reiten quiver is connected, and every T-orbit 
either passes through a projective lattice or through a r-lattice. 
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The paper is organized as follows. In the first section we study a very 
general situation: R is a complete local noetherian integral domain with 
field of fractions K. A is a finite dimensional K-algebra, and rad(r) c A c r 
are R-orders in A (i.e., A is finitely generated as R-module, and spans A). 
In this situation the category &X’(f) of R-torsion-free finitely generated 
A-modules X with T-X projective over r is representation equivalent to 
the category of socle-projective modules M over the algebra 9 above, 
which do not have simple direct summands (Theorem I). 

In Section 2 we study irreducible maps and almost split sequences in 
Y(9) and .~?‘(r) resp., extending results from [7] (Theorem II). In this 
very general situation we prove Brauer-Thrall lf for the category ,&Y”(r) 
(Theorem III). 

In Section 3 we turn to the classical situation, where R is Dedekind, A is 
separable and r is hereditary, and we describe the Auslander-Reiten quiver 
of A; in this case ,,&YO(f) comprises all A-lattices. One of the main results, 
Theorem IV, is that indecomposable f-lattices have A-projective successors 
in the Auslander-Reiten quiver of A. Finally, in Theorem V, we show that 
the orders A of finite lattice type, which are subhereditary and for which 
P’(9) has preprojective components are precisely those possessing 
indecomposable lattices Qi, . . . . Q,, which have only projective successors 
and such that every oriented cycle in the Auslander-Reiten quiver A(A) of 
A passes through one of the Qi (equivalently, A(A)\{Q,),, iGs has no 
oriented cycles). As A. Wiedemann has noted, the second condition is 
satisfied, provided K . @ ;= , Q i is a faithful A-module. 

Some of the results here (Theorems II and IV) were proved in [7] for 
generalized Backstrom-orders and the proofs carry over for subhereditary 
orders. This was done in the “Diplomarbeit” of Th. Weichert [15]. 
Weichert has also supplied the example in Section 3. 

We finally point out that the results of Sections 1 and 2 also apply in the 
folbving situation: Let A be a field and A a finite dimensional k-algebra, 
contained in a semi-simple R-algebra r (e.g., via the regular represen- 
tation). In this case ,+@‘(T) consists of the finitely generated A-modules I’, 
contained in a f-module W with f. V = W, 

1. A CATEEGORICAL EQUIVALENCE BETWEEN LATTICES AND 
ARTHINIAN MODULES 

The result in this section was proved for classical orders in [ 11, 123 (see 
also [7]). We shall review it here in the following more general situation: 

Let R be a commutative noetherian complete local domain with field of 
quotients K and let A be a finite dimensional K-algebra. An R-order A in A 
is a subring of A containing the same identity as A such that 
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(i) A is finitely generated as R-module, 
(ii) K. A = A; i.e., A contains a K-basis for A. 

Given two orders A c f we shall consider the full subcategory ,+V”(Z) 
of the category of left A-modules, which satisfy 

ob( ,,AO(Z)) = (X= R-torsion-free finitely generated left 
A-module with f. X projective over f ). 

Note. We identify KQR X= K. X= A .X, X being R-torsion-free, and 
hence we can form Z. X inside A . X; however, one should observe that 
f. X is in general different from TO,, X: as a matter of fact, f. X is the 
quotient of Z@,, X modulo its R-torsion submodule; note that the latter is 
a r-submodule. One sees this by considering the natural map ZQ,, X+ 
Z@,, K.Xs K.X, induced from the inclusion X+ K.X. In particular 
every A-homomorphism in ,1S &O(Z) between X and Y gives rise to a 
Z-homomorphism between Z. X and Z. Y. Conceptually one can view X as 
a form of the projective Z-module f. X. It should be noted that this con- 
cept can be applied in the more general situation to any ring Z and a sub- 
ring A, if one considers only those left A-modules which are A-submodules 
of a, free Z-module. 

Without loss of generality we can always assume that A is indecom- 
posable as a ring. 

Remarks. (1) In the classical situation, where R is a Dedekind domain 
and A is separable, A is any Rorder in A and f is a hereditary R-order 
containing A, then ,+%!‘O(Z) is just the category of all A-lattices. 

(2) In the algebraic geometric situation, where R is a regular, ,4 is the 
local ring of dimension d of an isolated singularity. In this case f is the 
normalization of ,4; then ,+6”(Z) contains just the A-modules X which 
become projective when extended to r; i.e., f. X is Z-projective. (The same 
applies if Z is any ring between A and its normalization.) 

Choose now a two-sided A-ideal I such that 

(i) I is also a two-sided Z-ideal, 
(ii) Zcrad(A), the Jacobson radical of A. 

We observe that then automatically 

Zc rad(Z). 

In fact, Zc rad(A ) and so I is nilpotent modulo 

rad(R)*Acrad(R).Zcrad(Z); i.e., Zc rad( Z). 



LATTICES OVER SUBHEREDITARY ORDERS 43 

With this notation we put 

d=A/I and ??I = z-p. 

Then ~4 and 33 are finitely generated algebras over the commutative local 
ring R = R/(R n I). Moreover, the inclusion A + f induces an R-algebra 
injection d + 39, and we identify d as a subring of SY. We now construct 
the pair category d as follows: An object consists of a finitely generated left 
d-module U and a finitely generated projective left B-module V together 
an &‘-monomorphism 

such that 

C&f . Im( a) = V. 

Morphisms in ~$7 are commutative diagrams 

where a is d-linear and /I is Slinear. 
It should be noted that 8 can be identified with a certain category of 

finitely generated modules over the artinian algebra 

We now construct a natural functor 

F: /&“(r)- 8, 

Mw (M/Z.ML T.M/Z.M), 

where c is induced by the inclusion 1: M + Z. M. Moreover, if a, : M + M’ 
is a /l-homomorphism in ,,A’(Z), then it induces a Z-homomorphism 
8, : Z. M + Z . M’ rendering the following diagram commutative: 

M&Z-,M 

1 1 
M’- T.M’. 
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Hence we obtain a morphism in 6 

MfI.M---+ r .MjI.M 

d Ia 
M’/I.M- r.M’lI-M’. 

It should be noted that I’-. 44/I. M is W-projective, I-. M being r-projec- 
tive. Moreover, 

THEOREM I. The functor F induces a representation equivalence between 
,,,H”(r) and 8; i.e., F induces a bijection between the indecomposable objects 
in ,&Z’(f) and in 8’. 

Remark. The essential and important point of the theorem is that it 
allows one to compare the lattices in ,&O(r) with the finitely generated 
modules in 8, which are modules over the artinian algebra 9. The 
application of this result in later sections is as follows: Under certain 
conditions, the category 8’ is closely related to the category of finitely 
generated Smodules, which have a projective socle. This category has 
almost split sequences, and the structure of its Auslander-Reiten quiver 
allows one to deduce structural results about ,&Z’(f). 

For the proof we have: 

Claim 1. 5 is up to isomorphism surjective on objects. 

Proof of Claim 1. Let U +” V be an object in 8. We may assume that o 
is a set theoretic inclusion. Since V is a projective %module, let Q be 
the projective r-module reducing to V, i.e., II: Q + V is the induced 
epimorphism and put M = x-‘(V). Then ME n~o(f) by Nakayama’s 
lemma. This proves Claim 1. 1 

Claim 2. IF is surjective on morphisms. 

ProoJ Given a morphism (a, /I) in 8, we may assume thanks to 
Claim 1 that we have a commutative diagram 

M/I.MAI-.MII.M 

M'/I.M'-%r.M'fI.M' 
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with 44, M’E “A’(r). Since r. A4 is f-projective we can complete the 
following diagram commutatively by a f-homomorphism /.I, : 

T.M--+ r,MfI.M--+ 0 

81 
I I 

B 
T.M’- l-‘.M’/I.M’-0. 

The given morphism (a, /I) induces an d-homomorphism viewing 
r. M/I. M as an d-module 

y: Coker(a) -+ Coker(a’). 

Since Coker(u) 31 r. M/M, we find, using the commutative diagram 

O-M- l--M- r.M/I.M-0 

I I 81 I Y 
O-M’- T.M’--+ r.M’/I.M’-0, 

that a1 = /I1 I,,,: M + M’ is a A-homomorphism, which under IF gives rise to 
(a, /I). This proves Claim 2. 1 

Claim 3. (F reflects decompositions; i.e., if for a: M-B M’, the map IF(a) 
is a split epimorphism, then a was a split epimorphism to start with. 
(Similarly for split monomorphisms.) 

Proof: In view of Claim 2 it suffices to show that IF reflects 
isomorphisms. With the notation of the proof of Claim 2, let (a, B) be an 
isomorphism in 8’. We have to show that a, : M + M’ is an isomorphism. 
From Nakayama’s lemma it follows that a, is surjective. By using the 
inverse of (a, p) we conclude that we also have a surjective map 
az: M’ + M. Passing to the corresponding A-modules we conclude, 
counting K-dimensions, that a, must be injective; whence an isomorphism. 

This proves Claim 3 and completes the proof of Theorem I. m 

Remark. The above situation is most transparent, if I= rad(r); i.e., if 
we have an inclusion 

rad(r) c rad(A) c A c f. 

We shall assume this from now on. In this case W is semi-simple over 
R = R/rad(R) and & is a finite dimensional R-algebra. Thus, if we consider 
the algebra 

9= 
w .4# [ 1 0 d’ 
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then 9 has a projective socle. We denote by Y(9) the full subcategory of 
finitely generated left G&modules which have a projective socle. Then we 
have: 

LEMMA 1. Let S,, . . . . S, be all the simple non-isomorphic &modules, 
then 

oh(d) = { UE Y’(9): (I has no simple direct summand}. 

ProojI This is just a restatement of [7, Proposition I, p. 8, and 
pp. 26271. 

The R-algebras 3 that arise in the above construction can easily be 
described as follows: 

LEMMA 2. A R-algebra go is Morita-equivalent to an algebra 

9 = Wad(r) r/rad(r) 
0 A/rad( r) 1 

fop R-orders A, I- with 

rad( r) c A c r, 

if and only if Q0 has a projective left socle, and no simple ring direct factor. 

Proof: Obviously 9 has a projective left socle and no simple ring direct 
summand. Conversely, let the socle S of 9,, be projective as a left module. 
Let P be the direct sum of the non-isomorphic non-simple projective left 
9&-modules. There is no loss of generality if we assume %J, to be indecom- 
posable as a ring. Then 

soc( P) @ P 

is progenerator for the category of left 9,,,-modules. Hence 9,, is a Morita- 
equivalent to 

g = 
[ 

End,,(SWP)) End,,(Wp)) 
0 1 En&+,(p) ’ 

In fact, Horn,, (Soc( P), P) = End,, (Soc( P)) and Hom,,( P, Soc( P)) = 0, 
Sot(P) being projective, and P having no simple direct summand. 

Moreover, the natural map 

@: End,,(P) + End,,(Soc(P)) 

is injective, Soc( P) being projective. 
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Now 9 can even be realized with R-orders A and r over a Dedekind 
domain by choosing r such that f/rad(r) = End,,(Soc( P)). We then take 
n to be the pullback of the diagram 

f ----+ End,,(Soc(P)) 

I I 
/1+ End,,(P). 

This proves Lemma 2. 1 

Note. In [ 12; 7, 1.111 a necessary and sufficient condition was given for 
the category P’(9) to have finitely many indecomposable objects provided 
9 was the tensor algebra of a multivalued oriented graph [4], in particular 
9 is a hereditary algebra. In this case n is called a generalized Backstrom- 
order [7], the representation theory of which is well understood. 

2. IRREDUCIBLE MAPS 

Let %? be either ,+&O(r), or y(9) for a left socle-projective d-algebra 9, 
and recall, that we always assume 

rad(r) c rad(n) c n c r. 

DEFINITIONS. (1) A morphism X -+‘J’ Y in %’ is said to be irreducible if 

(i) rp E rad(+?(X, Y)), where %(X, Y) is the set of morphisms between 
X and Y in %, and rad(‘Z(X, Y)) are the non-split maps between X and Y; 

(ii) for every factorization 

X’P’Y 

/I I 
B 

X&Z 

either a is a split monomorphism or b is a split epimorphism. 

(i) and (ii) can be summarized by saying 

q E rad(%(X, Y))/rad2(%(X, Y)). 

The R-module (d-module) 

rad(%(X, Y))/rad2(%(X, Y)) 

is called the “module” of irreducible maps. 

481/121!1-4 
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(2) An exact sequence 

lE:o-x*YLY-z-0 

in S?? is said to be an almost split sequence, provided 

(i) IE is not split exact, 
(ii) every x: Z’ + Z, which is not a split epimorphism, factorizes via 

+. Every x’ : X + X’, which is not a split monomorphism, factorizes via cp. 

A map cp($) which is not a split monomorphism (split epimorphism), is 
called a source map (sink map), if it satisfies 2 (ii). 

(3) V is said to have almost split sequences, if for every indecomposable 
X, which is not ext-injective in Q?; i.e., the functor Ext$( -, X) is not zero 
( Y, which is not ext-projective in 59; i.e., the functor Ext&( Y, - ) is not 
zero) there exists an almost split sequence in %‘, beginning with X (ending 
in Y). 

Note. If X is not ext-injective in 9’(g), then in the almost split 
sequence in y(9) 

where Ei, 1~ i < n, are indecomposable, the (cp,)i c iG n form a basis of the 
“space” of the irreducible maps leaving X, and dually the ($i) i <i < n form a 
basis of the “space” of the irreducible maps ending in Y [lo]. 

We first turn to y(9), where 9 has a left-projective socle. For a finitely* 
generated left g-module M we denote by tM the maximal submodule, the 
socle of which has no projective submodule, and put fM= M/tiU. The 
modules tA4 are the torsion-modules in a hereditary torsion-theory [14]. 
The category P’(9) has almost split sequences as was observed in [2, 81. 
In [7,2.6] the following result of C. M. Ringel and the author was proved 
(in much more generality): 

THEOREM II. If 9 is left socle-projective, then Y(9) has almost split 
sequences, which are constructed as follows. Given X indecomposable in 
P’(9) which is not an injective O-module. 

(i) X is ext-injective in Y(9) tf and only tf in the almost split sequence 
for X in the category of all finitely generated left %modules 

E:o-x-B-2-0 

we have fp = 0. 
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(ii) If X is not ext-injecrive in Y(9), then 

o-x- F/t2-g-0 

is the almost split sequence in 9’(g). 

We now turn to % = ,&O(T). For arbitrary R it is not known whether g 
has almost split sequences. Only in the following situations: 

(1) R is Dedekind and r hereditary [7], i.e., the classical situation. 
(2) In case n is the coordinate ring of an isolated singularity. 

(M. Auslander [l] has shown that in these cases the category of 
Cohen-Macauly modules has almost split sequences; but our category is 
different from that of the Cohen-Macauly modules.) 

“A’(r) has almost split sequences. (The existence in the second case was 
proved in [9].) 

Because of the connection between irreducible maps and almost split 
sequences we shall have a close look at irreducible maps and our functor 

IF: “A”(r) - Y(9) (as introduced in Section 1). 

LEMMA 3. Let cp: M- N be a map between indecomposable modules 
in ,,./Z’(r). Assume F(cp)#O. If [F(q) . IS irreducible in Y(9), then cp was 
irreducible to start wth. 

Proof Since B= Im(lF) c sP(Q), (F(q) is irreducible in 8. Surely 
cp E rad(Hom,(M, N)) by Theorem I. Given now a factorization in &O(r) 

M-% L, 

then we have IF(q) = F(a).F(/?) an so IF(a) is a split monomorphism or d 
IF(b) is a split epimorphism. But by Theorem I, split maps lift to split maps. 
This proves Lemma 3. 1 

We pause a moment to draw some interesting consequences from 
Lemma 3. Let V be either “&O(r) or Y(g). 

DEFINITIONS. The Auslander-Reiten quiver of V is the oriented graph, 
which has as vertices the isomorphism classes of indecomposable objects in 
%, and there is an arrow from [X] to [Y], provided, there is an irreducible 
map in % from X to Y. 
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For ME ,,A0 we define the size of A4, sz(M), to be the number of 
composition factors of K. M as A-module. 

THEOREM III (Brauer-Thrall l+). Let A be a connected component of the 
Auslander-Reiten quioer A( ,,A’( f )) of ,,&Z”( f) such that : 

(i) The vertices of A hatle bounded size; i.e., the sizes of the modules in 
A have a uniform bound. 

(ii) F(A) contains at least one module for each ring direct factor of 53. 

Then 

(a) A(,&f”(0) = A, 
(/I) A(,,&‘(r)) isfinite; i.e., n&!o( r) has only finitely many indecom- 

posable lattices. 

Remarks. (1) The hypothesis (ii) is satisfied if, for example, A contains 
all indecomposable projective n-lattices or if A contains all indecomposable 
projective r-lattices. 

(2) The hypothesis (ii) is superfluous if dim R = 1 and r is hereditary 
in a separable algebra A, since in this case ,&Z’(r) is the category of all 
n-lattices, and then one knows the result. 

(3) It is likely that the hypothesis (ii) is superfluous in general, cf. [9]. 

Proof: Because of Lemma 3 and Theorem I, IF(A) is a union of connec- 
ted components of the Auslander-Reiten quiver of B = Im( IF). (The notion 
of the Auslander-Reiten quiver of d should be self-explanatory.) It follows 
from the proof of [7,4.4] that an irreducible map in d is also irreducible in 
Y(g). Thus the Auslander-Reiten quiver A(6) of d is obtained from 
A(9’(C2)) by omitting the points corresponding to the simple projectives in 
Y”(g) and qmitting all arrows leaving the simple projectives. We show next 
that the vertices in F(A) have uniformly bounded composition lengths. To 
see this we note that there exists n E IV such that for every [M] E A, r. M 
has at most n indecomposable summands. Hence all modules in F(A) have 
their number of composition factors in the socle uniformly bounded by n. 
Thus the number of indecomposable summands in the injective envelope of 
all modules in F(A) is uniformly bounded. Consequently, the composition 
length of all modules in F(A) are uniformly bounded. Thanks to Lemma 3, 
IF(A) decomposes into a finite number of connected components Ai, 
16 id n each of which has uniformly bounded composition length. Now 
these are components in the Auslander-Reiten quiver of B. Let A,, , be the 
Auslander-Reiten quiver of 8 without the components Ai, 1~ i < n. Note 
that in A(Y(9)) there are no irreducible maps between Ai and Aj for i#j. 
Let now S be a simple projective Q-module. Note that, because of 



LATTICES OVER SUBHEREDITARY ORDERS 51 

Lemma 2, S cannot be injective, and so S has an almost split sequence in 
Y(B) 

O-S-@E,-T-O, 

with Ei indecomposable. Assume that E, E Aj. Since T, Ei E d we conclude 
that T, Ei~ Aj for all i, since there are no irreducible maps between Aj and 
A, for k# j. Let 3 be the component in A(Y(9)) generated by A,, 
1 < j< n + 1. Then Aj, 1 <j< n, are connected components in A(Y(9)) all 
modules of which have uniformly bounded composition length. By 
hypothesis, U;=, di contains at least one module from each ring direct 
summand of 9, and so we can invoke Brauer-Thrall 14 for P’(9) [7,2.14], 
to conclude A(Y(9)) = U;=, d”i is finite and the statement of the theorem 
follows. 1 

In order to discuss the irreducible maps cp in n~#Zo(f) we have to restrict 
the morphisms in ,,M’(ZJ considerably; since we are mainly interested in 
indecomposable objects, this is not a severe restriction. 

DEFINITION. ,,&‘(r), has as objects the same objects as ,,&‘(r), but 
we allow only morphisms cp: M + N, M, NE ob(n&Yo(r)) such that 
re Im(cp) is r projective. 

Remarks. ( 1) We still have a representation equivalence between 
,&!‘(f), and 6; i.e., Theorem I remains valid for ,,JZ’(~),. To see this we 
make the following observation: 

(i) Let 

be a morphism in 6. Since 93 = r/rad(r) is semi-simple, we have a decom- 
position V’ = Im( Vo. Hence we can lift v’ to a projective r-lattices 
Q’ = Q, 8 Qz, where Q, reduces to Im(/?). Now we lift /I to 8, : Q + Ql , 
where Q is a lift of V. If now 

P,:QB’.Q,--e,@Q,, 

then the proof of Claim 2 shows that (tl, /3) can be lifted to a morphism in 
/dams. 

(ii) If we have a composition 1~ of the morphisms of 8, then 1 can 
be lifted to cp and p to $; cp, $ morphisms in nM”(r), such that the com- 
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position is a morphism in nA’“(T)S. (Note that in general the composition 
of morphisms in ,,A%‘~( f), is not a morphism in ,@V”(f),.) 

The idea of a proof is the same as in (i), and we indicate it symbolically: 

Q- Q,O& - Q; OQ;@ Q;. 

(2) Thanks to (ii) above, Lemma 3 carries over to “A’(r),, and 
consequently Theorem III holds in ,,A’( r),. 

(3) In the classical situation, where dim R = 1 and r is hereditary. 
,%M”(r) = AA”(r),* 

LEMMA 4. Let cp : M + N be an irreducible morphism between indecom- 
posable objects in ,,~‘4~(r),. rf F( cp) = 0, then r. M is an indecomposable 
projective r-lattice, and N is A-projective. (The converse is trivially true.) 

Proof: Since F((o=O, Im(rp)crad(f). N moreover f -Im(cp) is 
r-projective, and we have the inclusions 

Im(cp)cT.Im(cp)crad(T).NcNcT.N. 

Since Im(rp) E ob(,AO(f)), we have the factorization 

M”-N 

II I 
B 1 noteT.Im(cp)Eob(,&‘(T)). 

ML r.Irncp 

However, /3 is not a split epimorphism, and so c1 must be a split 
monomorphism. But M was indecomposable, and so M = f. Im(cp) is an 
indecomposable projective r-lattice. 

Let now 

be the projective cover of N as A-module, and note that K is a morphism in 
,&!“(r),. K induces a split morphism 

I--P-+ T.N, with I . K = id,. N, 

and hence a split epimorphism 

rad(r) . P A rad(f) . N. 
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Then the following diagram is commutative: 

rad(f). P”- rad(T)-N 

and we have the commutative diagram 

M= A4 rp bN 

I 
rad( r) . M 

I /- rad(r) . P- rad(f). 

* I/ 
P= P 

If N is not projective, then a must be a split monomorphism, but 
M c rad( f) . P c rad,( P) c P cannot be a direct summand of P. Thus N is 
n-projective. This proves Lemma 4. 1 

In this general situation, I cannot say anything in case cp is irreducible in 
n.MO(r)(.Ao(r),) and F(q) # 0. I would need Lemma 4 for ,,A0 (that the 
morphism sets in ,&O(r), form abelian groups). However, Lemma 4 does 
not hold in “&X’(r) and the morphism sets in ,,JY’(T)~ do not form 
abelian groups in general. The remedy is to turn ro the classical situation : 

LEMMA 5. Let dim R = 1 and assume that I- is hereditary and A is 
semisimple. Let $ : M + N be an irreducible map between indecomposables in 
,,M’(r). If IF(p) # 0, then IF(q) is irreducible in Y(9). 

Proof: If follows from the proof of [7,4.4] that it is enough to show 
that IF(q) is irreducible in 6’. Assume we have a factorization in d 

VW IFcrp) * IF(N) 
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where XE ob(.,,,&~“(fJ). Cc and /I can be lifted to morphisms in “&‘O( f-); but 
in general cp # c$. We show first that 

cannot be irreducible. In fact, assume that II/ is irreducible. Then by 
Lemma 4, M is a r-lattice and N is a projective n-lattice. Since cp was 
irreducible, it follows that Im(cp) is a direct summand of rad,(N); but then 
also Im(cp) c rad( f-). N by [7, 1.41. Thus IF(q) = 0, a contradiction. Hence 
II/ is not irreducible, and so + l rad’(Hom,(M, N)). But then cp is 
irreducible if and only if a/? is irreducible. Thus IF(q) is irreducible. This 
proves Lemma 5. 1 

In the classical situation of generalized Backstrom-orders, the 
predecessors of an indecomposable r-lattice Q in the Auslander-Reiten 
quivers must be injective /l-lattice, and the successors of Q are projective 
/i-lattices [7, Set. 41. 

It is surpirsing that this result also holds in the very general situation 
considered here. for the successors. 

LEMMA 6. In ,&Z’(r) let cp: Q + M be an irreducible map with Q an 
indecomposable projective r-lattice and M indecomposable in ,JI”( f). Then 
M is a projective A-lattice. 

ProoJ We first show that IF(q) = 0. If not, we have a non-zero map 

which cannot be an isomorphism, cp being irreducible-note that IF(Q) and 
F(M) are indecomposable. Since F(Q) is an injective Q-module-not just 
an injective object in &-the map IF(q) factors via lF(Q)/soc(lF(Q)), where 
soc( F(Q)) denotes the socle of F(Q) as &@-module. But ff( Q)/soc( IF(Q)) is 
torsion, whereas F(M) is torsion-free. So there are no non-zero maps from 
F(Q) to F(M). Thus F((o=O. If one now reviews the proof of Lemma4, 
one sees that then M must be an indecomposable projective &lattice. 
(Note that in Lemma 4 the hypothesis cp E .&Z”(r), was only used to 
ensure that M is an indecomposable projective r-lattice.) This proves 
Lemma 6. 1 

I can only prove the corresponding statement for the predecessors under 
additional assumptions. 

LEMMA 7. Assume that ,+V”(f) has left almost split sequences. (This is 
surely so, if dim R = 1 and r is hereditary.) If Q is an indecomposable 
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projective r-lattice and ME A.4lo(r) is indecomposable with an irreducible 
map cp : M + Q, then M is an ext-injective object in ,,.H”( r). 

Proof. If M is not ext-injective, then it has an almost split sequence 

O-M 

\@/ 

N- 0. 

E 

According to Lemma 6, N is projective, a contradiction. This proves 
Lemma 7. 1 

Note. The lemma actually only needs [F(q) to be irreducible. 

3. THE CLASSICAL SITUATION: 
AUSLANDER-REITEN QUIVERS AND EXAMPLES 

We assume henceforth that R is one dimensional, that A is separable, 
and that /i, f are R-orders in A with r hereditary, such that 

rad(r) c n c iY 

The notations from the previous sections are retained. In that case 
,+4!‘(r) = “.M” is just the category of all left n-lattices. And so the 
Auslander-Reiten quiver A(n) = A(,&‘) of all &lattices carries an 
additional structure, namely the partially defined translation coming from 
almost split sequences, together with a valuation on the arrows. The same 
holds for ,4(9’(Q)). (For details we refer to [7,2.12].) The structure of the 
Auslander-Reiten quivers A(n) and A(9’(9)) are intimately related. 

Let us recall the definition of the permutation associated to a hereditary 
order K Let (Qi)l<i<m be the non-isomorphic indecomposable r lattices. 
Since r is hereditary, these r-lattices are at the same time injective 
r-lattices; thus Qi has a unique minimal over-lattice S(Qi), which is again a 
projective r-lattice, and hence 

S(Qi) = Qo,;, 

for some a(i) E (1, 2, . . . . m). This map Q: (1, . . . . m) + (1, . . . . m) is a 
permutation, called the permutation of r. 
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THEOREM IV. (i) Zf M and N are indecomposable A-lattices, and M is 
not a r-lattice, then rile have for the spaces of irreducible maps 

Irr,(M NJ = Irr,(,,W(W, UN)). 

(ii) If M is a r-lattice, say M = Q;, then for an indecomposable 
projective A-lattice P 

Irr, (Qi, PI N IrrSP(~~(Q(r(i)lradT(Q~(i))r UP)). 

(iii) The Auslander-Reiten quiver of A is obtainedfrom that of Y(9) 
by identifying the injective g-module 

Ei = Qi/radr(Qi) 
QibdAQi) 1 

with the simple projective g-module 

so(i) = Qdradr(QbciJ 1 0 . 

Proof: The first statement is just a summary of what was proved in the 
Lemmata 3, 4, and 5. We also know from Lemma 6 that the only 
irreducible maps from Qi are of the form 

where P is indecomposable projective over A. 
We prove (ii) in the form of 

LEMMA 8. There is a natural bijection between the irreducible maps 
Qi --f P in AA’ and the irreducible maps 

QdrWr). Q,(i) 
0 1 + 5(P). 

Proof: This will be established if we can show Qp)-i.e., s copies of 
Qi-is a direct summand of rad,(P) if and only if (Srr#’ is a direct 
summand of rad, (lF( P)). 

By definition of 6, QiS) is a direct summand of rad(r) . P if and only if 
(QCCiJCS) is a direct summand of f. P. We write 

rad,,(P) = X@ Q, 
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where Q is a f-lattice and X does not have any f-direct summands. Then 
by [7, 1.41 we have 

rad,(P)/rad(f) . P 2: X/rad(f) .X, 

the isomorphism being induced from the inclusion X+ rad,(P). In 
particular Q c rad( f) . P. 

Hence 

rad(f).PIrad(f).X@Q. 

However, the above equality shows 

rad(f).P=rad(f).X@Q. 

If Q = @)Y=, QF’a) we put I I’ 

S(Q) = 6 (Qo(i)P). 
i= 1 

With this notation we have 

f-P=f .X@,S(Q). 

We now can put 

rad(F(P)) = 
f. P/rad(f) . P 

rad(P)/rad(f) . P 1 
= (f.XOs(Q))/(rad(f).XOQ) 

(JS QMraW) -X@ Q) 1 

Hence in Y(9) we have the irreducible map 

[ 1 s(Q)'Q + F(P). 
0 

We shall show next that 

S(QYQ [ 1 0 
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is the maximal semi-simple summand of rad( F( P)). Let X = @ :=, X, be the 
decomposition of X into indecomposables and let Gi: A’, + P be the natural 
inclusions. Then the I/~ are irreducible and since no Xi is a r-module, we 
conclude with Lemmata 3, 4, 5 that 

is irreducible, whence the statement. 1 

This proves Lmma 8 and Theorem IV. 1 

EXAMPLE [ 15, p. 851. Let I-= (R)417(R)4Z7(R),, then the permutation 
of r is the identity. Let A be defined as follows: 

R 

R li R 

R 

nRRRrrRr 

R R I[ R x 

Here the matrix entries linked by a line are congruent modulo K, where rc is 
the maximal ideal in R. 

The algebra 9 is the path-algebra of the graph 

where the dotted arrows are zero relation and C indicates a commutativity 
relation. 
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The Auslander-Reiten quiver of 9’(g) is given as 

According to Theorem III, the Auslander-Reiten quiver of ,,A0 is 
obtained from ,4(9(9)) by identifying the modules liJ, . . . . q and 0, @ 
and (l), (1). The projective n-lattices are indicated by [n, and the injective 
/i-lattices by m]. 

Remark. The Auslander-Reiten quiver A(n) of the category of ,4-lat- 
tices in the above example has the following property: If T is the 
Auslander-Reiten translate, i.e., in an almost split sequence 

N = r-‘(M), then each T-orbit in A(n) contains either a projective n-lattice 
or a r-lattice. This is equivalent to the Auslander-Reiten quiver of Y(9) 
having a preprojective component. 

This phenomenon can be characterized by the internal structure of the 
order /1. To do so we introduce some more notation: 

DEFINITIONS. (i) Let A be an R-order in A, and let Q,, . . . . Q, be those 
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indecomposable A-lattices which have only projective A-lattices as 
successors (equivalently, have only injective predecessors) in A( A ). Denote 
by G the full additive subcategory of ,,J?’ generated by (Qi), G ibs. 

(ii) Let X be the following category: the indecomposable objects are 
the indecomposable A-lattices not in G, and for each indecomposable 
Q E G, we introduce new objects Q + and Q -. For X and Y indecom- 
posable A-lattices not in G we put 

X(X Y) = Hom, W, W3X Y), 

where G(X, Y) is the group of A-homomorphisms, factoring via an object 
in 6. Moreover, in addition we put 

WQ+, Y)=Hom,(Q, Y)lrad,(Q, Y), 

.X(x, Q-1 = HomAW, Q)/rad. (X Qh 

WQ+, Qi I= rad, (Q, Q,)/raG (Q, QoL 

WQ-,W=XX(XQ+,, 

where X, Y are indecomposable objects but X# Q + and Y # Q; for 
indecomposable objects Q, Q, E G. Here rad, ( , ) are maps which 
factorize via the radical in G. 

Remark. It should be noted that in case A is a subhereditary order, X 
is just the category Y(9), which is by the above definition characterized 
internally. 

We next define the separated Auslander-Reiten quiver of A. 

DEFINITION. The separated Auslander-Reiten quiver of A, A”(A), has as 
vertices 

(i) The indecomposable A-lattices, which are not in G, 
(ii) for each Qi~G, two new vertices [Q+] and [Q;]. 

The spaces of irreducible maps between two vertices [X] and [Y] are 

(i) b-r, (X, Y), if X and Y are indecomposable A-lattices not in 6, 
(ii) IrrASCn)(X, Q:)=d, Irr,,(,)(Qi, Y)=O, 
(iii) Irr,,(,,,(Q’, X) = Irr, (Qi, X), Irr,.(,)( Y, Q;) = Irr,, (Y, Qi). 

THEOREM V. For an R-order A of finite lattice type, the following are 
equivalent: 

(i) Every oriented cycle in A(A) passes through a lattice in 6. 
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(ii) A is subhereditary and A(9’(2?)) has preprojective components. In 
this case X has almost split sequences and A(X) = A(Y(9)). 

Zf A satisfies one of these equivalent conditions, we shall call A an almost 
directed order. 

Remark. The conditions (i) cannot be replaced by the condition that 
every Auslander-Reiten orbit contains a projective n-lattice or an object 
in 6: 

(1) This cannot be done just by combinatorial arguments, as the 
following example of A. Wiedemann shows: 

Here [ ) denotes projective objects, ( ] injective objects, and (1) and (2) 
have to be identified. Then every r-orbit contains a projective object, but 
the conclusions of the theorem are false. On the other hand, rank-con- 
siderations show that the above picture cannot arise as Auslander-Reiten 
quiver of an order. (We point out that this example shows that some of the 
fundamental properties of lattices cannot be detected from the purely 
combinatorial structure of the Auslander-Reiten quiver.) 

(2) Our computer has found an example of an order ,I such that every 
r-orbit of A(A) contains a projective /i-lattice., G = 0, but II is not 
subhereditary. This shows that (i) is necessary: 

EXAMPLE. The order 
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has Auslander-Reiten quiver 

Ill 21~~1~3/2 
\,/ \,/ \ 
/ \,/ \J5 
\,/\7/\g 
/ \,/ \,/ 
’ a/ ’ 
J 

1,f \/ ‘[ll] 
10 [ll I 

Modules having the same numbers have to be identified. This shows that 
every t-orbit contains a projective lattice. But there is no vertex with only 
projective successors and also n is not a subhereditary order. 

Proof. (ii)*(i) is a consequence of Theorem IV. Thus it remains to 
show (i) =s. (ii). This will be done in several steps. 

Claim 1. Let cp: Q + M be an epimorphism, where Q E G and M is a 
/l-lattice. Then cp is a split epimorphism. (This holds without any of the 
above assumptions.) 

Proof: There is no loss of generality if we assume M to be indecom- 
posable. If Qi is an indecomposable direct summand of Q and (pi = rp 1 o,, 
then ‘pi is not a split monomorphism, unless it is also a split epimorphism. 
If Qj is not an injective n-lattice vi factorizes via the almost split sequence 
of Qi: 

0 + Qi-% P- IV- 0. 

But Im(o) is a direct summand of rad, (P), for the projective n-lattice P. 
Hence 

Im(cpi) c rad, (M). 
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If Qi is an injective n-lattice, then the unique minimal overmodule Q; of 
Qi is a projective n-lattice. However, (pi is not a split monomorphism, and 
hence we get a factorization 

Since u is irreducible, Im(a) is a direct summand of rad,(P), and again we 
conclude 

Im(cp,) c rad, (M). 

But then Im(cp,) c rad, (M), a contradiction. This proves Claim 1. 1 

Consequence. The /i-lattices Qi, 1 < i< s are irreducible, for otherwise 
they would have proper images. 

Claim 2. G has kernels and cokernels of pure submodules. Every object 
in G is split projective, moreover r= End, (Of= i Qi) is a heredirary 
order. 

Proof. Let Q,, Q, E G and cp E Horn,, (Q,, Qz). Because of Claim 1, 
Im(cp) is a direct summand of Qi and so 

Ql = Ker(cp)OWrp), 

and hence G has kernels. Since cokernels of pure submodules are again 
n-lattices, G has cokernels of pure submodules by Claim 1. Again by 
Claim 1, all objects in G are split projective. Finally G is equivalent to the 
category of projective r-lattices, via a functor 

G 5 {proj. F-modules}, 

where 9 = Horn, (@;= i Qi, - ). 
In order to show that r is hereditary we must prove that rad(P) is 

projective. So let 

F(Q) - rad( r) 

481/wl/1-5 
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be a projective cover for rad(F). In G we have the situation 

Im(a). 

Because of Claim 1, c is a split emimorphism and Im(a) E G. For the 
p-modules we then have the situation 

Note that S(a) is a split emimorphism and so Im(B(r)) = rad(F). Since 
rad(p) and F(Im(a)) have the same R-rank, A must be an isomorphism. 
This proves Claim 2. 1 

Claim 3. A is a subhereditary order with associated hereditary order r, 
which is Morita-equivalent to 7: 

Prooj We define the A-module T to be the image of the evaluation 
map 

Q@ End”(Q) HomAQ, raWN + A, 

where Q = @;=, Qi. 

Remark. Up to this stage we have not yet used that A is of finite lattice 
type; however, in the proof of Claim 3 we need it, but only to ensure that 
KT is a faithful A-module. Hence in the statement of the theorem, finite 
lattice type can be replaced by the condition that KT is faithful. 

For any indecomposable A-lattice M, the multiplication with a param- 
eter n of R factorizes via objects in G, A being of finite representation type. 
Thus KT is faithful and hence by construction KT= A. 

Moreover, since for each Qi there exists a projective A-lattice Pi with 
Qi 0 Xi = rad, (Pi), we conclude that 

We now define 

Tz 6 Qi-) with ni > 0. 
i=I 

r=(aEA:a.TcT)=End,(T)IA. 
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This is then obviously Morita-equivalent to r and whence hereditary by 
Claim 2. 

In order to show that n is subhereditary with associated hereditary order 
P, we need to show that rad(P) c A. 

Since f is hereditary, every Qi has a unique minimal r-overlattice, Q;. 
Let ri: Qi + Q; be the natural injection. For any indecomposable n-lattice 
M and any morphism 

cp: Qi-A4 

which does not factor properly via an other P-lattice, there exists-because 
of the structure of A(A)--an extension 

such that cp. JI = ri. 
Let $: M+ r. M be the natural injection. Then we can complete the 

following diagram commutatively: 

In fact, if Im(cp . $) would be a direct summand of PO A4, then M would be 
isomorphic to Qi, and the statement is clear. Put X=Im(fi)+Im(l(l)--we 
can identify Im(/3) with Q,: as a submodule of f. M. 

Case 1. The map Q; + X induced by b is a split monomorphism with 
inverse r : X-r Q; . Then the map JI factors via /I and the statement 
follows. 

Case 2. The map Q; + X is not a split monomorphism. According to 
our hypothesis, the almost split sequence 

O+ Q; --L P- t-‘(Q;)- 0 

has P projective and Im(r) c rad(P). By the universal property of almost 
split sequences, we get a factorization 
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In particular, Im@) c rad,( A’). Thus $ : M -+ X-6 is induced by cp-is 
an epimorphism. But then $ is the identity and $ factorizes via 
tli: Q + Qi, a contradiction to the hypothesis. Thus we get an extension 

Let ‘pti: Qi --* M, 1 <j< mi, be a set of generators for the image of the 
evaluation 

Q@ End,,(Q) HomAQ, MI -+ M. 

Then Q. = xi, j Im(cpij) is the largest f-submodule of M, and by the above 
remark we have an extension 

Q,,L MA Q, with cp. Ic/ = 1, 

where the composition r is the natural injection Q0 + Q;. Obviously 
Q, = r. M, and since r. M/Q, is semi-simple, we conclude 
Q, = rad(ZJ . M. Hence rad(f) c ,4, and A is a subhereditary order. The 
remainining statements of the theorem are now easily verified. 

EPILOQUE 

The almost directed orders seem to be the analogue for integral represen- 
tations to the simply connected artinian algebras. Theorem V shows that 
these give rise to simply connected socle-projective categories for 9. 
However, for 9 the r-lattices Q; (in ~6) become projective. If one wants 
to copy some of the results from the artinian situation to subhereditary 
orders, one has to develop a relative homological algebra for A-lattices 
(A is subhereditary for f), where also the f-lattices are made A-projective. 
This will be done in a subsequent paper. 
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