
Journal of Multivariate Analysis 111 (2012) 94–109

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

A combined beta and normal random-effects model for repeated,
overdispersed binary and binomial data
Geert Molenberghs a,b,∗, Geert Verbeke b,a, Samuel Iddi b,a, Clarice G.B. Demétrio c

a Biostatistical Centre, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
b Center for Statistics, Universiteit Hasselt, B-3590 Diepenbeek, Belgium
c ESALQ, Piracicaba, São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 12 September 2011
Available online 1 June 2012

AMS subject classifications:
62F99
62P10

Keywords:
Bernoulli model
Binomial model
Beta-binomial model
Conjugacy
Logistic-normal model
Maximum likelihood
Strong conjugacy

a b s t r a c t

Non-Gaussian outcomes are often modeled using members of the so-called exponential
family. Notorious members are the Bernoulli model for binary data, leading to logistic
regression, and the Poisson model for count data, leading to Poisson regression. Two
of the main reasons for extending this family are (1) the occurrence of overdispersion,
meaning that the variability in the data is not adequately described by the models, which
often exhibit a prescribed mean-variance link, and (2) the accommodation of hierarchical
structure in the data, stemming from clustering in the data which, in turn, may result
from repeatedly measuring the outcome, for various members of the same family, etc. The
first issue is dealt with through a variety of overdispersion models, such as, for example,
the beta-binomial model for grouped binary data and the negative-binomial model for
counts. Clustering is often accommodated through the inclusion of random subject-specific
effects. Thoughnot always, one conventionally assumes such randomeffects to be normally
distributed.While both of these phenomenamay occur simultaneously, models combining
them are uncommon. This paper starts from the broad class of generalized linear models
accommodating overdispersion and clustering through two separate sets of randomeffects.
We place particular emphasis on so-called conjugate random effects at the level of the
mean for the first aspect and normal random effects embedded within the linear predictor
for the second aspect, even though our family is more general. The binary and binomial
cases are our focus. Apart from model formulation, we present an overview of estimation
methods, and then settle for maximum likelihood estimation with analytic-numerical
integration. The methodology is applied to two datasets of which the outcomes are binary
and binomial, respectively.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Like other outcome types, binary and binomial data are often measured in a longitudinal or otherwise hierarchical
context. Over the last half century, a whole collection ofmodeling approaches has been put forward. Many are placedwithin
the generalized linearmodeling (GLM) framework [22,16,1], a unifying framework based on the so-called exponential family
distributions. That said, a key feature of the GLM framework and many of the exponential family members, the so-called
mean-variance relationship, may be overly restrictive. This relationship indicates that the variance is a deterministic function
of the mean. For example, for Bernoulli outcomes with success probability µ = π , the variance is v(µ) = π(1 − π).
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In contrast, for continuous, normally distributed outcomes, the mean and variance are entirely separate parameters. While
i.i.d. binary data cannot contradict the mean-variance relationship, i.i.d. binomial data can. Both data types are scrutinized
here.

The above explains why early work has been devoted to formulating models that explicitly allow for dispersion not
following the base models. It is often referred to as overdispersion, but underdispersion can occur as well. Hinde and
Demétrio [9,10] provide broad overviews of approaches for dealing with overdispersion, consideringmoment-based as well
as full-distribution avenues. For purely binary data, hierarchies need to be present in the data to violate the mean-variance
link. One such class of hierarchies is with repeated measures or longitudinal data, where an outcome on a study subject is
recorded repeatedly over time. Apart from the presence of extra dispersion, hierarchies in the data imply the presence of
association between measurements on the same unit as well. Thus, a flexible parametric model ought to properly model
the mean function, the variance function, and the association function. While the so-called generalized linear mixed model
(GLMM, [5,2,30]) has become the dominant tool for hierarchical non-Gaussian data.

Molenberghs et al. [19, henceforth MVD] and Molenberghs et al. [20, henceforth MVDV] showed that accommodating
either overdispersion or hierarchically-induced association may fall short of properly modeling the data. Therefore, they
proposed a so-called combined modeling framework encompassing both. MVD focused on counts, whereas MVDV laid out
a general framework. They briefly exemplified it, in counts, time-to-event, and binary outcomes, but did not tackle binomial
outcomes. This is the subject of the current paper, with emphasis on the subtle differences between them.

Thepaper is organized as follows. In Section2, twomotivating case studies are presented, one exhibiting binary outcomes,
the other of a binomial type. Analysis of these is relegated to Section 6. Basic ingredients for our modeling framework,
standard generalized linear models, extensions for overdispersion, with particular emphasis on the beta-binomial model,
and the GLMM, are the subject of Section 3. The proposed, combined model is described and further studied in Section 4.
Parameter estimation is touched upon in Section 5. A simulation study, comparing the proposed model and the GLMM, is
described and results presented in Section 7.

2. Case studies

2.1. Onychomycosis

These data come from a randomized, double-blind, parallel group, multicenter study for the comparison of two oral
treatments (coded as A and B) for toenail dermatophyte onychomycosis (TDO), described in full detail by De Backer et al. [4]
and analyzed before, among others, in [18]. TDO affects about 2% of Western populations [25]. The anti-fungal compounds
studied here need to be taken during three months until the whole nail has grown out healthily. A total of 2 × 189 patients
were randomized. Subjects were followed monthly during the first quarter, during which the treatment was given, and
then scored once during three more quarters. Including the baseline measurement; this amounts to a maximum of seven
measurements per subject. The outcome of interest here is the severity of the infection, coded as 0 (not severe) or 1 (severe)
by the treating physician. The question of interest waswhether the percentage of severe infections decreased over time, and
whether that evolution was different for the two treatment groups.

2.2. Iron-deficient diets in rats

These data result from an experiment where female rats were put on iron-deficient diets [27]. This dataset has been
analyzed by Liang andMcCullagh [15] andMoore and Tsiatis [21]. In [1], the data were used to estimate several logit models.
Experimental rats were divided into 4 groups, one of which is a control group. The number of female rats per group (total
number of fetuses per group) are: 31 (327) for placebo, 12 (118) for low dose, 5 (58) for medium dose, and 10 (104) for high
dose. Weekly injections of iron supplement were to bring the rats’ iron intake to normal levels. Rats in the placebo group
were given a placebo injection, the others got three different doses of the iron supplements. Rats were made pregnant
and sacrificed 3 weeks later and the total number of fetuses and the number of dead fetuses in each litter were counted.
Hemoglobin levels of the mothers were also measured.

3. Building blocks

In Section 3.1, we will first describe the conventional exponential family and generalized linear modeling based on it.
Section 3.2 is devoted to a brief review of models for overdispersion.

3.1. Standard generalized linear models

A random variable Y follows an exponential family distribution, also known as exponential dispersion model [12] if the
density is of the form

f (y) ≡ f (y|η, φ) = exp

φ−1

[yη − ψ(η)] + c(y, φ)

, (1)
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for a specific set of unknown parameters η (natural parameter) and φ (dispersion parameter), and for known functionsψ(·)
and c(·, ·). It is well known [18] that the first two moments follow from the function ψ(·) as:

E(Y ) = µ = ψ ′(η), (2)

Var(Y ) = σ 2
= φψ ′′(η). (3)

An important implication is that, in general, the mean and variance are related through σ 2
= φψ ′′

[ψ
′
−1(µ)] = φv(µ),

with v(·) the so-called variance function, describing the mean-variance relationship.
Classical examples are for normal, binary, count, and time-to-event data. A general discussion is given in MVDV. In the

Bernoulli model, f (y) = π y(1 − π)1−y, the natural parameter is η = ln[π/(1 − π)], i.e., the logit, the mean µ = π and the
variance φv(µ) = π(1 − π). An alternative to the Bernoulli model with logit link is the probit model, where η = Φ−1(π)
andΦ(·) is the standard normal cumulative distribution function. Evidently, this model is slightly less standard because the
probit model is not the natural link, unlike the aforementioned logit link. As we will see in Section 4.3, it has appeal in the
over-dispersed and/or repeated contexts.

It is not always necessary to specify full distributional assumptions. McCullagh and Nelder [16] consider so-called quasi-
likelihood, an estimation method based on specifying mean and variance only.

To introduce covariate effects, let Y1, . . . , YN be a set of independent outcomes, and let x1, . . . , xN represent the
corresponding p-dimensional vectors of covariate values. All Yi have densities f (yi|ηi, φ), which belong to the exponential
family, but a different natural parameter ηi is allowed per observation. Specification of the generalized linear model is
completed bymodeling the meansµi as functions of the covariate values. More specifically, it is assumed thatµi = h(ηi) =

h(x′

iξ), for a known function h(·), and with ξ a vector of p fixed, unknown regression coefficients. Here, h−1(·) is the link
function. When the natural link is assumed, i.e., h(·) = ψ ′(·), one obtains ηi = x′

iξ. Maximum likelihood or quasi-likelihood
can be used for parameter estimation.

3.2. Overdispersion models

Comparing the sample average with the sample variance might already reveal in certain applications that the mean-
variance relationship is not in line with a particular set of data. While this is one of the senses in which the binary case is
somewhat exceptional, because a set of i.i.d. Bernoulli data cannot contradict the mean-variance relationship, it would still
hold for the related binomial case, where the data take the form of zi successes out of ni trials.

A number of extensions have been proposed, as brieflymentioned in the introduction. Hinde andDemétrio [9,10] provide
general treatments of overdispersion. For binary and, more general, categorical data, one could make use of the beta-
binomial model [28], reviewed in the next section, and the Bahadur model (1961). See also [18].

A common vehicle is to allow the overdispersion parameter φ ≠ 1, so that (3) produces Var(Y ) = φv(µ). This is in line
with the so-called moment-based approach, but can also be engendered by fully parametric assumptions.

An elegant way forward for various outcome types is through a two-stage approach, i.e., by placing a distribution on the
model parameter. However, for binary data, there is an issue with this. One would assume that Yi|πi ∼ Bernoulli(πi) and
further that πi is a random variable with E(πi) = µi and Var(πi) = σ 2

i . Using iterated expectations, it follows that

E(Yi) = E[E(Yi|πi)] = E(πi) = µi,

Var(Yi) = E[Var(Yi|πi)] + Var[E(Yi|πi)]
= E[πi(1 − πi)] + Var(πi)
= µi(1 − µi),

underscoring that purely Bernoulli data are unable to capture overdispersion. This is why overdispersion models for
univariate Bernoulli data, unlike in the Poisson case (MVD), are irrelevant and come into play only when either there are
hierarchies in the data or when binary data accumulate to binomial data. When a Bernoulli model for Y is combined with a
beta distribution for the parameter π , the beta-binomial model results; we elaborate upon this in the next section.

Generally, the two-stage approach ismade up of considering a distribution for the outcome, given a randomeffect f (yi|θi)
which, combined with a model for the random effect, f (θi), produces the marginal model:

f (yi) =


f (yi|θi)f (θi)dθi. (4)

It is easy to extend this model to the case of repeated measurements, as will be done in Section 4. As indicated in MVDV,
two commonly encountered ways to introduce random effects into the GLM framework is either by way of a conjugate
distribution for the parameter or by inserting normal random effects into the linear predictor. Conjugacy is understood in
the sense of [3, p. 370] and [14, p. 178]. Precisely, the hierarchical and random-effects densities are said to be conjugate if
and only if they can be written in the generic forms:

f (y|θ) = exp

φ−1

[yh(θ)− g(θ)] + c(y, φ)

, (5)

f (θ) = exp

γ [ψh(θ)− g(θ)] + c∗(γ , ψ)


, (6)
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where g(θ) and h(θ) are functions, φ, γ , and ψ are parameters, and the additional functions c(y, φ) and c∗(γ , ψ) are
normalizing functions. It can then be shown that the marginal model resulting from (5) and (6) is:

f (y) = exp

c(y, φ)+ c∗(γ , ψ)− c∗


φ−1

+ γ ,
φ−1y + γψ

φ−1 + γ


. (7)

For Bernoulli data, the conjugacy requirement produces the beta distribution. The so-resulting beta-binomial model is
reviewed next.

3.3. The beta-binomial model

The beta-binomial model can be introduced by requiring conjugacy on the one hand or, as done here, it can be generated
from first principles [28,13,18] on the other. Themodel follows frommixing the binomial parameter over a beta distribution.
Suppose that Zi|πi ∼ Bin(ni, πi) and πi ∼ Beta(αi, βi) where 0 ≤ πi ≤ 1 with αi ≥ 0 and βi ≥ 0. The density, mean, and
variance for πi then easily follow:

f (πi) =
1

B(αi, βi)
π
αi−1
i (1 − πi)

βi−1,

E(πi) =
αi

αi + βi
,

var(πi) =
αiβi

(αi + βi)2(αi + βi + 1)
.

Likewise, these elements for Zi are:

f (zi) =

 1

0
f (Zi|πi)f (πi)dπi =

ni!

(ni − zi)!(zi!)
Γ (αi + zi)Γ (ni + βi − zi)Γ (αi + βi)

Γ (αi + βi + ni)Γ (αi)Γ (βi)
,

E(Zi) = E [E(Zi|πi)] = E(niπi) = ni
αi

αi + βi
= niµi,

var(Zi) = E [var(Zi|πi)] + var [E(Zi|πi)] = niµi(1 − µi)


1 + (ni − 1)

1
αi + βi + 1


.

It is easy to show that the correlation between any two outcomes Yij and Yik, j ≠ k from the same cluster i equals
ρi = (αi +βi + 1)−1. By using this expression in combination withµi = αi/(αi +βi), the marginal density can be rewritten
as

f (zi) =


ni
zi


B

µi(ρ

−1
i − 1)+ zi, (1 − µi)(ρ

−1
i )+ (ni − zi)


B

µi(ρ

−1
i − 1), (1 − µi)(ρ

−1
i )

 .

In applying the beta-binomial model it is common, but not absolutely necessary, to assume αi and βi constant across i. The
parameter ρ is the dispersion parameter which is constrained to be positive in the beta-binomial model. When ρ = 0, the
ordinary binomial variance results. Also, for ni = 1, the Bernoulli model is recovered. Overdispersion occurs when ρ > 0.
Parameter estimation of the beta-binomial model is discussed in [23,18].

The beta-binomial model allows for modeling the µi’s with a linear predictor through a link function g(µi) = x′

iβ. The
cluster-specific dispersion parameter ρi can also be modeled through Fisher’s z transformation [18].

A conventional way to include overdispersion as well as correlation is by embedding (normal) random effects into the
mean function. There is a subtle distinction with the model presented in Section 4, where the beta and normal random
effects are part of separate functions, that are then multiplied to form the mean parameter.

3.4. Models with normal random effects

The generalized linear mixed model [5,2,30] is in common practical use, not in the least thanks to software availability.
Let Yij be the jth outcomemeasured for cluster (subject) i = 1, . . . ,N , j = 1, . . . , ni and group the ni measurements into

a vector Yi. Assume that, in analogy with Section 3.1, conditionally upon q-dimensional random effects bi ∼ N(0,D), the
outcomes Yij are independent with densities of the form

fi(yij|bi, ξ, φ) = exp

φ−1

[yijλij − ψ(λij)] + c(yij, φ)

, (8)

with
η[ψ ′(λij)] = η(µij) = η[E(Yij|bi, ξ)] = x′

ijξ + z ′

ijbi (9)

for a known link function η(·), with xij and zij p-dimensional and q-dimensional vectors of known covariate values, with ξ
a p-dimensional vector of unknown fixed regression coefficients, and with φ a scale (overdispersion) parameter. Finally, let
f (bi|D) be the density of the N(0,D) distribution for the random effects bi.

Apart from the linear mixed model [29], where the outcome is assumed normal, the logistic-normal model is perhaps
the most commonly encountered instance.
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4. Models combining conjugate and normal random effects

4.1. General model formulation

MVD and MVDV combined the normal and conjugate random effects into a single framework. Following their ideas, we
will first present their general case and then turn to the binary and binomial cases. The latter of these has not been studied so
far. The rationale for this framework is that themeanparameters, combinedwith both sets of randomeffects, provide enough
flexibility to adequately describe the triplemadeupof themean, variance, and covariance functions,whereas thewell known
special cases, i.e., the binomial-normal and beta-binomial models, may fall short on at least one of these functions.

The general model expression is:

fi(yij|bi, ξ, θij, φ) = exp

φ−1

[yijλij − ψ(λij)] + c(yij, φ)

, (10)

with notation similar to the one used in (8), but now with conditional mean

E(Yij|bi, ξ, θij) = µc
ij = θijκij, (11)

where the random variable θij ∼ Gij(ϑij, σ
2
ij ), κij = g(x′

ijξ + z ′

ijbi), ϑij is the mean of θij and σ 2
ij is the corresponding variance.

Finally, as before, bi ∼ N(0,D). Write ηij = x′

ijξ + z ′

ijbi. Unlike in Section 3.4, we now simultaneously need two symbols, ηij
and λij, to refer to the linear predictor and/or the natural parameter. The reason is that λij encompasses the random variables
θij, whereas ηij refers to the ‘GLMM part’ only.

We will assume the two sets of random effects, θi and bi, to be independent. This can be relaxed whenever needed. The
components θij of θi can be assumed independent across j, equal across j, or exhibiting some form of correlation. The latter
opens the perspective of introducing serial (or spatial) correlation into themodel. This idea, while useful, will not be pursued
here.

The relationship between mean and natural parameter is: λij = h(µc
ij) = h(θijκij). Note that the function h(·) transforms

the product θijκij, whereas the function g(·) transforms the κij only. For the mean, we have:

E(Yij) = E(θij)E(κij) = E[h−1(λij)]. (12)

MVDV derived explicit expressions for the means, variances, and marginal densities in a number of outcome types, such as
normal, Poisson, and time-to-event. Unfortunately, this is not possible for binary data with logit link and normal random
effects, whether or not beta random effects are present. It is therefore useful that these authors also derived an approximate
expression, following from a Taylor series expansion around bi = 0,

κij ≈ g(ηij)+ g ′(ηij)z ′

ijbi +
1
2
g ′′(ηij)z ′

ijbib′

izij.

Details and some expressions are provided in Appendix A.

4.2. Strong conjugacy

MVDV introduced strong conjugacy as a way of expressing in which cases conjugacy remains, even in the presence of
normally distributed random effects. Precisely, conjugacy is considered conditional upon the normally-distributed random
effect bi. To this effect, write (suppressing non-essential arguments from the functions):

f (y|κθ) = exp

φ−1

[yh(κθ)− g(κθ)] + c(y, φ)

, (13)

generalizing (5), and retain (6). Applying the transformation theorem to (6) leads to

f (θ |γ ,ψ) = κ · f (κθ |γ ,ψ).
Next, we request the parametric form (6) be maintained:

f (κθ) = exp

γ ∗

[ψ∗h(κθ)− g(κθ)] + c∗∗(γ ∗, ψ∗)

, (14)

where the parameters γ ∗ andψ∗ follow fromγ and ψ upon absorption of κ . Then, the marginal model, in analogy with (7),
equals:

f (y|κ) = exp

c(y, φ)+ c∗∗(γ ∗, ψ∗)+ c∗∗


φ−1

+ γ ∗,
φ−1y + γ ∗ψ∗

φ−1 + γ ∗


. (15)

While the normal, Poisson, and Weibull cases enjoy strong conjugacy, this is not true in the binary and binomial cases with
logit link. As we will see in what follows, this does not preclude convenient model formulation, estimation, and making
inferences.



G. Molenberghs et al. / Journal of Multivariate Analysis 111 (2012) 94–109 99

4.3. Bernoulli-type models for binary data with logit link

The model takes the form:

Yij ∼ Bernoulli(πij = θijκij), (16)

κij =
exp


x′

ijξ + z ′

ijbi


1 + exp

x′

ijξ + z ′

ijbi
 . (17)

When the overdispersion random effects are assumed to be equal: θij = θi, then the beta-binomial model would follow if
no normal random effects were present.

Explicitly considering θij ∼ Beta(α, β), then φij = α/(α + β), and the variances σi,jj and covariances σi,jk for measure-
ments on the same subject are

σ 2
ij = σi,jj =

αβ

(α + β)2(α + β + 1)
, σi,jk = ρijk

αβ

(α + β)2(α + β + 1)
.

Observe that there are two correlations: ρijk, capturing the correlation between draws from the beta distribution and
(α + β + 1)−1. It is possible to let α and β vary with i and/or j; this would change the moments and marginal distribu-
tions, but would not subtract from their convenience.

Using the general expressions, the above results can be used to derive approximate expressions for means and
variance–covariance elements. For the special case of no normal random effects, but maintaining the fixed effects as in
(17), i.e.,

κij =
exp


x′

ijξ


1 + exp

x′

ijξ
 , (18)

we obtain

E(Yij) =
α

α + β
κij, (19)

Var(Yij) =
α

α + β
κij −


α

α + β


κ2
ij ,

Cov(Yij, Yik) = ρijk
αβ

(α + β)2(α + β + 1)
κijκik.

Details can be found in Appendix B. If we further make exchangeability assumptions, i.e., κij = κik ≡ κi and ρijk = ρi, further
simplification follows. Finally, setting κi = 1, the conventional beta-binomial ensues. It is then easy to derive the resulting
binomial version by defining: Zi =

ni
i=1 Yij. Also here, simple algebra then produces the beta-binomial, as in Section 3.3.

Thus far, the logit link has been taken for granted. Prompted by the lack of strong conjugacy and closed-form expressions,
it is reasonable to also examine the probit link. The random-effects probit model was studied before [26,7,8,17,6,24].

4.4. Bernoulli-type models for binary data with probit link

The probit version follows from amending the logit version through

κij = Φ1(x′

ijξ + z ′

ijbi), (20)

θij ∼ Beta(α, β). (21)

In line with MVDV, α and β could be allowed to vary with i and/or j. The joint distribution allows a closed-form expression
(details in Appendix C):

fni(yi = 1) =


α

α + β

ni
· Φni(Xiξ; L−1

ni ), (22)

with

Lni = Ini − Zi

D−1

+ Z ′

i Zi
−1

Z ′

i . (23)

More details on the cell probabilities, as well as on means and variances, can be found in Appendix C.
MVDVnoted that, through the closed-form expressions for the probit case, progress can bemade for the logit counterpart

as well, using the well-known approximation formulae, linking the normal and logistic densities. As shown in [11, p. 6] and
used in [31]:

ey

1 + ey
≈ Φ1(cy), (24)
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with c = (16
√
3)/(15π). Applied to (16)–(17), we find

πij ∼ θij
exp


x′

ijξ + z ′

ijbi


1 + exp

x′

ijξ + z ′

ijbi
 ≈ θijΦ1[c(x′

ijξ + z ′

ijbi)]. (25)

Applying (25) to (22) yields

fni(yi = 1) ≈


α

α + β

ni
· Φni


cXiξ;L−1

ni


, (26)

with Lni = Ini − c2Zi

D−1

+ Z ′

i Zi
−1

Z ′

i .

For the expectation, this leads to, based on (25) and (C.4):

E(Yij) ≈
α

α + β
· Φ1


|I + c2Dzijz ′

ij|
−1/2cx′

ijξ

, (27)

with similar expressions for the variance and covariance terms. Through estimating the parameters within the probit
approximation paradigm, back-transformation to the original logit scale is possible, using expressions such as (25) and
(27). This suggests alternative estimation methods for the combined model with logit link, with the important special case
of the normal-logistic GLMM.

In the Bernoulli case, calculating the moments is straightforward as they are all identical. The conditional moments are
all E(Y k

ij |θij, bi) = θijκij (k = 1, 2, . . .). Hence, they all reduce to (19). In the probit case, they equal (C.4).

4.5. Binomial-type models for binomial data with logit and probit link

MVDV did not consider the binomial case. Starting from the Bernoulli expressions (16) and (17) but now for three rather
than two levels, we get:

Yijk ∼ Bernoulli(πijk = θijkκijk), (28)

κijk =
exp


x′

ijkξ + z ′

ijkbi


1 + exp

x′

ijkξ + z ′

ijkbi
 , (29)

where i stands for the independent block, as before, j for occasion, and k for the repeats of the Bernoulli trials. Also here, it
is natural to define Zij =

mij
k=1 Yijk, upon which it follows that

E(Zij) =

mij
k=1

E(θijk)E(κijk), (30)

Var(Zij) =

mij
k=1

E(θijk)E(κijk)−

mij
k=1

E(θijk)2E(κijk)2

+ 2

k<ℓ

E(κijkκijℓ) · Cov(θijk, θijℓ)+ 2

k<ℓ

E(θijk)E(θijℓ) · Cov(κijk, κijℓ). (31)

These simplify when the θijk are assumed independent with the same parameters: E(θijk) = E(θij); and further κijk = κij.
Then, (30) and (31) become:

E(Zij) = mijE(θij)E(κij), (32)

Var(Zij) = mijE(θij)E(κij)

1 − mijE(θij)E(κij)


+ mij(mij − 1)E(θij)2E(κij)2. (33)

While there is no explicit form when the logit link is in use, such expressions exist for the probit link. The data consists of
an array of successes zi = (zi1, . . . , zini)

′ out ofmi = (mi1, . . . ,mini) trials. It is also convenient to provide for multi-indices
t = (t1, . . . , tni)

′ and for vectors of the parameters α = (α1, . . . , αni) and β = (β1, . . . , βni). The joint distribution can then
be written as:

f (zi|mi, ξ,D,α,β) =

mi−zi
t=0


ni
j=1

(−1)tj

B(αj, βj)


mij
zij

 
mij − zij

tj


B(zij + αj + tj, βj)


Φ

j
tj


Xi(t)ξ; L(t)−1 . (34)

Here, Xi(t) is the design matrix, built from Xi, with row j in Xi replicated tj times. The design matrix Xi is built similarly, and
then, in analogy with (23),

L(t) = I
j
tj − Zi(t)


D−1

+ Zi(t)′Zi(t)
−1

Zi(t)′. (35)

The argument leading to this expression is spelled out in Appendix D.
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Table 1
Onychomycosis study. Parameter estimates and standard errors for the regression coefficients in (1) the logistic model, (2) the beta-binomial model, (3)
the logistic-normalmodel, and (4) the combinedmodel. Estimationwas done bymaximum likelihood using numerical integration over the normal random
effect, if present.

Effect Par. Logistic BB GLMM Combined

Intercept A ξ1 −0.56 (0.11) 17.97 (1482) −1.63 (0.44) −1.60 (4.03)
Slope A ξ2 −0.18 (0.03) 5.25 (12970) −0.40 (0.05) −6.48 (1.44)
Intercept B ξ3 −0.54 (0.11) 18.67 (2077) −1.75 (0.45) −16.21 (3.58)
Slope B ξ4 −0.25 (0.03) 4.78 (12912) −0.56 (0.06) −8.07 (1.60)
Std. dev. RE

√
d – – 4.02 (0.38) 60.88 (14.22)

Ratio α/β – 3.67 (0.21) – 0.28 (0.04)
−2log-likelih. 1812 1980 1248 1240

5. Estimation

In principle, a variety of estimation strategies is available. We will use the method proposed by MVD and MVDV, which
consists of analytically integrating over the conjugate random effect and numerically over the normal random effect. The
fact that the binary case with logit link does not allow for strong conjugacy does notmake the application anymore difficult.

Precisely, in the binary case the partially marginalized density takes the form:

f (yij|bi) =
1

αj + βj
· (κijαj)

yij · [(1 − κij)αj + βj]
1−yij . (36)

For binomial outcomes, the corresponding expression is:

f (zij|nij, bi) =

nij−zij
t=0

(−1)tκ
zij+t
ij

nij!

zij!t!(nij − zij − t)!
·
B(zij + t + αj, βj)

B(αj, βj)
. (37)

From these, the marginal model can be fitted using numerical integration of the normal random effects. Implementation
is straightforward in a tool, such as the SAS procedure NLMIXED, that allows for normal random effects in arbitrary, user-
specified models.

6. Analysis of case studies

6.1. Onychomycosis

We will analyze the binary onychomycosis data, introduced in Section 2.1. For the logit, consider the model:

Yij|(bi) ∼ Bernoulli(πij),

logit(πij) = ξ1(1 − Ti)+ bi + ξ2(1 − Ti)tij + ξ3Ti + ξ4Titij, (38)

where Ti is the treatment indicator for subject i, tij is the time-point at which the jthmeasurement is taken for the ith subject,
and bi ∼ N(0, d). Parameter estimates for the logistic model, with and without the normal random effect on the one hand,
and with and without the beta-binomial component on the other hand, as described in Section 4.3, are presented in Table 1.
Observe that the model becomes hard to fit when beta random effects are present. Somewhat contrary to intuition at first
sight, the beta random effects are easier to include when normal random effects are also present. This is because the normal
random effects explicitly allow for correlation among repeated measures, thus turning the Bernoulli outcomes in binomial
data. Recall that, in the univariate Bernoulli case, no overdispersion can be detected, unlike in the Poisson andWeibull cases,
for example. That said, while such parameters are identified in the correlated-data case, like the one studied here, evenwhen
normal random effects are also present, information is weaker than in the Poisson andWeibull cases. This is different in the
case where data are already of a binomial type in the binary in the univariate setting, which is the type of data encountered
in the next example.

6.2. Analysis of data on iron-deficient diet in rats

We turn to the data in Section 2.2. Because the probability of a fetus dying varies from litter to litter, the total variance
of the proportions will be greater than that predicted by a binomial model, even when covariates are accounted for. Hence,
overdispersion and correlation needs to be accommodated.

Construct a predictor function ηi = ξ0+ξ2x2i+ξ3x3i+ξ4x4i with xgi = 1 if litter i belongs to group g and 0 otherwise. The
placebo group figures as a reference category. Further, let Zi =

ni
j=1 Yij ∼ Binomial(ni, πi) be the number of dead fetuses

out of ni in litter i. Five models are considered: (1) the binomial model, logit(πi) = ηi; (2) the GLMM: logit(πi) = ηi + bi,
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Table 2
Iron-deficiency study. Parameter estimates (standard errors) for (1) the binomial model, (2) the GLMM, (3) the beta-binomial model, (4) the conventional
beta-binomial model with random effect in the linear predictor, and (5) the combined model.

Effect Par. Binomial GLMM BB BB-normal Combined

Intercept ξ0 1.14 (0.13) 1.80 (0.36) 1.35 (0.25) 1.79 (0.38) 1.80 (0.36)
Group2 ξ2 −3.32 (0.33) −4.52 (0.74) −3.11 (0.50) −4.49 (0.80) −4.51 (0.74)
Group3 ξ3 −4.48 (0.73) −5.86 (1.19) −3.87 (0.81) −5.81 (1.30) −5.85 (1.19)
Group4 ξ4 −4.13 (0.48) −5.60 (0.92) −3.93 (0.67) −5.57 (0.97) −5.59 (0.92)
Std. dev. RE

√
d – 1.54 (0.29) – 1.52 (0.37) 1.53 (0.29)

Overdispersion – – 0.24 (0.06) 0.005 (0.051) 0.0005 (0.0018)
−2log-likelih. 244.9 183.9 186.9 183.8 183.8

where bi ∼ N(0, d); (3) the beta-binomial model, logit(µi) = ηi, where πi ∼ Beta(α, β), and µi = E(πi); (4) the beta-
binomial model with normal random effects: for bi ∼ N(0, d), logit(µi) = ηi, and πi andµi as in the beta-binomial; and (5)
in the combined model: logit(κi) = ηi + bi where πi = θiκi, θi ∼ Beta(α, β), and bi ∼ N(0, d). The constraint αβ ≡ 1 is
imposed in the latter case.

The results of the various models are presented in Table 2. We observe that the twomodels that simultaneously account
for overdispersion and correlation perform better than the others. The classical beta-binomial model with normal random
effects has the same double negative log-likelihood as the combined model. This is the case only for cross-sectional data;
even though their hierarchical formulations are different, they marginally coincide in this case. That said, the parameters
have a different meaning, as they are to be interpreted conditional on the assumed random-effects structure. Differences
may be very noticeable when binomial measurements are collected repeatedly over time or in an otherwise hierarchical
fashion.

Between these two, the estimates’ precision is best in the combined model. Owing to conjugacy, the mean model and
overdispersion parameter estimators are less correlated, leading to increased precision, even though the effect is modest.

7. Simulation study

A simulation study was conducted to compare estimates from the GLMM and the combined model. The study was done
both for Bernoulli as well as for binomial data. These are reported in turn.

7.1. Bernoulli-type models for binary data with logit link

Data were simulated from a GLMM for binary data using the logit link. We assume two treatment groups, and generate
a binary profile across a number of time points.

The mean structure is as in (38) with true model parameters ξ1 = 1.5, ξ2 = −0.5, ξ3 = −2, and ξ4 = 1. The random
intercepts were generated assuming d = 1.5. Both treatment groups were simulated to be equal in size. Upon generating
the random intercepts, the independent success probabilities for the different measurements at the different times can be
calculated. The actual outcomes can then be obtained straightforwardly from uniform random variables.

For the sample size, the values N = 200, 500, 1000 were considered, combined with the number of time points
n = 5, 15, 30, 60. For each combination of N and n, 500 sets of data were generated. The estimation method described
in Section 5 was employed, implemented in the SAS procedure NLMIXED, together with adaptive Gaussian quadrature with
50 quadrature points. Optimization took place using the quasi-Newton method. The true model parameters were used as
starting values. The discrepancy in convergence does not seem to affect the operating characteristics of the combinedmodel.
For the case studies, GLMMbased valueswere used as starting valueswhen fitting the combinedmodel; this strategyworked
fine.

Model parameters and standard errors were obtained for each dataset. The bias was computed to quantify the difference
between the expected value of the parameter estimate and the ‘true’ model parameters. In addition, the spread around the
true value was captured using the mean squared error (MSE). These measures are reported in Table 3, for 5 and 15 time
points, and Table 4, for 30 and 60 time points, and for each of the two models. Like before, because of identifiability, we set
c = β/α for the combined model.

Generally, the simulation results establish appropriate behavior of the models. Unsurprisingly, bias and MSE increase
with decreasing sample size; this is true for all fixed effects, but not to the same extent for the variance component associated
with the random effect. Bias and MSE favor the combined model. This superior behavior of the combined model is more
pronounced for higher numbers of measurements per subject. It is interesting to note that these results hold in spite of the
fact that data were generated under the GLMM. So, while strictly speaking the combined model is not necessary, it does
perform well in alleviating the bias present in the GLMM-based estimators. In line with general likelihood theory, both
estimators perform very well for large sample sizes. This is further shown through declining MSE values with increasing
sample sizes in Fig. 1, for various simulation conditions (see Fig. 2).

It is worth stating that even though the combined model demonstrated the ability to fit the data more efficiently, its
numerical behavior is less straightforward than in the GLMM case. From Table 5, we show the number of simulation runs
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Table 3
Results of the GLMM and combined model based on 500 simulations.

True parameters GLMM Combined model
1.5 −0.5 −2 1 1.22 1.5 −0.5 −2 1 1.22 –

Sample Size Measure ξ1 ξ2 ξ3 ξ4
√
d ξ1 ξ2 ξ3 ξ4

√
d C =

β

α

For 5 time points

200 Estimate 1.4720 −0.4970 −2.0220 1.0098 1.2155 1.5790 −0.5186 −2.0663 1.0720 1.2738 0.0187
Std. error 0.2874 0.0793 0.3126 0.1045 0.1490 0.3735 0.0910 0.3493 0.1781 0.1546 0.0364
SB std. err. 0.2708 0.0772 0.3052 0.1027 0.1489 0.3244 0.0836 0.3029 0.1546 0.1809 0.0247
Bias −0.0280 0.0030 −0.0220 0.0098 −0.0045 0.0790 −0.0186 −0.0663 0.0720 0.0538 –
Rel. bias −0.0187 0.0110 −0.0060 0.0098 −0.0037 0.0527 0.0371 0.0331 0.0720 0.0441 –
MSE 0.0741 0.0060 0.0936 0.0106 0.0222 0.1115 0.0073 0.0961 0.0291 0.0356 –

500 Estimate 1.5034 −0.5036 −2.0116 1.0048 1.2123 1.5450 −0.5076 −2.0400 1.0389 1.2430 0.0110
Std. error 0.1817 0.0501 0.1967 0.0657 0.0937 0.2256 0.0553 0.2113 0.1059 0.0912 0.0222
SB std. err. 0.1866 0.0513 0.2013 0.0663 0.0998 0.1767 0.0474 0.1833 0.0879 0.1107 0.0149
Bias 0.0034 −0.0036 −0.0116 0.0048 −0.0077 0.0450 −0.0076 −0.0400 0.0389 0.0230 –
Rel. bias 0.0022 0.0058 0.0072 0.0048 −0.0063 0.0300 0.0151 0.0200 0.0389 0.0189 –
MSE 0.0348 0.0026 0.0407 0.0044 0.0100 0.0332 0.0023 0.0352 0.0092 0.0128 –

1000 Estimate 1.5123 −0.5030 −2.0056 1.0009 1.2181 1.5331 −0.5060 −2.0196 1.0189 1.2378 0.0064
Std. error 0.1286 0.0354 0.1390 0.0463 0.0662 0.1548 0.0383 0.1423 0.0709 0.0569 0.0148
SB std. err. 0.1289 0.0363 0.1367 0.0456 0.0652 0.1324 0.0348 0.1269 0.0578 0.0730 0.0099
Bias 0.0123 −0.0030 −0.0056 0.0009 −0.0019 0.0331 −0.0060 −0.0196 0.0189 0.0178 –
Rel. bias 0.0082 0.0028 0.0060 0.0009 −0.0016 0.0221 0.0120 0.0098 0.0189 0.0146 –
MSE 0.0168 0.0013 0.0187 0.0021 0.0043 0.0186 0.0012 0.0165 0.0037 0.0056 –

For 15 time points

200 Estimate 1.4857 −0.5005 −2.0348 1.0096 1.2133 1.5002 −0.4999 −2.0106 1.0052 1.2189 0.0002
Std. error 0.2062 0.0313 0.2747 0.0794 0.1229 0.2275 0.0333 0.3247 0.1177 0.1238 0.0135
SB std. err. 0.2013 0.0320 0.2814 0.0855 0.1303 0.0889 0.0149 0.1268 0.0414 0.0546 0.0005
Bias −0.0143 −0.0005 −0.0348 0.0096 −0.0067 0.0002 0.0001 −0.0106 0.0052 −0.0011 –
Rel. bias −0.0095 0.0174 0.0010 0.0096 −0.0055 0.0001 −0.0001 0.0053 0.0052 −0.0009 –
MSE 0.0407 0.0010 0.0804 0.0074 0.0170 0.0079 0.0002 0.0162 0.0017 0.0030 –

500 Estimate 1.5041 −0.5012 −2.0045 0.9997 1.2109 1.5010 −0.5001 −2.0091 1.0036 1.2177 0.0001
Std. error 0.1302 0.0198 0.1725 0.0497 0.0774 0.1318 0.0198 0.1897 0.0611 0.0735 0.0032
SB std. err. 0.1368 0.0200 0.1747 0.0486 0.0805 0.0574 0.0095 0.0918 0.0294 0.0450 0.0002
Bias 0.0041 −0.0012 −0.0045 −0.0003 −0.0091 0.0010 −0.0001 −0.0091 0.0036 −0.0023 –
Rel. bias 0.0028 0.0023 0.0024 −0.0003 −0.0074 0.0006 0.0003 0.0046 0.0036 −0.0019 –
MSE 0.0187 0.0004 0.0305 0.0024 0.0066 0.0033 0.0001 0.0085 0.0009 0.0020 –

1000 Estimate 1.4978 −0.5001 −2.0042 1.0007 1.2175 1.5002 −0.5002 −2.0003 1.0004 1.2220 0.0001
Std. error 0.0921 0.0139 0.1222 0.0352 0.0548 0.0928 0.0140 0.1345 0.0411 0.0522 0.0015
SB std. err. 0.0901 0.0138 0.1230 0.0364 0.0561 0.0474 0.0078 0.0654 0.0200 0.0330 0.0001
Bias −0.0022 −0.0001 −0.0042 0.0007 −0.0025 0.0002 −0.0002 −0.0003 0.0004 0.0020 –
Rel. bias −0.0014 0.0021 0.0001 0.0007 −0.0020 0.0001 0.0004 0.0002 0.0004 0.0016 –
MSE 0.0081 0.0002 0.0151 0.0013 0.0032 0.0022 0.0001 0.0043 0.0004 0.0011 –

performed to obtain the required 500 simulated results for the twomodels. Itwas observed that the proportion of converging
sets is lower in the combined model than in the GLMMmodel. This can be attributed to sensitivity to the starting values. In
practice, this points to the need for carefully selecting starting values (see Fig. 3).

7.2. Binomial-type models for binomial data with logit link

Here, we turn to the behavior of GLMM and the combined model for binomial data. A modified version of the settings
in the previous section was adopted. We assume for an independent subject i at occasion j that k repeated Bernoulli trials
are conducted. We generated the response Zij by randomly sampling mij which we assume to follow a normal distribution,
N(10, 4). The choice of themean and variance for generating themij’swas guided by the fact thatwith large values, themodel
takes longer to converge. Also, we avoided the occurrence of large-valued factorials. The true model parameters were as in
the previous section. The mij’s were approximated to the nearest integer and used together with the predicted probability
generated from the transformed sum of the predictors and the random effect to predict the number of successes. The model
used to generate the data differs from (38) only by replacing the distribution of Yij|bi with Zij|bi ∼ Bin(mij, πij). The same
ranges for the sample size N and number of time points n were considered. For each parameter setting, 200 simulations
were conducted. Due to the complexity of the partially marginalized log-likelihood, the coding required somewhat more
effort than in the binary case. The Newton–Raphson optimization algorithm was selected to maximize the full marginal
likelihood function with 50 quadrature nodes. Results are presented in Tables 6 and 7. The constraint αβ = 1 is applied to
ensure identifiability.
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Table 4
Results of the GLMM and combined model based on 500 simulations.

True parameters GLMM Combined model
1.5 −0.5 −2 1 1.22 1.5 −0.5 −2 1 1.22 –

Sample Size Measure ξ1 ξ2 ξ3 ξ4
√
d ξ1 ξ2 ξ3 ξ4

√
d C =

β

α

For 30 time points

200 Estimate 1.5025 −0.5012 −1.9974 1.0016 1.2166 1.4978 −0.4996 −2.0007 0.9999 1.2190 0.0000
Std. error 0.2030 0.0298 0.2738 0.0790 0.1227 0.2231 0.0323 0.3318 0.1300 0.1442 0.0125
SB std. err. 0.2097 0.0304 0.2769 0.0837 0.1208 0.0423 0.0074 0.0747 0.0281 0.0250 0.0001
Bias 0.0025 −0.0012 0.0026 0.0016 −0.0034 −0.0022 0.0004 −0.0007 −0.0001 −0.0010 –
Rel. bias 0.0016 −0.0013 0.0023 0.0016 −0.0028 −0.0015 −0.0007 0.0004 −0.0001 −0.0008 –
MSE 0.0440 0.0009 0.0767 0.0070 0.0146 0.0018 0.0001 0.0056 0.0008 0.0006 –

500 Estimate 1.5055 −0.5011 −2.0127 1.0050 1.2193 1.5018 −0.5003 −2.0016 1.0009 1.2190 0.0000
Std. error 0.1283 0.0188 0.1733 0.0500 0.0774 0.1320 0.0193 0.1876 0.0641 0.0814 0.0045
SB std. err. 0.1174 0.0187 0.1577 0.0484 0.0749 0.0370 0.0066 0.0446 0.0136 0.0289 0.0000
Bias 0.0055 −0.0011 −0.0127 0.0050 −0.0007 0.0018 −0.0003 −0.0016 0.0009 −0.0010 –
Rel. bias 0.0037 0.0063 0.0022 0.0050 −0.0006 0.0012 0.0006 0.0008 0.0009 −0.0008 –
MSE 0.0138 0.0004 0.0250 0.0024 0.0056 0.0014 0.0000 0.0020 0.0002 0.0008 –

1000 Estimate 1.5039 −0.5003 −2.0010 0.9997 1.2165 1.5010 −0.4999 −1.9976 1.0000 1.2182 0.0000
Std. error 0.0905 0.0133 0.1220 0.0351 0.0546 0.0912 0.0134 0.1287 0.0407 0.0558 0.0015
SB std. err. 0.0919 0.0124 0.1296 0.0344 0.0550 0.0171 0.0042 0.0310 0.0101 0.0203 0.0000
Bias 0.0039 −0.0003 −0.001 −0.0003 −0.0035 0.0010 0.0001 0.0024 0.0000 −0.0018 –
Rel. bias 0.0026 0.0005 0.0006 −0.0003 −0.0029 0.0006 −0.0001 −0.0012 0.0000 −0.0014 –
MSE 0.0085 0.0002 0.0168 0.0012 0.0030 0.0003 0.0000 0.0010 0.0001 0.0004 –

For 60 time points

200 Estimate 1.4954 −0.5015 −2.0157 1.0091 1.2188 1.4972 −0.4999 −2.0017 1.0002 1.2199 0.0000
Std. error 0.2032 0.0299 0.2748 0.0796 0.1228 0.2146 0.0313 0.3334 0.1278 0.1403 0.0099
SB std. err. 0.2157 0.0303 0.2669 0.0796 0.1208 0.0326 0.0052 0.0431 0.0133 0.0145 0.0000
Bias −0.0046 −0.0015 −0.0157 0.0091 −0.0012 −0.0028 0.0001 −0.0017 0.0002 −0.0001 –
Rel. bias −0.0031 0.0078 0.0030 0.0091 −0.0009 −0.0019 −0.0003 0.0008 0.0002 −0.0001 –
MSE 0.0465 0.0009 0.0715 0.0064 0.0146 0.0011 0.0000 0.0019 0.0002 0.0002 –

500 Estimate 1.4961 −0.5008 −2.0169 1.0046 1.2138 1.5002 −0.5001 −2.0015 1.0003 1.2207 0.0000
Std. error 0.1280 0.0189 0.1730 0.0499 0.0773 0.1320 0.0193 0.1925 0.0670 0.0825 0.0043
SB std. err. 0.1269 0.0189 0.1710 0.0487 0.0784 0.0106 0.0027 0.0265 0.0074 0.0154 0.0000
Bias −0.0039 −0.0008 −0.0169 0.0046 −0.0062 0.0002 −0.0001 −0.0015 0.0003 0.0007 –
Rel. bias −0.0026 0.0085 0.0016 0.0046 −0.0051 0.0001 0.0003 0.0008 0.0003 0.0005 –
MSE 0.0161 0.0004 0.0295 0.0024 0.0062 0.0001 0.0000 0.0007 0.0001 0.0002 –

1000 Estimate 1.5014 −0.5007 −1.9965 1.0002 1.2189 1.5008 −0.5001 −1.9998 1.0000 1.2208 0.0000
Std. error 0.0906 0.0133 0.1221 0.0352 0.0547 0.0931 0.0136 0.1323 0.0439 0.0574 0.0023
SB std. err. 0.0901 0.0134 0.1213 0.0359 0.0558 0.0141 0.0023 0.0184 0.0080 0.0108 0.0000
Bias 0.0014 −0.0007 0.0035 0.0002 −0.0011 0.0008 −0.0001 0.0002 0.0000 0.0008 –
Rel. bias 0.0010 −0.0017 0.0013 0.0002 −0.0009 0.0006 0.0002 −0.0001 0.0000 0.0006 –
MSE 0.0081 0.0002 0.0147 0.0013 0.0031 0.0002 0.0000 0.0003 0.0001 0.0001 –

Table 5
Simulation study. Convergence rate for binary data.

Time points Sample size GLMM Combined model
Runs Rate (%) Runs Rate (%)

5 200 500 100.00 756 66.14
500 500 100.00 620 80.65

1000 500 100.00 562 88.97

15 200 500 100.00 818 61.12
500 505 99.01 735 68.03

1000 503 99.40 645 77.52

30 200 501 99.80 619 80.78
500 502 99.60 548 91.24

1000 503 99.40 524 95.42

60 200 500 100.00 698 71.63
500 502 99.60 542 92.25

1000 504 99.21 525 95.24

The results for the two models show that parameter estimates have very small bias for each of the simulations,
underscoring good performance of both methods. They are difficult to tell apart in bias terms (see Fig. 4). Based on the
MSE values, the combined model seems to work well, especially when the number of measurements per subject is high.
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Fig. 1. Plot of MSE against sample size for the GLMM and combined model (binary outcomes).

Fig. 2. Plot of bias against sample size for the GLMM and combined model (binary outcomes).
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Fig. 3. Plot of MSE against sample size for the GLMM and combined model (binomial outcomes).

Fig. 4. Plot of bias against sample size for the GLMM and combined model (binomial outcomes).
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Table 6
Simulation study. Results of the GLMM and combined model based on 200 simulations.

True parameters GLMM Combined model
1.5 −0.5 −2 1 1.22 1.5 −0.5 −2 1 1.22 –

Sample size Measure ξ1 ξ2 ξ3 ξ4
√
d ξ1 ξ2 ξ3 ξ4

√
d β = 1/α

For 2 time points

50 Estimate −1.5074 0.5160 −2.0142 1.0004 1.1818 −1.4799 0.5306 −2.0283 1.0387 1.2027 0.09116
Std. error 0.4413 0.2285 0.4437 0.2302 0.1659 0.4573 0.2389 0.4596 0.2467 0.1898 0.20848
SB std. err. 0.4703 0.2432 0.4182 0.2226 0.1750 0.4589 0.2260 0.4512 0.2319 0.1846 0.10975
Bias −0.0074 0.0160 −0.0142 0.0004 −0.0382 0.0201 0.0306 −0.0283 0.0387 −0.0173 –
Rel. bias 0.0049 0.0319 0.0071 0.0004 −0.0313 −0.0134 0.0612 0.0141 0.0387 −0.0142 –
MSE 0.2212 0.0594 0.1751 0.0496 0.0321 0.2110 0.0520 0.2044 0.0553 0.0344 –

100 Estimate −1.5404 0.5113 −1.9674 0.9852 1.1970 −1.5283 0.5294 −1.9885 1.0278 1.2314 0.08467
Std. error 0.3114 0.1607 0.3130 0.1618 0.1182 0.6228 0.3939 0.3232 0.1778 0.1287 0.13566
SB std. err. 0.3185 0.1651 0.3034 0.1673 0.1262 0.3064 0.1574 0.2939 0.1650 0.1334 0.10429
Bias −0.0404 0.0113 0.0326 −0.0148 −0.0230 −0.0283 0.0294 0.0115 0.0278 0.0114 –
Rel. bias 0.0269 0.0227 −0.0163 −0.0148 −0.0188 0.0189 0.0589 −0.0058 0.0278 0.0094 –
MSE 0.1031 0.0274 0.0931 0.0282 0.0165 0.0947 0.0256 0.0865 0.0280 0.0179 –

200 Estimate −1.5195 0.5057 −2.0134 1.0003 −1.5195 −1.5205 0.5186 −2.0023 1.0076 1.2310 0.07996
Std. error 0.2214 0.1139 0.2217 0.1140 0.2214 0.2285 0.1175 0.2283 0.1215 0.0907 0.11902
SB std. err. 0.2580 0.1277 0.2273 0.1296 0.2580 0.2282 0.1108 0.2169 0.1192 0.0854 0.09044
Bias −0.0195 0.0057 −0.0134 0.0003 −0.0195 −0.0205 0.0186 −0.0023 0.0076 0.0110 –
Rel. bias 0.0130 0.0114 0.0067 0.0003 0.0130 0.0137 0.0372 0.0012 0.0076 0.0090 –
MSE 0.0669 0.0163 0.0518 0.0168 0.0669 0.0525 0.0126 0.0471 0.0143 0.0074 –

For 4 time points

50 Estimate −1.4579 0.4908 −2.0402 1.0077 1.1806 −1.4722 0.4995 −2.0515 1.0248 1.2064 0.04906
Std. error 0.3098 0.0716 0.3187 0.0838 0.1417 0.3160 0.0733 0.7798 0.1519 0.1703 0.09821
SB std. err. 0.3420 0.0789 0.3095 0.0785 0.1398 0.3182 0.0707 0.3061 0.0888 0.1433 0.05985
Bias 0.0421 −0.0092 −0.0402 0.0077 −0.0394 0.0278 −0.0005 −0.0515 0.0248 −0.0136 –
Rel. bias −0.0281 −0.0183 0.0201 0.0077 −0.0323 −0.0185 −0.0009 0.0257 0.0248 −0.0111 –
MSE 0.1187 0.0063 0.0974 0.0062 0.0211 0.1020 0.0050 0.0963 0.0085 0.0207 –

100 Estimate −1.5307 0.5051 −2.0085 1.0016 1.2052 −1.5314 0.5061 −1.9853 1.0095 1.2105 0.04452
Std. error 0.2218 0.0507 0.2270 0.0589 0.1019 0.2202 0.0510 0.3549 0.0693 0.1032 0.08172
SB std. err. 0.2117 0.0536 0.2411 0.0635 0.0993 0.2013 0.0474 0.2185 0.0644 0.1070 0.04957
Bias −0.0307 0.0051 −0.0085 0.0016 −0.0148 −0.0314 0.0061 0.0147 0.0095 −0.0095 –
Rel. bias 0.0205 0.0102 0.0042 0.0016 −0.0122 0.0209 0.0121 −0.0073 0.0095 −0.0078 –
MSE 0.0458 0.0029 0.0582 0.0040 0.0101 0.0415 0.0023 0.0480 0.0042 0.0115 –

200 Estimate −1.5253 0.5021 −2.0084 1.0009 −1.5253 −1.4977 0.5014 −2.0185 1.0137 1.2270 0.02935
Std. error 0.1572 0.0358 0.1609 0.0416 0.1572 0.3621 0.0884 0.2327 0.0786 0.0693 0.06100
SB std. err. 0.1605 0.0344 0.1510 0.0393 0.1605 0.1478 0.0340 0.1205 0.0359 0.0514 0.03438
Bias −0.0253 0.0021 −0.0084 0.0009 −0.0253 0.0023 0.0014 −0.0185 0.0137 0.0070 –
Rel. bias 0.0168 0.0043 0.0042 0.0009 0.0168 −0.0015 0.0028 0.0093 0.0137 0.0058 –
MSE 0.0264 0.0012 0.0229 0.0015 0.0264 0.0219 0.0012 0.0149 0.0015 0.0027 –

In spite of these advantages of the combined model, and in line with the binary case, also here numerical stability can
be an issue. We see from the results in Table 8 that the fitting becomes more difficult when sample sizes are increased. We
however maintain that with appropriate choice of starting values, this can be overcome.

8. Concluding remarks

In the spirit of MVD andMVDV, we have proposed amodel combining normal and non-normal random effects, to handle
hierarchical binary data that are subject to both overdispersion and correlation. The non-normal random effects typically
take a beta form, inspired by the conjugate nature of data relative to the Bernoulli model. The resulting model is thus of a
logistic-normal-beta form. Also the probit-normal-beta model has been given attention. Unlike the aforementioned papers,
we explicitly allow for repeated, overdispersed binomial data. The singular feature in binary data that overdispersion cannot
be identified from univariate outcomes does not occur with binomial data. The latter are, therefore, more in line with
developments for count data and time-to-event outcomes.

Special cases of our model are the beta-binomial model on the one hand and the GLMM on the other. The GLMM in this
case would typically take a logistic-normal form. The logit link, though, is specific in the sense that it does not allow for
closed-form marginalization, as indicated in MVDV, neither for the joint distribution, nor for mean, variance, and higher
moments. While the model can still be fitted without trouble using standard software, using so-called analytical–numerical
integration, it is sometimes desirable to have closed forms nevertheless. This is why we also focused on the probit link,
producing the probit-normal-beta model. In that case, the combined model, and all of its special cases, does allow for such
closed forms. Using the probit-logit relationship, the probit version can be exploited to closely approximate the logit case.
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Table 7
Simulation study. Results of the GLMM and combined model based on 200 simulations.

True parameters GLMM Combined model
1.5 −0.5 −2 1 1.22 1.5 −0.5 −2 1 1.22 –

Sample size Measure ξ1 ξ2 ξ3 ξ4
√
d ξ1 ξ2 ξ3 ξ4

√
d β = 1/α

For 6 time points

50 Estimate −1.4846 0.4998 −2.0175 1.0025 1.1740 −1.4675 0.4993 −1.9878 1.0172 1.1902 0.03454
Std. error 0.2805 0.0408 0.2947 0.0602 0.1353 1.3998 0.2076 0.2990 0.0678 0.1377 0.05960
SB std. error 0.2866 0.0386 0.3005 0.0603 0.1415 0.2644 0.0369 0.2608 0.0645 0.1391 0.03713
Bias 0.0154 −0.0002 −0.0175 0.0025 −0.0460 0.0325 −0.0007 0.0122 0.0172 −0.0298 –
Rel. bias −0.0103 −0.0004 0.0088 0.0025 −0.0377 −0.0217 −0.0013 −0.0061 0.0172 −0.0245 –
MSE 0.0824 0.0015 0.0906 0.0036 0.0221 0.0710 0.0014 0.0682 0.0045 0.0202 –

100 Estimate −1.5072 0.4974 −1.9929 0.9977 1.1940 −1.5241 0.5037 −1.9995 1.0105 1.2119 0.02389
Std. error 0.2008 0.0288 0.2104 0.0424 0.0971 0.1996 0.0294 0.2107 0.0474 0.0992 0.04874
SB std. error 0.1928 0.0270 0.2075 0.0404 0.1047 0.1751 0.0275 0.1992 0.0410 0.0965 0.02629
Bias −0.0072 −0.0026 0.0071 −0.0023 −0.0260 −0.0241 0.0037 0.0005 0.0105 −0.0081 –
Rel. bias 0.0048 −0.0053 −0.0035 −0.0023 −0.0213 0.0161 0.0074 −0.0003 0.0105 −0.0066 –
MSE 0.0372 0.0007 0.0431 0.0016 0.0116 0.0312 0.0008 0.0397 0.0018 0.0094 –

200 Estimate −1.5102 0.4985 −2.0049 1.0016 −1.5102 −1.5181 0.5036 −2.0087 1.0083 1.2125 0.02032
Std. error 0.1436 0.0204 0.1502 0.0300 0.1436 2.3446 0.1733 0.1517 0.0325 0.0760 0.04757
SB std. error 0.1488 0.0203 0.1389 0.0307 0.1488 0.1210 0.0169 0.1091 0.0267 0.0543 0.02125
Bias −0.0102 −0.0015 −0.0049 0.0016 −0.0102 −0.0181 0.0036 −0.0087 0.0083 −0.0075 –
Rel. bias 0.0068 −0.0029 0.0024 0.0016 0.0068 0.0121 0.0073 0.0044 0.0083 −0.0061 –
MSE 0.0222 0.0004 0.0193 0.0009 0.0222 0.0150 0.0003 0.0120 0.0008 0.0030 –

For 12 time points

50 Estimate −1.4921 0.5014 −2.0272 1.0063 1.1764 −1.4728 0.5017 −2.0362 1.0137 1.1926 0.00974
Std. error 0.2619 0.0220 0.2872 0.0527 0.1333 0.2664 0.0230 0.2923 0.0555 0.1403 0.01673
SB std. error 0.2621 0.0210 0.3004 0.0525 0.1454 0.2203 0.0206 0.2373 0.0510 0.1307 0.01260
Bias 0.0079 0.0014 −0.0272 0.0063 −0.0436 0.0272 0.0017 −0.0362 0.0137 −0.0274 –
Rel. bias −0.0053 0.0027 0.0136 0.0063 −0.0358 −0.0181 0.0035 0.0181 0.0137 −0.0224 –
MSE 0.0688 0.0004 0.0910 0.0028 0.0230 0.0493 0.0004 0.0576 0.0028 0.0178 –

100 Estimate −1.5189 0.5007 −2.0157 1.0034 1.1976 −1.5154 0.5013 −2.0139 1.0060 1.1994 0.00849
Std. error 0.1877 0.0154 0.2053 0.0371 0.0956 0.3693 0.0179 0.1988 0.0369 0.0929 0.01520
SB std. error 0.1833 0.0150 0.2261 0.0399 0.0957 0.1217 0.0128 0.1541 0.0302 0.0679 0.00836
Bias −0.0189 0.0007 −0.0157 0.0034 −0.0224 −0.0154 0.0013 −0.0139 0.0060 −0.0206 –
Rel. bias 0.0126 0.0014 0.0078 0.0034 −0.0184 0.0103 0.0025 0.0070 0.0060 −0.0169 –
MSE 0.0340 0.0002 0.0514 0.0016 0.0097 0.0150 0.0002 0.0239 0.0009 0.0050 –

200 Estimate −1.5153 0.5000 −2.0080 0.9984 −1.5153 −1.5076 0.5010 −2.0010 1.0030 1.2112 0.00799
Std. error 0.1340 0.0109 0.1462 0.0260 0.1340 0.1343 0.0110 0.1472 0.0270 0.0694 0.01227
SB std. error 0.1313 0.0122 0.1446 0.0269 0.1313 0.0798 0.0084 0.0807 0.0171 0.0456 0.00596
Bias −0.0153 0.0000 −0.0080 −0.0016 −0.0153 −0.0076 0.0010 −0.0010 0.0030 −0.0088 –
Rel. bias 0.0102 0.0001 0.0040 −0.0016 0.0102 0.0051 0.0019 0.0005 0.0030 −0.0072 –
MSE 0.0175 0.0001 0.0210 0.0007 0.0175 0.0064 0.0001 0.0065 0.0003 0.0022 –

Table 8
Simulation study. Convergence rates for binomial data.

Time points Sample size GLMM Combined model
Runs Rate (%) Runs Rate (%)

2 50 200 100 291 68.73
100 200 100 318 62.89
200 200 100 395 50.63

4 50 200 100 377 53.05
100 200 100 599 33.39
200 200 100 1147 17.44

6 50 200 100 500 40.00
100 200 100 878 22.78
200 200 100 3407 5.87

12 50 200 100 806 24.81
100 200 100 1581 12.65
200 200 100 8276 2.42

Our modeling approach may appear to be relatively complex. However, the needs of the application at hand may justify
its use. Moreover, the fact that both the logistic-normal and probit-normal generalized linearmixedmodels on the one hand
and the beta-binomial model on the other follow as special cases are a strong asset.
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The unique position of the logistic-normal-betamodel is also seen through the fact that it does not enjoy so-called strong
conjugacy, in spite of the conjugacy in the beta-binomial case. Even though strong conjugacy does not apply to the probit-
normal-beta case neither, the latter model does enjoy desirable analytical properties, as mentioned before.

Two sets of data were analyzed. The first one exhibited a repeated-measures structure andwas of a binary outcome type;
the second onewas of a binomial type, butwithout a repeatedmeasures structure. Itwas not a surprise that the simultaneous
identification of overdispersion and correlation in the binary case was difficult, even though the estimation of fixed-effects
parameters is not affected by it. A limited simulation study, in both the binary and binomial cases, was conducted to examine
the behavior of the combinedmodels relative to their more conventional GLMM counterparts. Somewhat surprisingly, even
when the data generating mechanism starts from a GLMM formulation, the combined model still exhibits better behavior,
because it alleviates the typical small-samplemaximum likelihood bias. For increasing sample sizes, the two showed similar
behavior. While not studied in detail, it is evident that when the GLMM formulation is not adequate, the combined model
will exhibit superior performance.

Programs and outputs can be found at web site www.ibiostat.be/software.
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