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Structural peculiarities of the (MHF1–MHF2)4 octamer provide a long
DNA binding patch to anchor the MHF–FANCM complex to chromatin:
A solution SAXS study
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MHF1 and MHF2 are histone-fold-containing FANCM-associated proteins. FANCM is a Fanconi ane-
mia (FA) complementation group protein. We previously obtained high-resolution structures of
MHF1–MHF2 (MHF) and MHF in complex with a fragment of FANCM (MHF–FANCM-F). Here, we
use small angle X-ray scattering (SAXS) to investigate the solution behaviors of these protein com-
plexes. In combination with crystallographic data, the results of the SAXS study reveal that a long,
positively charged patch exposed on the surface of the MHF complex plays a critical role in dou-
ble-stranded DNA (dsDNA) binding.

Structured summary of protein interactions:
MHF2, MHF1 and FANCM-F physically interact by molecular sieving (View interaction)
MHF1 and MHF2 bind by X ray scattering (View interaction)
MHF1 and MHF2 bind by molecular sieving (View interaction)
MHF1, FANCM-F and MHF2 physically interact by X ray scattering (View interaction)

� 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Fanconi anemia (FA) is a rare multigenetic syndrome character-
ized by developmental defects, bone marrow failure and cancer
predisposition [1–3]. Any defect in the 15 known FANC genes will
induce failure of DNA damage repair, leading to FA [2–7]. FA cells
are highly sensitive to agents that can cause DNA interstrand cross-
links (ICLs), which are abnormal structures blocking DNA replica-
tion. To combat ICLs, the FA core complex, composed of eight FA
core proteins (FANCA, -B, -C, -E, -F, -G, -L and -M), is assembled
at the damaged site recruiting additional FA factors to activate
the FA pathway [3,8].
Being a component of the FA core complex, FANCM contains an
evolutionarily conserved helicase domain and can specifically rec-
ognize and bind branched DNA structures [9–11]. Two histone-
fold-containing proteins, MHF1 and MHF2, which show high affin-
ity for double strand DNA (dsDNA), are FANCM-associated factors
[12,13], and FANCM is targeted to the chromatin by binding to a
compact (MHF1–MHF2)2 tetramer [14].

The C-terminus of MHF1 plays a crucial role in DNA binding to
both MHF and MHF–FANCM complexes [12,14], but its high-reso-
lution structure is unknown, since the C region of MHF1 cannot be
crystallized, possibly because of its flexibility. In the present work,
to examine the full-length structures of MHF and of MHF in com-
plex with a fragment of FANCM (MHF–FANCM-F) complexes in
solution, small angle X-ray scattering (SAXS) was employed. The
method analyzes a structure of an object at resolutions between
1 and 100 nm [15], thereby providing valuable structural informa-
tion both about nano scale inhomogeneities (particles or clusters)
and about the internal ordering in the sample. Advanced SAXS data
processing and interpretation techniques, including ab initio and
rigid body modeling methods [16,17] were used to reveal
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Fig. 1. Size-exclusion chromatography analysis of MHF and MHF–FANCM-F. Blue
curve and red curve represent the SEC results of MHF and MHF–FANCM-F,
respectively.
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structural peculiarities of the MHF and MHF–FANCM-F complexes
and to evaluate their roles in DNA damage repair and genome
maintenance processes.

2. Materials and methods

2.1. Sample preparation

MHF and MHF–FANCM-F were expressed and purified as de-
scribed previously [14]. The protein was passed through a Super-
dex 200 with the buffer 200 mM NaCl and 20 mM Tris–HCl, pH
7.5, as the last step of purification. The size-exclusion chromatog-
raphy (SEC) results were also used for analyzing the molecular
masses (MMs) of MHF and MHF–FANCM-F in solution.

2.2. Data collection

Two mM DTT was added into the sample just prior to SAXS data
collection to avoid radiation damage. SAXS data were collected on
the storage ring DORIS III of the Deutsches Elektronen Synchrotron
(DESY, Hamburg, Germany) on the X33 beamline at the European
Molecular Biology Laboratory (EMBL). Equipped with an automatic
sample changer, all measurements were taken in vacuum to obtain
a better signal-to-noise ratio. The scattering signal was recorded by
a PILATUS detector (Dectris, Baden, Switzerland) in the range of the
momentum transfer 0.02 < s < 0.55 Å�1, where s = (4psinh)/k, 2h is
the scattering angle, and k = 1.5 Å is the X-ray wavelength. Because
of the high experimental noise for s values >0.22 Å�1, the most
informative part of the scattering data from 0.02 to 0.22 Å�1 was
used for structural analysis. The measurements were carried out
with exposure times of eight successive 15-s frames to monitor
possible radiation damage (no radiation effects were detected).
To account the interparticle interaction effects, solutions at protein
concentrations of 4.0, 2.0 and 1.0 mg/ml were measured.

2.3. SAXS data processing

The SAXS data were processed using the ATSAS program pack-
age [18]. The experimental scattering profiles were corrected by
the background scattering from the solvent, and processed using
the program PRIMUS [19]. The corrected curves were then further
extrapolated to infinitive dilution using standard procedures.
Molecular masses of MHF and MHF–FANCM-F complexes in solu-
tion were evaluated from the extrapolated scattering intensities
at zero angle I(0). Radii of gyration of the two complexes were ana-
lyzed in the range of the Guinier approximation region sRg 6 1.3,
according to the equation:

IexpðsÞ ¼ Ið0Þ expð�s2R2
g=3Þ ð1Þ

The program CRYSOL [20] was used to evaluate theoretical scat-
tering from the available high-resolution structures of MHF and
MHF–FANCM-F complexes. The distance distribution functions
p(r) were obtained with the program GNOM [21] using an indirect
inverse Fourier transformation:

pðrÞ ¼ 1
2p2

Z 1

0
srIðsÞ sinðsrÞds ð2Þ

Low-resolution shapes were reconstructed by two complemen-
tary ab initio methods, DAMMIN [16], employing a dummy atom
(bead) model of a particle, and GASBOR [17], which employs a
chain-like ensemble of dummy residues. Starting from a random
assembly, DAMMIN and GASBOR used simulated annealing proto-
cols to build models fitting the experimental data Iexp(s) to mini-
mize a discrepancy. Ten models obtained from different program
runs were compared and averaged using the program DAMAVER
[22].

In addition, given the available high-resolution structures of
(MHF1–MHF2)2 and (MHF1–MHF2)2–FANCM-F as subunits of the
complexes, the program SASREF [23] was used to determine the
relative positions of the subunits. The resultant SASREF models
were superimposed with the averaged ab initio models using the
program SUPCOMB. The program represents each input structure
as an ensemble of points and minimizes a normalized spatial dis-
crepancy (NSD) to find the best alignment of the two models.
NSD is a measure of quantitative similarity between sets of
three-dimensional points [24]. Binding affinities between two mol-
ecules of (MHF1–MHF2)2 tetramers were calculated with PISA on-
line [25].

The program CORAL [23] was used to reconstruct missing frag-
ments of the available crystal structures using the full amino acid
sequences and the available high-resolution structures. Electro-
static surfaces of the models were obtained and analyzed by the
program PYMOL [26].

3. Results

3.1. Solution statuses of MHF and MHF–FANCM-F

In the present work, the solution structures of two complexes
were studied: MHF (containing full-length MHF1 and MHF2) and
MHF–FANCM-F (containing full-length MHF and a fragment of
FANCM, residues 661–800). SEC results demonstrated that both
MHF and MHF–FANCM-F do not aggregate and are well behaved
single species with exclusion volumes of 13.7 and 13.2 ml, respec-
tively (Fig. 1), corresponding to molecular masses (MMs) of
�100 kDa for MHF and �115 kDa for MHF–FANCM-F. Theoretical
MMs calculated for (MHF1–MHF2)2 and (MHF1–MHF2)2–FANCM-
F are 49 and 66 kDa, respectively. These theoretical MMs are one
half of those obtained by SEC, indicating the complexes form olig-
omeric species in solution.

SAXS profiles for MHF and MHF–FANCM-F are shown in Fig. 2.
Previously obtained high-resolution structures of the samples are
presented in Fig. 3A and B. Using these high-resolution structures
the theoretical scattering curves computed by CRYSOL yield poor
fits to the experimental SAXS data (Fig. 2, A and B, curves 2), point-
ing to a significant difference in overall shape between the crystal
and solution states. The calculated distance distribution functions
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for MHF and MHF–FANCM-F in the crystal and solution forms
(Fig. 2A and B, inserts) also differ considerably. The corresponding
structural parameters of the two complexes are listed in Table 1.
Molecular masses evaluated from SAXS data are approximately
two times more than the MMs for (MHF1–MHF2)2 and (MHF1–
MHF2)2–FANCM-F, therefore agreeing with the SEC results. The ra-
dii of gyration and maximum diameters in solution are also greater
than those calculated using the high-resolution structures. Hence,
we postulate that MHF and MHF–FANCM-F in solution exist as
[(MHF1–MHF2)2]2 and [(MHF1–MHF2)2–FANCM-F]2.

3.2. Ab initio shape reconstruction

Profiles of distance distribution functions for MHF and MHF–
FANCM-F in solution (Fig. 2, inserts, curves 1) are characteristic
for elongated bodies with cross-sections of about 40 Å and maxi-
mal sizes of �125 Å. The functions were further used for low-res-
olution shape restorations.
Fig. 2. SAXS patterns and modeling. (A) SAXS scattering data from MHF in solution:
1 – experimental data; 2 – scattering pattern computed from the crystal structure;
3 – scattering pattern computed from the ab initio model; 4 – smooth curve back
transformed from the p(r) and extrapolated to zero scattering angle for MHF; 5 –
scattering pattern computed from the SASREF model; 6 – scattering pattern
computed from the CORAL model. Insert: left below – the distance distribution
function p(r) computed by the program GNOM for MHF in solution (curve 1) and the
theoretical p(r) function calculated from the crystal structure of MHF (curve 2). (B)
SAXS scattering data of MHF–FANCM-F in solution: Curves 1–6 and the insert
represent the same derived profiles for MHF–FANCM-F as defined in (A).
Ab initio shape reconstructions performed using programs
DAMMIN and GASBOR yielded reproducible results fitting experi-
mental data with discrepancies of 1.17 and of 1.28 for MHF and
MHF–FANCM-F, respectively (Fig. 2A and B, curves 3). The corre-
sponding smooth curve back transformed from the p(r) functions
and extrapolated to zero scattering angle also demonstrated good
approximations of the experimental profiles (Fig. 2A and B, curves
4). Fig. 4A (left column) shows the model of MHF obtained by the
ab initio procedure is a ‘double-V’ shape, which can be considered
as two (MHF1–MHF2)2 molecules, arranged one by one and
slightly rotated relative to each other. The ab initio model of
MHF–FANCM-F has a pillar-like shape and also can be described
as two (MHF1–MHF2)2–FANCM-F subunits arranged one after an-
other (Fig. 4B, left column).

3.3. Rigid body modeling

To determine a spatial organization of the specimens, we
searched throughout their crystals for possible interactions. For
MHF, one asymmetric unit consists of two molecules of (MHF1–
MHF2)2. Three possible formations of [(MHF1–MHF2)2]2 (Fig. S1)
were selected and checked against the SAXS data, resulting in
bad approximations to the SAXS profiles. In addition, the binding
affinities at the interfaces between two molecules of (MHF1–
MHF2)2 were very low according to PISA analysis (the solvation
free energy for each model is shown in Fig. S1). As for MHF–
FANCM-F, there are three molecules of (MHF1–MHF2)2–FANCM-F
in one asymmetric unit, which is obviously different from the solu-
tion formation.

According to the analysis above, we propose that the process of
crystallization destroyed the interactions between two subunits
due to packing forces. As a result, a new model should be built
based on the SAXS data. The program SASREF and the method
molecular tectonics were applied using the available atomic struc-
tures of (MHF1–MHF2)2 and (MHF1–MHF2)2–FANCM-F as sub-
units for rigid body modeling. The results of the reconstructions
are presented in Fig. 4, second column. The obtained models yield
good fits to the experimental SAXS data with discrepancies of 1.07
and 1.13 for MHF and MHF–FANCM-F, respectively (Fig. 2A and B,
curves 5). Moreover, the interaction between two molecules of
(MHF1–MHF2)2 in the SASREF model is much greater than ob-
served in the crystal form (Fig. S1), indicating a more reasonable
model for the octamer. Importantly, the SASREF reconstructions
are in good agreement with the ab initio models as demonstrated
by the program SUPCOMB (Fig. 4, third column, NSD = 1.37 for
MHF and NSD = 1.51 for MHF–FANCM-F). Thus, two independent
methods gave consistent results, thereby supporting the notion
that the models presented here clearly represent solution
structures.

3.4. Restoration of missing fragments

Given the amino acid sequences of MHF1, MHF2 and FANCM-F,
the C-terminus of MHF1 (residues 108–138) were further restored
by the program CORAL. The results of the restorations are shown in
Fig. 4 (right column). Restorations of the missing C-ends of MHF1
for MHF and MHF–FANCM-F complexes were performed using
SASREF models as a basis. The octameric structure of MHF was di-
vided into separated MHF1–MHF2 units, and the four missing C-
termini were embedded by the program CORAL into each MHF1–
MHF2 unit. Several different formations of loops (Fig. S2) were gen-
erated with different discrepancies to the experimental data, from
which the one fitting best was chosen as the final model. Similarly,
for MHF–FANCM-F, the SASREF model was divided into six parts,
four MHF1–MHF2 hetero-dimers and two FANCM-F fragments,
and then the C-terminal domains of MHF1 were restored. In both



Fig. 3. Crystal structures of MHF and MHF–FANCM-F. (PDB id: 4DRA, 4DRB) (A) MHF acts as a hetero-tetramer in the crystal with two MHF1 (residues 1–114, colored in blue)
and two MHF2 (full length, colored in yellow) proteins combine tightly with each other. (B) A fragment of FANCM (residues 661–800, colored in magenta) binds tightly to the
(MHF1–MHF2)2 tetramer to form a ‘double-V’ shape appearance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 1
The overall parameters of MHF and MHF–FANCM calculated from the SAXS data
(SAXS) and from the theoretical crystallography values (crystal), including the radius
of gyration (Rg), molecular mass (MM) and maximum diameter (Dmax).

Sample Rg (nm) MM (kDa) Dmax (nm)

SAXS Crystal SAXS Crystal SAXS Crystal

MHF 3.42 ± 0.03 2.15 92 ± 3 49 125 ± 3 70
MHF–FANCM 3.67 ± 0.02 2.28 125 ± 2 66 126 ± 3 79

Fig. 4. Models generated by SAXS. (A) SAXS models for the MHF complex in solution. (B)
from DAMMIN and GASBOR models. Second column: typical models calculated from SAS
program SUPCOMB. Last column: final models with the missing loops of MHF1 generated
used in Fig. 2, and the missing loops are represented as dummy residues colored pink. (Fo
to the web version of this article.)
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cases, good fits to the experimental scattering curves were ob-
tained with discrepancy of 1.03 for MHF and 0.91 for MHF–
FANCM-F (Fig. 2A and B, curves 6). The results of the restorations
by the program CORAL demonstrate that the C-terminus of the
MHF1 protein is flexible, weakly ordered and protrudes slightly
from the main structure into the bulk solution.

The electronic surfaces of MHF and MHF–FANCM-F obtained
from the SASREF models are presented in Fig. 5. Positively charged
SAXS models for MHF–FANCM-F in solution. First column: averaged ab initio models
REF. Third column: superposition of ab initio models and rigid body models by the
by the program CORAL. The colors of the high-resolution structures are the same as

r interpretation of the references to colour in this figure legend, the reader is referred



Fig. 5. Electrostatic surface analysis of MHF and MHF–FANCM-F on the convex side. (A) and (B) represent the electrostatic surface diagrams for MHF and MHF–FANCM-F
separately (blue represents a positively charged surface region and red represents a negatively charged surface region). The green circles signify where the C-terminus of
MHF1 should be located.

Fig. 6. Model for the role of MHF and FANCM in regulating the FA pathway in the S
phase. The MHF complex combines two molecule of FANCM, whereas this MHF
complex can also bind tightly to the stalled replication fork, thereby enhancing the
association of FANCM to the chromatin significantly. In the S phase, phosphorylated
FANCM can recruit the FA core complex to chromatin, possibly to replication forks,
and together with MHF they provide a ‘landing pad’ for the whole FA complex.
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patches of MHF and MHF–FANCM are located at the junction of
two parts of the complexes. Moreover, the CORAL models demon-
strate that the negatively charged areas are concealed by the C-ter-
minal ends of MHF1.

4. Discussion

FANCM, the only subunit of the FA core complex that binds
DNA, acts mainly as an anchor required for the recruitment of
the FA core complex to chromatin. [9–11] MHF1 and MHF2 are re-
cently discovered partners of FANCM, and function to assist
FANCM target chromatin, and can promote FANCM in the Holliday
junction migration process [12,13].

In this investigation, SAXS was applied to determine the solu-
tion structures of the intact MHF and MHF–FANCM-F. Ab initio
analysis and rigid body modeling were used independently and
gave consistent results, showing a reliable construction and spatial
organization of the two complexes. The SAXS-derived models are
assemblies of [(MHF1–MHF2)2]2 and [(MHF1–MHF2)2–FANCM-
F]2 in solution, and both complexes show elongated shapes that
can be considered as two (MHF1–MHF2)2 or (MHF1–MHF2)2–
FANCM-F subunits stacked on each other. It should be stressed that
the conformations of the two complexes in solution were obtained
independently for MHF and MHF–FANCM-F. Therefore, the similar
architectures of the two complexes indicate that binding of the
fragment of FANCM does not affect the overall architecture of
MHF at this resolution. Moreover, the (MHF1–MHF2)2 tetramer re-
tains a rigid structure upon binding with FANCM-F according to
crystallography analysis [14]. Based on these observations, we de-
duce that the intact MHF1 forms a hetero-octamer with MHF2 in
solution, and each tetramer acts as a rigid scaffold to bind one mol-
ecule of FANCM.

The C-terminus of MHF1, which plays a critical role in DNA
binding activity, was restored successfully into the solution SAXS
models and was found to protrude slightly from the main structure
and into the bulk solvent. The flexibility of the C-terminal region
explains the difficulty to crystallize this region, and this mobility
may be responsible for the ability of the domain to mediate differ-
ent interactions.

Although being a low-resolution method, SAXS can provide use-
ful overall structural information that is highly relevant to its bio-
logical function. The elongated octameric structure of MHF
described in the present work is consistent with its DNA binding
activity. The electrostatic surfaces of both MHF and MHF–
FANCM-F obtained from the SAXS models (Fig. 5) demonstrate that
the higher oligomeric states generate large positively charged
patches that were not observed in the crystal structures. Thus,
the larger positive surface is likely to further stabilize the interac-
tion between MHF and chromatin. Additionally, all C-terminal
parts of MHF1 locate on the negative electrostatic sites of the con-
vex side. This observation explains the indispensability of the C-
terminal fragments of MHF1 for DNA binding. These fragments
can cover the negatively charged regions, connect the two posi-
tively charged patches and can possibly act as binding handles
for conjunction to dsDNA.

According to the SAXS models and to the structural analysis
above, we propose that the elongated octameric architecture of
MHF forms a good sliding groove for DNA binding and moving
activity. It is known that MHF is essential for FANCM to form a sta-
ble association with chromatin, and that FANCM acts as an anchor
required for the recruitment of the FA core complex [9–13]. Based
on the two points above, we strongly suggest that the MHF oct-
amer provides a ‘landing pad’ for the whole FA core complex
(Fig. 6). Together with FANCM, MHF may translocate across repli-
cating DNA along the sliding groove, thereby opening chromatin
to allow the FA core complex to load. It is similar to the previous
model [27], although there are obvious differences. First, for the
first time MHF was added to the whole FA complex model and is
hypothesized to be a ‘landing pad’ for the whole FA complex;
rather than FANCM. Second, it is now clear that the basement of
the FA core complex includes two molecules of FANCM, which
indicates two FA core complexes working together to complete
their functional assembly (Fig. 6).

Structural studies using crystallographic methods along with
biochemical information about MHF and FANCM have provided
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information on the overall mechanism of the complex. However,
the SAXS models are the first to elaborate the hetero-octameric
structure of MHF, which is obviously different from its crystal
structure. In particular, the location of C domains of MHF1 restored
by SAXS is crucial for understanding the mechanism of MHF in
DNA binding activity. Combining these models with our previously
published high-resolution structures provide a better understand-
ing of the mechanism in which the MHF–FANCM complex recruits
the whole FA core complex and anchors it to the chromatin.
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