
Theoretical Computer Science 107 (1993) 121-133

Elsevier

121

The computational complexity of
universal hashing

Yishay Mansour”
Laboratory for Computer Science, MIT, 545 Tech. Sq.. Cambridge, MA 02139, USA

Noam Nisan**
Department of Computer Science, Hebrew University, Jerusalem, Israel

Prasoon Tiwari***
Department of Computer Science, University of Wisconsin-Madison, 1210 W. Dayton Street,

Madison, WI 53706, USA

Abstract

Mansour, Y., N. Nisan and P. Tiwari, The computational complexity of universal hashing, Theoret-

ical Computer Science 107 (1993) 121-133.

Any implementation of Carter-Wegman universal hashing from n-bit strings to m-bit strings

requires a time-space tradeoff of TS=n(nm). The bound holds in the general boolean branching

program model and, thus, in essentially any model of computation. As a corollary, computing

a+ b * c in any field F requires a quadratic time-space tradeoff, and the bound holds for any

representation of the elements of the field.

Other lower bounds on the complexity of any implementation of universal hashing are given as

well: quadratic AT’ bound for VLSI implementation; R(logn) parallel time bound on a CREW

PRAM; and exponential size for constant-depth circuits.

1. Introduction

Carter and Wegman [9] defined the notion of a universal family of hash functions.

Definition 1.1. Let A and I3 be two sets, and let H be a family of functions from A to B.

H is called a universal family of hash functions if for every x1 #x,EA and y,, ~,EB

* Supported by an IBM graduate fellowship.
** Research was done while the author was at Laboratory for Computer Science, MIT, 545 Tech. Sq.,

Cambridge, MA 02139, USA. Partially supported by NSF 865727-CCR and AR0 DALL03-86-K-017.

*** This work was performed while the author was at IBM Research Division, T.J. Watson Research

Center, P.O. Box 218, Yorktown Heights, NY 10598, USA.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82448366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

122 Y. Mansour, N. Nisan, P. Tiwari

we have that

Apart from the value of such families of hash function for various hashing purposes

as proposed in [9], many new applications have been found. For example, Sipser [20]

used universal hashing to obtain simulation of BPP in the polynomial-time hierarchy;

Goldwasser and Sipser [131 used it for the simulation of interactive proof systems by

Arthur-Merlin games; Impagliazzo and Zuckerman [14] used universal hashing for

the amplification of the probability of success of randomized algorithms; and Nisan

[l S] used universal hashing to construct pseudorandom generators for space-

bounded computation.

Previous research has been directed towards finding efficient implementation of

universal hashing, as well as applying universal hashing in varying applications.

Perhaps the only exception is Siegel [19], who studied both upper and lower bounds

on the tradeoffs between the storage requirement and the number of random bits

versus the computation time of log n-wise independent hash functions, in the algebraic

RAM model.

In this paper, we study the inherent computational complexity of universal hashing

schemes. We give several lower bounds on the computational complexity that any

implementation of a universal family of hash functions must incur. Our main result is

a tight, quadratic, time-space tradeoff on the general model of boolean branching

programs.

Borodin and Cook [6] defined and justified the boolean branching program as

a general model of computation. It imposes no structure on the computation, allows

any pattern of access to the input bits, and also allows the output bits to be computed

in any order. The model is strong enough to efficiently simulate any other reasonable

model of computation, such as multitape Turing machines or RAMS. In Section 3, we

recall the definition of the model, and the notions of time and space in this model.

With the exception of [lo], first time-space tradeoffs were obtained on structured

models of computation. Tompa [23] contains a discussion of these results. In the case

of nonstructured models, Cobham [lo] shows a time-space tradeoff for any computa-

tional device having one head read-only input tape. The boolean branching program

removes this restriction to accessing the input bits. The first nontrivial time-space

tradeoffs in this model were given by Borodin and Cook [6], who proved that sorting

requires a nearly quadratic tradeoff. Subsequently, Abrahamson [l] and Yesha [25]

proved tradeoffs for several algebraic problems, and Beame [3] proved a tight tradeoff

for sorting and related problems. In contrast to earlier results that provide tradeoffs

for specific problems, we prove tradeoffs for a whole family of problems.

Theorem 1.2. Let H be a universalfamily of hush function h : { 1, . . , N} + { 1 . M}. Any

branching program which on input XE{ 1. . . N} and hEH outputs h(x) requires

a time-space tradeoff of TS = Q(nm), where n = log N (is the length of the representation

of x) and m=log M (is the length of the representation of the output h(x)).

Computational complexity of universal hashing 123

There are universal families of hash functions for which Theorem 2 is tight. (See, for

example, Corollary 3.) As an immediate consequence of this theorem, we get several of

the known time-space tradeoffs for algebraic problems. Two of these are stated in the

corollaries below.

Corollary 1.3 (Abrahamson Cl]). In the boolean branching program model, performing
the convolution’ of an n-bit string with an (n + m - 1)-bit string to obtain an m-bit string
requires TS = R(nm).

Corollary 1.4 (Yesha [25]). In the boolean branching program model, multiplying two
n x n matrices over GF(2) requires TS=n(n3).

The lower bound in Corollary 1.3 is tight [l]. In contrast, the bound in Corollary

1.4 is not tight; a (better) tight bound has been established by Abrahamson [l].

Perhaps the most interesting corollary of our theorem is regarding the complexity

of performing arithmetic in fields. Consider the field GF(p), where p is some prime

number. It is not difficult to see that performing addition in this field can be done in

simultaneously linear time and logarithmic space; multiplication is, however, more

difficult. If one wishes to perform multiplication easily, one may do it by changing the

representation of the numbers in GF(p); each element in the field will be represented by

its discrete logarithm (according to some fixed generator). In this representation it is

easy to perform multiplication in linear time and logarithmic space, but now addition

is difficult. Our results show that this tradeoff is unavoidable in any nonredundant

representation’ [7] of the elements of GF(p), the combination of these operations is

difficult.

Theorem 1.5. Let F be afinite$eld, and let n = [log 1 F 11. Fix an arbitrary representa-
tion of the elements of F by n-bit strings. Then any branching program which takes
a, b, CE F as inputs, and outputs a + b * c, requires a time-space tradeof of TS = Q(n2).

It is interesting to note that the fact that F is a field is essential. For certain values of

n and a carefully chosen representation, it is possible to perform (a + b * c) mod n in

linear time and logarithmic space. (For example, let n be a product of many “small”

distinct primes and choose the representation by the Chinese remainder theorem.)

This paper contains other lower bounds on the complexity of any implementation

of universal hashing. We first consider area-time tradeoffs in the VLSI model, and

prove the following AT2 lower bound.

Theorem 1.6. Let H be a universal family of hash function k : (1 . . . N } + (1. . . N}. Any

VLSI implementation which on input XE{ 1 . ..N} and kEH outputs k(x) requires
a area-time tradeoff of AT2 =n(n2), where n =log N.

1 Convolution is defined in Section 3.
’ A nonredundant representation is the one where each element of GF(p) has a unique representation.

124 Y. Mansour, N. Nisan, P. Tiwari

Again, this theorem implies some of the known AT2 lower bounds, and in particu-

lar Yao’s result [24] giving a quadratic AT2 lower bound for the computation of

a + b * c, in any representation.

We then make the observation that universal hash functions must have high

“average sensitivity”, a fact which in conjunction with several known results gives the

following lower bounds.

Theorem 1.7. Let H be a universal family of hash function h : { 1 . . . N } -+ { 1. . . M }. Then

there exists a function heH such that
(1) h requires exponential-size constant-depth circuits,
(2) h requires R(log n) time to compute on a CREW PRAM,
(3) R(m) of the output bits of h requires Q(n2) boolean formula size (over the basis

consisting of { V, A ,i }),

where n=log N is the input size and m=log M is the output size.

Another interesting resource tradeoff is that between communication and space.

A communication-space tradeoff problem was posed in Tiwari [22]. First results in

this direction were obtained on the algebraic straight-line model of communicating

processors by Lam et al. [161. They proved a tight communicationspace tradeoff for

convolution and matrix multiplication. Recently, Beame et al. [4] have used our main

lemma in order to prove a tradeoff between communication and space on a general

model of communicating processors.

The rest of this paper is organized as follows. Section 2 gives the formal definition of

universal hash functions and their properties. Section 3 defines the branching pro-

gram model. Section 4 gives the lower bound for branching programs. Section 5 gives

the VLSI lower bounds. Section 6 gives the remaining lower bounds. Section 7 states

some open problems.

2. Universal hash functions

Definition 2.1 (Carter-Wegman). Let A and B be two sets, and let H be a family of

functions from A to B. H is called a universal family of hash functions if for every

x1 #x~EA and y,, ~,EB we have that

There are several known efficient constructions of universal families of hash

functions. We mention two especially interesting well-known families. Note that in

both of these constructions the length of the description of a function in H is linear in

sum of the lengths of the description of an element from the domain A and from the

range B.

(1) Let F be an arbitrary finite field and let A = B = F. The family H that consists of

all linear functions on F is a universal family of hash functions. More specifically,

Computational complexity of universal hashing 125

H = {ax + b 1 a, bEF}, and each function heH is uniquely represented by two elements

a, b.

(2) Let A={O, l}” and B={O, l}“. For xe{O, l}” and y~(0, l}n+m-l we define the

convolution of y and x, y 0 x, to be the m-bit string z whose ith bit is given by

zi = I;= 1 Xjyi+j- 1 (mod 2). For two m-bit strings x and y let x @ y denote the bitwise

exclusive-or of the two strings. Then the following family is a universal family of hash

functions:

H={(aox)@ blaE{O, l}‘+“-l, bE{O, l}“}.

The fact that the first is a family of universal hash functions can be observed from

the fact that for any x1 #x2,y,,y2, there is a unique solution for a and b.

The fact that the convolution is a universal hash function is slightly less immediate,

and for completeness the proof is sketched below.

Claim 2.2. The following is a universal family of hash functions:

ff=((aox)@ bluE{O, l}n+m-l, bE{O, l}“]

Proof. It suffices to show that the size of the set

is independent of the choices of x1, x2, y,, y,. Fix x1 #x2 and y,, y2 and note that for

any choice of a such that a 0 (x I 0 x2) = y, 0 y,, there is a unique choice of b such that

(a 0 x 1) 0 b = yl and (a 0 x2) 0 b = y2 (and no choice of b for other values of a). Thus, it

suffices to count the number of choices for a satisfying the above condition.

Let x=x1 @x2 and y=y, 0y2, we have that x#6. Consider the set {alaox=y}.

It is the solution space of m equations. Since x#6, the equations are independent;

thus, it defines a hyperspace of dimension exactly n- 1 in Z;+m-‘. 0

3. Model of branching programs

Consider a function f: (0, l}“-(0, l}“. A binary branching program computingfis

a rooted directed graph with each internal nonsink node labeled with an integer i in

the range from 1 to n. Each nonsink node has outdegree two, and the two out-edges

are labeled zero and one. Some edges are also labeled with a pair of the form (j, b),

where je { 1,2, . , m} and be{O, l}. A computation of the branching program on an

input x1 , . . . , x, is a path in the graph specified by the following conditions: (i) the path

starts at the root; (ii) at vertex v with label i, the outgoing edge with label xi is selected;

and (iii) the path terminates on arrival at a sink node. A computation produces as

output the edge labels associated with its path. We require that if a pair (j, b) is

produced as an output, then b equals the jth bit off (x1, x2,. . . , x,). Note that every

input defines a unique computation path.

126 Y. Mansour, N. Nisan, P. Tiwari

The time complexity of a branching program is the length of its longest computa-

tion, and the space complexity of a branching program is the logarithm of the number

of nodes in the graph. Every branching program, with time T and space S, can be

transformed to a branching program whose graph is acyclic (no directed cycles) and

leveled (the underline graph is leveled), and whose time is T and space is at most

S+log T (see [8]). For this reason, we restrict our discussion to acyclic and leveled

branching programs.

4. A time-space tradeoff for hash functions

For the lower bound we use a version of the proof technique introduced by Borodin

and Cook [6].

Definition 4.1. Consider a function f: (0, l}‘-(0, 1)“. Let A c (0, l}’ be the set of all

l-bit strings that contain the same substring on some fixed set of n bit positions. (Note

that 1 A (= 2[-“.) For k <m, let B c (0, l}” be the set of all m-bit strings that contain the

same substring on some fixed set of k bit positions. (Note that 1 B I= 2m-k.) If, for every

such pair of sets A and B, upon choosing an input from A uniformly, the probability of

getting an element of B as the output is bounded by 2-ak+P, then the function f is said

to have the randomness property with parameters n,a, and fi.

We show (following [6]) that a function that has the randomness property requires

TS = Q(unm).
The following claim is immediate from the randomness property.

Claim 4.2. If a function f has the randomness property with parameters n, CI, and j?, then
any branching program of depth at most n, when given a random input x, outputs k<n
bits off(x) correctly for at most 2-ak+B fraction of the inputs.

Proof. Clearly, along any computation path, the branching program can read at most

n inputs. Let yi,, . . . , yik be the outputs produced along a particular path. (Note that

these bits, i.e., their value and index, are completely determined by the path.) Since this

output is based only on some n input bits, the randomness property off ensures that

for any k output bits there is no fixed assignment that has probability more than

2-ak+P of being correct. Therefore, the correct output is produced with probability at

most 2-ak+B. 0

Lemma 4.3. Any branching program that computes a function f: (0, l}‘-+{O, I}“’ that has
the randomness property with parameters n, c(, and p requires (S+P)(T+ n)actnm, or,
when CI and fl are constants, TSaR(mn).

Proof. Claim 4.2 implies that no n inputs determine the output completely. Therefore,

T> n and, consequently, S 3 log n. Without loss of generality, we may assume that the

Computational complexity of universal hashing 127

branching program is leveled and acyclic. Partition the branching program into

r T/n 1 blocks such that each block, except possibly the last one, contains n consecutive

levels. Each block consists of a number of disjoint branching “subprograms”. Note

that there are at most 2’ such subprograms. In addition, each input can be associated

with a block (and a particular subprogram in that block) that produces at least

m/r T/n1 (<n, distinct) outputs (for that input).

For each subprogram we count the number of inputs for which it produces at least

m/r T/n1 distinct outputs. By Claim 4.2, any n-level branching program can produce

at least m/r T/n1 (<n, distinct) outputs for at most 2’2-““‘fT’“1 +p of the inputs. On

the other hand, for each input there is some subprogram that outputs at least

m/r T/n1 distinct outputs. This implies that the number of inputs (i.e., 2’) is bounded

by the sum over all subprograms, the number of inputs for which that subprogram

produces at least m/r T/n] distinct outputs. Since the number of subprograms is

bounded by 2’,

This implies that (S+j3)(T+n)3R(cmn). 0 I

The construction, to this point, follows the general outline of [6], and appeared

with some variations in [1,25,3]. We still have to show the main part of the argument,

that the universal hash functions have the randomness property.

Consider the function f(h, x) = h(x), where h is from a collection of universal hash

functions. The following lemma gives the main argument that f has the randomness

property required for proving the lower bound. This lemma is a stronger variant of

a lemma that appears in [IS]. It is also interesting to compare this lemma to a result of

Lindsey on the distribution of -1’s and l’s in submatrices of Hadamard matrices

c2, 121.

Lemma 4.4. Let H={h:Z-+O} b e a collection of universal hash functions. Let Acl,

BcO and CcH. Then

1 Prob xsA,hecCh(x)EBl-PIG J IHI
,A,,c, ~(l--P),

where p=jBl/lOl.

Proof. Define Mh,x to be 1 if h(x)EB and 0 otherwise. Then

I Prob xs~,~~~Ch(~)~BI-~P=l~~~~~xo~(M~.x-~)I.

Clearly, using Cauchy-Schwartz inequality,

IE,,,E,,,(M,,,--)I~JELEc{E~~A(M~,~-~))~.

128 Y. Mansour, N. Nisan, P. Tiwari

Rather than averaging over ~EC, we want to average over heH. Clearly, this cannot

decrease the expectation by a factor of more than [HI/l Cl. Hence,

We will concentrate on the expression on the right-hand side, and compute it exactly.

E~~H(E~~A(~~,~-P))~=E~~H((E~,~A(~~.~~-P))(~~~~A(~~,~~-P))}

=E~~H{E~,EAEX*EA(M~,X,M~,X~-PM~,,,

-pM/,,x,+~~)l

For any x, E~Mh,x=p; therefore, ExeAEhe,,M,_=p. Furthermore,

E &EA X,EA &sHMh,x,Mh,xz can be computed by evaluating EhsHMh,x,kth,x2 in the

two cases discussed below.

Case I. x1=x2: In this Case EhpHMh,x,Mh,x2=EheHMh,x,=p. This Case Occurs

with probability l/l A 1.

Case II. x1 #x2: By the properties (Definition 1.1) of the universal hash functions,

Eh.HMh,xr MhlX2 =p2. This case occurs with probability 1 - l/IA 1.

Therefore,

E E,,,,E,,,Mh,x,Mh,xZ=(1/lAl)P+(1--1/lAI)P2 XlEA

=(P-P2M4+P2.

Combining with the previous terms, we get

E~EH(E~~H(M~,~-P))~=(P-P~)/IAI+P’-~P’+P~

=(P-P2M4

To conclude, we have shown that

I Prob

It remains to establish a relationship between the above lemma and the randomness

property.

Lemma 4.5. Let H= {h : {0,1}“-+{0, l}“} b e a universal family of hash functions. Then
the function f (h, x)= h(x) has the randomness property with parameters n, cx =), and
p= 1.

Computational complexity of universal hashing 129

Proof. We need to show that, given any n bits specifying the argument off (i.e.,

specifying h and x), the probability that any k bits off(h, x)= h(x) take on a specified

value (output) is at most 2-ak. Assume that, of the n bits given to us, II bits are from x,

and the remaining Iz = n - 1, bits are from h. Let A be the set of all possible consistent

extensions of the input, and C be the set of all possible extensions of the output. Then

1 H l/l C 1 d 212 and l/l A I d 2-“2”. For /I + l2 dn, Lemma 4.4 implies that the probabil-

ity of obtaining a fixed assignment to any k dm bits of the output is bounded by

J2_ko<2-k/2. Thi s implies thatfhas the randomness property parameters n,
4, and 1. 0

Lemma 4.5 is stated for hash functions whose input set is I = (0, l}” and output set is

0 = (0, l}“. The same results hold for any I c (0, 1)” and for 0 c (0, l}” if IO Ia2”-’

for some constant c. We did not resolve the case where the output set is sparse in

(0, I}“, e.g., lOI= 2”“.

Note that Lemma 4.5 does not use the full power of Lemma 4.4. Lemma 4.4 allows

us to argue about any large subset, rather than subsets that are defined by fixing

certain bits. This is an essential difference between our lower-bound technique and

previous techniques.

Combining Lemma 4.5 with Lemma 4.3, we prove our main result.

Theorem 4.6. Let H be a universalfamily of hush function h: {l . ..N}-+{l . ..M}. Any
branching program which on input XE{ 1 . ..N} and hgH outputs h(x) requires
a time-space tradeoff of TS=Q(nm), where n =log N is the length of the representation
of x and m=log M is the length of the representation of the output h(x).

We can now establish the following corollaries.

Corollary 4.7. Performing the convolution of an n-bit string with an (n + m - 1)-bit string
to obtain an m-bit string requires TS = R(nm).

Proof. Let f be a function producing m-bit results. Then, if f (y) can be computed by

a branching program with time T and space S then f (y) 0 b can be computed by

a branching program with time at most 2m+ T and space at most 2logm+S, where

b is an m-bit constant. By Claim 2.2, H= {(a ox) @ b(uE{O, l}n+m-l, bE{O, l>“} is

a universal family of hash functions, and the function f (a, b, x) = (a 0 x) @ b
requires TS = R(nm). Therefore, the convolution a 0 x(=f (a, b, x) 0 b) requires

TS = R(nm). 0

Corollary 4.8. Multiplying two n x n matrices over GF(2) requires TS=R(n3).

Proof. There is a reduction to matrix multiplication from the convolution of an

(n + n2 - 1)-bit string with an n-bit string; using standard arguments, one can reduce

the convolution to multiplying two 2n x 2n matrices. •I

130 Y. Mansour, N. Nisan, P. Tiwari

We now restate Theorem 1.5. It gives a time-space tradeoff for computing a + b * c

over any finite field, provided that inputs are presented in a succinct representation.

Theorem 4.9. Let F be ajinite3eld, and let n =rlog IF 11. Fix an arbitrary representa-

tion of the elements of F by n-bit strings. Then any branching program which takes

a, b, CEF as inputs, and outputs a + b * c, requires a time-space tradeoff of TS =Q(n’).

Proof. This is immediate from the fact that H = {ax + b 1 a, bg F} is a universal family

of hash functions. 0

5. An area-time tradeoff for VLSI

The model that we are considering is the Thompson grid model (see [21]) of VLSI

chip layout. The model assumes that a chip consists of a grid with evenly spaced

vertical and horizontal tracks. Circuit nodes are placed on the intersection of vertical

and horizontal tracks. The area of a chip is defined to be the number of grid points it

contains.

Definition 5.1. For a string y of n bits, let yln,2 denote the substring consisting of the

first n/2 bits of y.

Lemma 5.2. Let H be a family of hush functions from (0, l}” to (0, l}” and

x1,x2, . ..) XkE{O, 1},‘2 be distinct elements. For k<2”14, there is a function hEH, such

that h(6xi)lni2 # h(~xj)ln/2 for all i #j, where 6 is u string of n/2 zeros.

Proof. For any y, ZE{O, ljni2, y fz, the definition

that

of universal hash functions implies

Prob,,GH[h(6y)ln,2] = h(6z)lni2] = 2-ni2.

In order to prove the lemma, choose uniformly a function hEH. The probability

that there is a pair xi,xj (i/j) such that h@x,),,,,, = h(6x2)Ini2 is bounded by k22-“j2.

Therefore, for k < 2n’4, there is a function hEH such that h(~xi)ln,2 # h(~xj)ln,2 for all

i#j. 0

Using standard arguments of information transfer, we show the following lower

bound.

Theorem 5.3. Let H be a universal family of hash function h : { 1 . . . N } -+ { 1 . . . N}. Any

VLSI implementation which on input XE{ 1 . N) and hEH outputs h(x) requires

a urea-time tradeoff of AT2 = CI(n2), where n =log N.

Proof. Partition the chip into two parts with O(fi) bisection length, each having

(approximately) half the bits of the input. Without loss of generality, assume that the

first part contains the first n/2 bits of the input, as well as the first n/2 bits of the

Computational complexity 01 universal hashing 131

output. For all 1 d i < n/2 fix xi = 0. Consider the set of those inputs that have a string

of zeros as the first n/2 positions. By Lemma 5.2, there is a function ~EH such that

I{h(~x),n,2 :xe{O, 1}““}132 ‘I4 Therefore, the information transfer between the two .

parts must be Q(n). We complete the proof using the well-known results of [21]: In

order to allow the transfer of Q(n) bits through the bisection of size O(A), the time is

at least R(n/&), which implies that AT2 =0(n2). 0

As stated, we assumed that the hashing was performed on the integers 1 . ..N.

Following [24], one can ask how the results differ if we allow the inputs and outputs

to be represented by arbitrary (but unique) numbers. For this question we obtain

essentially the same tradeoffs as in [24]. In the case that the representation is

O(log 1 FI) bits long, where IF I is the number of elements in F, our results still hold

(using, essentially, the same proof). However, when the representation is allowed to be

sparse, we can prove bounds only when the inputs are all on the boundary of the chip.

Theorem 5.4. Let H={h:I+O) b e a universal family of hash functions. Any VLSI
implementation that receives as inputs h and x on the boundary of the circuit and outputs
h(x) requires AT2 = R(mn), where n =log I I I and m = log IO I.

Proof. Let the circuit be a w x d rectangle, where w 3 d. Assume that the representa-

tion of the input is 1 bits long. Since all the inputs appear on the boundary of the

circuit, wT3 l/4.
Divide the circuit into 21/n subrectangles along the edge w such that every subrect-

angle has at most n/2 inputs. Following the same line of argument as in Theorem 1.6,

we show that there is a subrectangle such that if we fix its inputs to zero there is

a function heH that has 2cmn” distinct outputs in this subrectangle, for some constant

c. This implies that dT=R(mn/l). Since A=wd, then AT2 =(wT)(dT)=(1/4)(mn/l)=
SZ(mn). 0

Using the same argument for a general chip, one can derive an A2T3 =R(m2n)
lower bound.

6. Other lower hounds

Definition 6.1. Let f (x1, . . . , x,) be a boolean function. The influence of Xi on f is

Infi(f)=ProbCf(xl,...,xi-l,O,xi+l,...,x”)#f(x1,...,xi-l,l,xi+l,...rx,)l,

where the probability is uniform over all choices of xi, xi_i,xi+ 1, x,. The

average sensitivity off is s(f) = Ci Infi(f).

Lemma 6.2. Let H be a universal family of hash function h : { 1. N} -{ 1. . . M}, and
denote by hi the ith output bit of h. Then there exists a function he H such that for at least
m/4 bits s(hi) > n/4.

132 Y. Mansour, N. Nisan, P. Tiwari

Proof. Fix any bit 1 < ibm. By definition of universal hashing it is clear that for any

1 <j<n EhEHIInfj(hi)] = l/2. We thus have that EheH[s(hi)] =n/2. The Markov in-

equality implies that for at least a quarter of the functions heH, s(hi)~n/4. An

averaging argument completes the proof of the lemma. 0

Using known results, we get several bounds.

Theorem 6.3. Let H be a universal family of hash function h : { 1. . N} --{ 1. . M}. Then

there exists a function heH such that
(1) h requires exponential-size constant-depth circuits,
(2) h requires O(log n) time to compute on a CREW PRAM,
(3) Q(m) of the output bits of h requires Q(n2) boolean formula size (over the basis

consisting of { V, A, i}),

where n = log N is the input size and m = log M is the output size.

Proof. Linial et al. [17] show that exp(s(f)“d) is a lower bound on the size of depth-d

circuits computing f: Cook et al. [I l] show that logs(f) is a lower bound on the

CREW parallel time. (In fact, they give the bound in terms of the stronger worst-case

sensitivity.) Krapchenko’s lower bound technique [lS] shows that s(f)’ is a lower

bound on the boolean formula complexity. (See also [S]). 0

7. Open problems

We would like to conjecture about the complexity of universal hash function in the

circuit and Turing machine models. We conjecture that any implementation of

universal hashing has superlinear circuit and Turing machine complexity.

Conjecture 7.1. Let H be a universal family of hash function h : { 1. . . N } -{ 1 . . . N}. Then

(1) any boolean circuit which on input XE{ 1 . . . N } and hE H outputs h(x) requires
Q(n log n) size;

(2) any multitape Turing machine which on input XE{ 1 . . . N} and hE:H outputs h(x)
requires Q(n log n) time;
where n=log N is the length of the representation of x.

Acknowledgment

We thank Paul Beame, Martin Tompa, and Avi Wigderson for helpful discussions.

References

[l] K. Abrahamson, Time-space tradeoffs for branching programs constructed with those for straight
line programs, in: 27th Ann. Symp. on Foundations of Computer Science (Toronto, Ontario, 1986)
402-409.

Computational complexity of universal hashing 133

[2] L. Babai, P. Frank1 and J. Simon, Complexity classes in communication complexity theory, in: Proc.

27th Ann. Symp. on Foundations of Computer Science (1986) 331-347.
[3] P. Beame, A general sequential time space tradeoff for finding unique elements, in: Proc. 2Zsl Ann.

ACM Symp. on Theory of Computing (Seattle, Washington, 1989) 197-203.
[4] P. Beame, M. Tompa and P. Yan, Communication-space tradeoffs in the boolean model (manuscript).

[S] R. Boppana and M. Sipser, The complexity of finite functions, in: J. van Leeuwen, ed., Handbook of
Theoretical Computer Science, Vol. A (Elsevier, Amsterdam, 1990) 757-804.

[6] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general sequential model of

computation, SIAM J. Comput. 1 (1982) 287-297.

[7] A. Borodin, S. Cook and N. Pippenger, Parallel computation for well-endowed rings and space-

bounded probabilistic machines, Inform. and Control 58 (1983) 113-136.

[8] A. Borodin, M. Fischer, D. Kirkpatrik, N. Lynch and M. Tompa, A time-space tradeoff for sorting on

non-oblivious machines, J. Comput. System Sci. 22 (1981) 351-364.
[9] L. Carter and M. Wegman, Universal hash functions, J. Comput. System Sci. 18 (1979) 143-154.

[lo] A. Cobham, The recognition problem for the set of perfect squares, conference record, in: Proc. ZEEE

7th Ann. Symp. on Switching and Automata Theory (1966) 78-87.
[1 l] S. Cook, C. Dwork, and R. Reischuk, Upper and lower bounds for parallel random access machines

without simultaneous writes, SZAM J. Comput. 15 (1986) 87-97.

[12] P. ErdGs and J. Spencer, Probabilistic Methods in Combinatorics (Academic Press, 1974).

[13] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems, in: Proc.
18th Ann. ACM Symp. on Theory of Computing (Berkeley, CA, 1986) 59-68.

1141 R. Impagliazzo and D. Zuckerman, How to recycle random bits, in: Proc. 30th Ann. Symp. on
Foundations of Computer Science (Reseach Triangle Park, NC, 1989) 248-253.

[15] V. Krapchenko, A method of determining lower bounds for the complexity of K schemes, Math. Notes
Acad. Sci. USSR 10(l) (1971) 474-479.

[16] T. Lam, P. Tiwari and M. Tompa, Tradeoffs between communication and space, in: Proc. 21st Ann.
ACM Symp. on Theory of Computing (Seattle, Washington, 1989) 217-226. (To appear in JCSS.)

1171 N. Linial, Y. Mansour and N. Nisan, Constant depth circuits, fourier transform and learnability, in:

Proc. 30th Ann. Symp. on Foundations of Computer Science (Reseach Triangle Park, NC, 1989)

574-579.

[18] N. Nisan, Pseudorandom generators for space-bounded computation, in: Proc. 22nd Ann. ACM
Symp. on Theory of Computing (Baltimore, MD, 1990) 204-212.

[19] A. Siegel, On universal classes of fast high performance hash functions, their time-space tradeoff, and

their applications, in: Proc. 30th Ann. Symp. on Foundations of Computer Science (Reseach Triangle
Park, NC, 1989) 20-25.

1201 M. Sipser, A complexity theoretic approach to randomness, in: Proc. 15th Ann. ACM Symp. on
Theory of Computing (Boston, MA, 1983) 330-335.

1211 Thompson, A complexity theory for VLSI, Tech. Report, Carnegie Mellon University, 1980; Ph.D.

thesis, Department of Computer Science.

1221 P. Tiwari, The communication complexity of distributed computing and a parallel algorithm for

polynomial roots, Ph.D. thesis. University of Illinois at Urbana-Champaign, 1986.

1231 M. Tompa, Time-space tradeoffs for computing functions, using connectivity properties of their

circuits, J. Comput. System Sci. 20 (1980) 118-132.

[24] A. C. Yao, The entropic limitations on VLSI computations, in: Proc. 13th Ann. ACM Symp. on Theory
ofComputing (Milwaukee, WI, 1981) 308-311.

[25] Y. Yesha, A time-space tradeoff for matrix multiplication and the discrete fourier transform on

a general sequential random access computer, J. Comput. System Sci. 29 (1984) 183-197.

