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Abstract 

Mansour, Y., N. Nisan and P. Tiwari, The computational complexity of universal hashing, Theoret- 

ical Computer Science 107 (1993) 121-133. 

Any implementation of Carter-Wegman universal hashing from n-bit strings to m-bit strings 

requires a time-space tradeoff of TS=n(nm). The bound holds in the general boolean branching 

program model and, thus, in essentially any model of computation. As a corollary, computing 

a+ b * c in any field F requires a quadratic time-space tradeoff, and the bound holds for any 

representation of the elements of the field. 

Other lower bounds on the complexity of any implementation of universal hashing are given as 

well: quadratic AT’ bound for VLSI implementation; R(logn) parallel time bound on a CREW 

PRAM; and exponential size for constant-depth circuits. 

1. Introduction 

Carter and Wegman [9] defined the notion of a universal family of hash functions. 

Definition 1.1. Let A and I3 be two sets, and let H be a family of functions from A to B. 

H is called a universal family of hash functions if for every x1 #x,EA and y,, ~,EB 
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we have that 

Apart from the value of such families of hash function for various hashing purposes 

as proposed in [9], many new applications have been found. For example, Sipser [20] 

used universal hashing to obtain simulation of BPP in the polynomial-time hierarchy; 

Goldwasser and Sipser [ 131 used it for the simulation of interactive proof systems by 

Arthur-Merlin games; Impagliazzo and Zuckerman [14] used universal hashing for 

the amplification of the probability of success of randomized algorithms; and Nisan 

[l S] used universal hashing to construct pseudorandom generators for space- 

bounded computation. 

Previous research has been directed towards finding efficient implementation of 

universal hashing, as well as applying universal hashing in varying applications. 

Perhaps the only exception is Siegel [19], who studied both upper and lower bounds 

on the tradeoffs between the storage requirement and the number of random bits 

versus the computation time of log n-wise independent hash functions, in the algebraic 

RAM model. 

In this paper, we study the inherent computational complexity of universal hashing 

schemes. We give several lower bounds on the computational complexity that any 

implementation of a universal family of hash functions must incur. Our main result is 

a tight, quadratic, time-space tradeoff on the general model of boolean branching 

programs. 

Borodin and Cook [6] defined and justified the boolean branching program as 

a general model of computation. It imposes no structure on the computation, allows 

any pattern of access to the input bits, and also allows the output bits to be computed 

in any order. The model is strong enough to efficiently simulate any other reasonable 

model of computation, such as multitape Turing machines or RAMS. In Section 3, we 

recall the definition of the model, and the notions of time and space in this model. 

With the exception of [lo], first time-space tradeoffs were obtained on structured 

models of computation. Tompa [23] contains a discussion of these results. In the case 

of nonstructured models, Cobham [lo] shows a time-space tradeoff for any computa- 

tional device having one head read-only input tape. The boolean branching program 

removes this restriction to accessing the input bits. The first nontrivial time-space 

tradeoffs in this model were given by Borodin and Cook [6], who proved that sorting 

requires a nearly quadratic tradeoff. Subsequently, Abrahamson [l] and Yesha [25] 

proved tradeoffs for several algebraic problems, and Beame [3] proved a tight tradeoff 

for sorting and related problems. In contrast to earlier results that provide tradeoffs 

for specific problems, we prove tradeoffs for a whole family of problems. 

Theorem 1.2. Let H be a universalfamily of hush function h : { 1, . . , N} + { 1 . M}. Any 

branching program which on input XE{ 1. . . N} and hEH outputs h(x) requires 

a time-space tradeoff of TS = Q(nm), where n = log N (is the length of the representation 

of x) and m=log M (is the length of the representation of the output h(x)). 
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There are universal families of hash functions for which Theorem 2 is tight. (See, for 

example, Corollary 3.) As an immediate consequence of this theorem, we get several of 

the known time-space tradeoffs for algebraic problems. Two of these are stated in the 

corollaries below. 

Corollary 1.3 (Abrahamson Cl]). In the boolean branching program model, performing 
the convolution’ of an n-bit string with an (n + m - 1)-bit string to obtain an m-bit string 
requires TS = R(nm). 

Corollary 1.4 (Yesha [25]). In the boolean branching program model, multiplying two 
n x n matrices over GF(2) requires TS=n(n3). 

The lower bound in Corollary 1.3 is tight [l]. In contrast, the bound in Corollary 

1.4 is not tight; a (better) tight bound has been established by Abrahamson [l]. 

Perhaps the most interesting corollary of our theorem is regarding the complexity 

of performing arithmetic in fields. Consider the field GF(p), where p is some prime 

number. It is not difficult to see that performing addition in this field can be done in 

simultaneously linear time and logarithmic space; multiplication is, however, more 

difficult. If one wishes to perform multiplication easily, one may do it by changing the 

representation of the numbers in GF(p); each element in the field will be represented by 

its discrete logarithm (according to some fixed generator). In this representation it is 

easy to perform multiplication in linear time and logarithmic space, but now addition 

is difficult. Our results show that this tradeoff is unavoidable in any nonredundant 

representation’ [7] of the elements of GF(p), the combination of these operations is 

difficult. 

Theorem 1.5. Let F be afinite$eld, and let n = [log 1 F 11. Fix an arbitrary representa- 
tion of the elements of F by n-bit strings. Then any branching program which takes 
a, b, CE F as inputs, and outputs a + b * c, requires a time-space tradeof of TS = Q(n2). 

It is interesting to note that the fact that F is a field is essential. For certain values of 

n and a carefully chosen representation, it is possible to perform (a + b * c) mod n in 

linear time and logarithmic space. (For example, let n be a product of many “small” 

distinct primes and choose the representation by the Chinese remainder theorem.) 

This paper contains other lower bounds on the complexity of any implementation 

of universal hashing. We first consider area-time tradeoffs in the VLSI model, and 

prove the following AT2 lower bound. 

Theorem 1.6. Let H be a universal family of hash function k : ( 1 . . . N } + ( 1. . . N}. Any 

VLSI implementation which on input XE{ 1 . ..N} and kEH outputs k(x) requires 
a area-time tradeoff of AT2 =n(n2), where n =log N. 

1 Convolution is defined in Section 3. 
’ A nonredundant representation is the one where each element of GF(p) has a unique representation. 
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Again, this theorem implies some of the known AT2 lower bounds, and in particu- 

lar Yao’s result [24] giving a quadratic AT2 lower bound for the computation of 

a + b * c, in any representation. 

We then make the observation that universal hash functions must have high 

“average sensitivity”, a fact which in conjunction with several known results gives the 

following lower bounds. 

Theorem 1.7. Let H be a universal family of hash function h : { 1 . . . N } -+ { 1. . . M }. Then 

there exists a function heH such that 
(1) h requires exponential-size constant-depth circuits, 
(2) h requires R(log n) time to compute on a CREW PRAM, 
(3) R(m) of the output bits of h requires Q(n2) boolean formula size (over the basis 

consisting of { V, A ,i }), 

where n=log N is the input size and m=log M is the output size. 

Another interesting resource tradeoff is that between communication and space. 

A communication-space tradeoff problem was posed in Tiwari [22]. First results in 

this direction were obtained on the algebraic straight-line model of communicating 

processors by Lam et al. [ 161. They proved a tight communicationspace tradeoff for 

convolution and matrix multiplication. Recently, Beame et al. [4] have used our main 

lemma in order to prove a tradeoff between communication and space on a general 

model of communicating processors. 

The rest of this paper is organized as follows. Section 2 gives the formal definition of 

universal hash functions and their properties. Section 3 defines the branching pro- 

gram model. Section 4 gives the lower bound for branching programs. Section 5 gives 

the VLSI lower bounds. Section 6 gives the remaining lower bounds. Section 7 states 

some open problems. 

2. Universal hash functions 

Definition 2.1 (Carter-Wegman). Let A and B be two sets, and let H be a family of 

functions from A to B. H is called a universal family of hash functions if for every 

x1 #x~EA and y,, ~,EB we have that 

There are several known efficient constructions of universal families of hash 

functions. We mention two especially interesting well-known families. Note that in 

both of these constructions the length of the description of a function in H is linear in 

sum of the lengths of the description of an element from the domain A and from the 

range B. 

(1) Let F be an arbitrary finite field and let A = B = F. The family H that consists of 

all linear functions on F is a universal family of hash functions. More specifically, 
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H = {ax + b 1 a, bEF}, and each function heH is uniquely represented by two elements 

a, b. 

(2) Let A={O, l}” and B={O, l}“. For xe{O, l}” and y~(0, l}n+m-l we define the 

convolution of y and x, y 0 x, to be the m-bit string z whose ith bit is given by 

zi = I;= 1 Xjyi+j- 1 (mod 2). For two m-bit strings x and y let x @ y denote the bitwise 

exclusive-or of the two strings. Then the following family is a universal family of hash 

functions: 

H={(aox)@ blaE{O, l}‘+“-l, bE{O, l}“}. 

The fact that the first is a family of universal hash functions can be observed from 

the fact that for any x1 #x2,y,,y2, there is a unique solution for a and b. 

The fact that the convolution is a universal hash function is slightly less immediate, 

and for completeness the proof is sketched below. 

Claim 2.2. The following is a universal family of hash functions: 

ff=((aox)@ bluE{O, l}n+m-l, bE{O, l}“] 

Proof. It suffices to show that the size of the set 

is independent of the choices of x1, x2, y,, y,. Fix x1 #x2 and y,, y2 and note that for 

any choice of a such that a 0 (x I 0 x2) = y, 0 y,, there is a unique choice of b such that 

(a 0 x 1 ) 0 b = yl and (a 0 x2) 0 b = y2 (and no choice of b for other values of a). Thus, it 

suffices to count the number of choices for a satisfying the above condition. 

Let x=x1 @x2 and y=y, 0y2, we have that x#6. Consider the set {alaox=y}. 

It is the solution space of m equations. Since x#6, the equations are independent; 

thus, it defines a hyperspace of dimension exactly n- 1 in Z;+m-‘. 0 

3. Model of branching programs 

Consider a function f: (0, l}“-(0, l}“. A binary branching program computingfis 

a rooted directed graph with each internal nonsink node labeled with an integer i in 

the range from 1 to n. Each nonsink node has outdegree two, and the two out-edges 

are labeled zero and one. Some edges are also labeled with a pair of the form (j, b), 

where je { 1,2, . , m} and be{O, l}. A computation of the branching program on an 

input x1 , . . . , x, is a path in the graph specified by the following conditions: (i) the path 

starts at the root; (ii) at vertex v with label i, the outgoing edge with label xi is selected; 

and (iii) the path terminates on arrival at a sink node. A computation produces as 

output the edge labels associated with its path. We require that if a pair (j, b) is 

produced as an output, then b equals the jth bit off (x1, x2,. . . , x,). Note that every 

input defines a unique computation path. 
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The time complexity of a branching program is the length of its longest computa- 

tion, and the space complexity of a branching program is the logarithm of the number 

of nodes in the graph. Every branching program, with time T and space S, can be 

transformed to a branching program whose graph is acyclic (no directed cycles) and 

leveled (the underline graph is leveled), and whose time is T and space is at most 

S+log T (see [8]). For this reason, we restrict our discussion to acyclic and leveled 

branching programs. 

4. A time-space tradeoff for hash functions 

For the lower bound we use a version of the proof technique introduced by Borodin 

and Cook [6]. 

Definition 4.1. Consider a function f: (0, l}‘-(0, 1)“. Let A c (0, l}’ be the set of all 

l-bit strings that contain the same substring on some fixed set of n bit positions. (Note 

that 1 A ( = 2[-“.) For k <m, let B c (0, l}” be the set of all m-bit strings that contain the 

same substring on some fixed set of k bit positions. (Note that 1 B I= 2m-k.) If, for every 

such pair of sets A and B, upon choosing an input from A uniformly, the probability of 

getting an element of B as the output is bounded by 2-ak+P, then the function f is said 

to have the randomness property with parameters n,a, and fi. 

We show (following [6]) that a function that has the randomness property requires 

TS = Q(unm). 
The following claim is immediate from the randomness property. 

Claim 4.2. If a function f has the randomness property with parameters n, CI, and j?, then 
any branching program of depth at most n, when given a random input x, outputs k<n 
bits off(x) correctly for at most 2-ak+B fraction of the inputs. 

Proof. Clearly, along any computation path, the branching program can read at most 

n inputs. Let yi,, . . . , yik be the outputs produced along a particular path. (Note that 

these bits, i.e., their value and index, are completely determined by the path.) Since this 

output is based only on some n input bits, the randomness property off ensures that 

for any k output bits there is no fixed assignment that has probability more than 

2-ak+P of being correct. Therefore, the correct output is produced with probability at 

most 2-ak+B. 0 

Lemma 4.3. Any branching program that computes a function f: (0, l}‘-+{O, I}“’ that has 
the randomness property with parameters n, c(, and p requires (S+P)(T+ n)actnm, or, 
when CI and fl are constants, TSaR(mn). 

Proof. Claim 4.2 implies that no n inputs determine the output completely. Therefore, 

T> n and, consequently, S 3 log n. Without loss of generality, we may assume that the 
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branching program is leveled and acyclic. Partition the branching program into 

r T/n 1 blocks such that each block, except possibly the last one, contains n consecutive 

levels. Each block consists of a number of disjoint branching “subprograms”. Note 

that there are at most 2’ such subprograms. In addition, each input can be associated 

with a block (and a particular subprogram in that block) that produces at least 

m/r T/n1 (<n, distinct) outputs (for that input). 

For each subprogram we count the number of inputs for which it produces at least 

m/r T/n1 distinct outputs. By Claim 4.2, any n-level branching program can produce 

at least m/r T/n1 (<n, distinct) outputs for at most 2’2-““‘fT’“1 +p of the inputs. On 

the other hand, for each input there is some subprogram that outputs at least 

m/r T/n1 distinct outputs. This implies that the number of inputs (i.e., 2’) is bounded 

by the sum over all subprograms, the number of inputs for which that subprogram 

produces at least m/r T/n] distinct outputs. Since the number of subprograms is 

bounded by 2’, 

This implies that (S+j3)(T+n)3R(cmn). 0 I 

The construction, to this point, follows the general outline of [6], and appeared 

with some variations in [ 1,25,3]. We still have to show the main part of the argument, 

that the universal hash functions have the randomness property. 

Consider the function f(h, x) = h(x), where h is from a collection of universal hash 

functions. The following lemma gives the main argument that f has the randomness 

property required for proving the lower bound. This lemma is a stronger variant of 

a lemma that appears in [IS]. It is also interesting to compare this lemma to a result of 

Lindsey on the distribution of -1’s and l’s in submatrices of Hadamard matrices 

c2, 121. 

Lemma 4.4. Let H={h:Z-+O} b e a collection of universal hash functions. Let Acl, 

BcO and CcH. Then 

1 Prob xsA,hecCh(x)EBl-PIG J IHI 
,A,,c, ~(l--P), 

where p=jBl/lOl. 

Proof. Define Mh,x to be 1 if h(x)EB and 0 otherwise. Then 

I Prob xs~,~~~Ch(~)~BI-~P=l~~~~~xo~(M~.x-~)I. 

Clearly, using Cauchy-Schwartz inequality, 

IE,,,E,,,(M,,,--)I~JELEc{E~~A(M~,~-~))~. 
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Rather than averaging over ~EC, we want to average over heH. Clearly, this cannot 

decrease the expectation by a factor of more than [HI/l Cl. Hence, 

We will concentrate on the expression on the right-hand side, and compute it exactly. 

E~~H(E~~A(~~,~-P))~=E~~H((E~,~A(~~.~~-P))(~~~~A(~~,~~-P))} 

=E~~H{E~,EAEX*EA(M~,X,M~,X~-PM~,,, 

-pM/,,x,+~~)l 

For any x, E~Mh,x=p; therefore, ExeAEhe,,M,_=p. Furthermore, 

E &EA X,EA &sHMh,x,Mh,xz can be computed by evaluating EhsHMh,x,kth,x2 in the 

two cases discussed below. 

Case I. x1=x2: In this Case EhpHMh,x,Mh,x2=EheHMh,x,=p. This Case Occurs 

with probability l/l A 1. 

Case II. x1 #x2: By the properties (Definition 1.1) of the universal hash functions, 

Eh.HMh,xr MhlX2 =p2. This case occurs with probability 1 - l/IA 1. 

Therefore, 

E E,,,,E,,,Mh,x,Mh,xZ=(1/lAl)P+(1--1/lAI)P2 XlEA 

=(P-P2M4+P2. 

Combining with the previous terms, we get 

E~EH(E~~H(M~,~-P))~=(P-P~)/IAI+P’-~P’+P~ 

=(P-P2M4 

To conclude, we have shown that 

I Prob 

It remains to establish a relationship between the above lemma and the randomness 

property. 

Lemma 4.5. Let H= {h : {0,1}“-+{0, l}“} b e a universal family of hash functions. Then 
the function f (h, x)= h(x) has the randomness property with parameters n, cx =), and 
p= 1. 
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Proof. We need to show that, given any n bits specifying the argument off (i.e., 

specifying h and x), the probability that any k bits off(h, x)= h(x) take on a specified 

value (output) is at most 2-ak. Assume that, of the n bits given to us, II bits are from x, 

and the remaining Iz = n - 1, bits are from h. Let A be the set of all possible consistent 

extensions of the input, and C be the set of all possible extensions of the output. Then 

1 H l/l C 1 d 212 and l/l A I d 2-“2”. For /I + l2 dn, Lemma 4.4 implies that the probabil- 

ity of obtaining a fixed assignment to any k dm bits of the output is bounded by 

J2_ko<2-k/2. Thi s implies thatfhas the randomness property parameters n, 
4, and 1. 0 

Lemma 4.5 is stated for hash functions whose input set is I = (0, l}” and output set is 

0 = (0, l}“. The same results hold for any I c (0, 1)” and for 0 c (0, l}” if IO Ia2”-’ 

for some constant c. We did not resolve the case where the output set is sparse in 

(0, I}“, e.g., lOI= 2”“. 

Note that Lemma 4.5 does not use the full power of Lemma 4.4. Lemma 4.4 allows 

us to argue about any large subset, rather than subsets that are defined by fixing 

certain bits. This is an essential difference between our lower-bound technique and 

previous techniques. 

Combining Lemma 4.5 with Lemma 4.3, we prove our main result. 

Theorem 4.6. Let H be a universalfamily of hush function h: {l . ..N}-+{l . ..M}. Any 
branching program which on input XE{ 1 . ..N} and hgH outputs h(x) requires 
a time-space tradeoff of TS=Q(nm), where n =log N is the length of the representation 
of x and m=log M is the length of the representation of the output h(x). 

We can now establish the following corollaries. 

Corollary 4.7. Performing the convolution of an n-bit string with an (n + m - 1)-bit string 
to obtain an m-bit string requires TS = R(nm). 

Proof. Let f be a function producing m-bit results. Then, if f (y) can be computed by 

a branching program with time T and space S then f (y) 0 b can be computed by 

a branching program with time at most 2m+ T and space at most 2logm+S, where 

b is an m-bit constant. By Claim 2.2, H= {(a ox) @ b( uE{O, l}n+m-l, bE{O, l>“} is 

a universal family of hash functions, and the function f (a, b, x) = (a 0 x) @ b 
requires TS = R(nm). Therefore, the convolution a 0 x( =f (a, b, x) 0 b) requires 

TS = R(nm). 0 

Corollary 4.8. Multiplying two n x n matrices over GF(2) requires TS=R(n3). 

Proof. There is a reduction to matrix multiplication from the convolution of an 

(n + n2 - 1)-bit string with an n-bit string; using standard arguments, one can reduce 

the convolution to multiplying two 2n x 2n matrices. •I 
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We now restate Theorem 1.5. It gives a time-space tradeoff for computing a + b * c 

over any finite field, provided that inputs are presented in a succinct representation. 

Theorem 4.9. Let F be ajinite3eld, and let n =rlog IF 11. Fix an arbitrary representa- 

tion of the elements of F by n-bit strings. Then any branching program which takes 

a, b, CEF as inputs, and outputs a + b * c, requires a time-space tradeoff of TS =Q(n’). 

Proof. This is immediate from the fact that H = {ax + b 1 a, bg F} is a universal family 

of hash functions. 0 

5. An area-time tradeoff for VLSI 

The model that we are considering is the Thompson grid model (see [21]) of VLSI 

chip layout. The model assumes that a chip consists of a grid with evenly spaced 

vertical and horizontal tracks. Circuit nodes are placed on the intersection of vertical 

and horizontal tracks. The area of a chip is defined to be the number of grid points it 

contains. 

Definition 5.1. For a string y of n bits, let yln,2 denote the substring consisting of the 

first n/2 bits of y. 

Lemma 5.2. Let H be a family of hush functions from (0, l}” to (0, l}” and 

x1,x2, . ..) XkE{O, 1},‘2 be distinct elements. For k<2”14, there is a function hEH, such 

that h(6xi)lni2 # h(~xj)ln/2 for all i #j, where 6 is u string of n/2 zeros. 

Proof. For any y, ZE{O, ljni2, y fz, the definition 

that 

of universal hash functions implies 

Prob,,GH[h(6y)ln,2] = h(6z)lni2] = 2-ni2. 

In order to prove the lemma, choose uniformly a function hEH. The probability 

that there is a pair xi,xj (i/j) such that h@x,),,,,, = h(6x2)Ini2 is bounded by k22-“j2. 

Therefore, for k < 2n’4, there is a function hEH such that h(~xi)ln,2 # h(~xj)ln,2 for all 

i#j. 0 

Using standard arguments of information transfer, we show the following lower 

bound. 

Theorem 5.3. Let H be a universal family of hash function h : { 1 . . . N } -+ { 1 . . . N}. Any 

VLSI implementation which on input XE{ 1 . N) and hEH outputs h(x) requires 

a urea-time tradeoff of AT2 = CI(n2), where n =log N. 

Proof. Partition the chip into two parts with O(fi) bisection length, each having 

(approximately) half the bits of the input. Without loss of generality, assume that the 

first part contains the first n/2 bits of the input, as well as the first n/2 bits of the 
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output. For all 1 d i < n/2 fix xi = 0. Consider the set of those inputs that have a string 

of zeros as the first n/2 positions. By Lemma 5.2, there is a function ~EH such that 

I{h(~x),n,2 :xe{O, 1}““}132 ‘I4 Therefore, the information transfer between the two . 

parts must be Q(n). We complete the proof using the well-known results of [21]: In 

order to allow the transfer of Q(n) bits through the bisection of size O(A), the time is 

at least R(n/&), which implies that AT2 =0(n2). 0 

As stated, we assumed that the hashing was performed on the integers 1 . ..N. 

Following [24], one can ask how the results differ if we allow the inputs and outputs 

to be represented by arbitrary (but unique) numbers. For this question we obtain 

essentially the same tradeoffs as in [24]. In the case that the representation is 

O(log 1 FI) bits long, where IF I is the number of elements in F, our results still hold 

(using, essentially, the same proof). However, when the representation is allowed to be 

sparse, we can prove bounds only when the inputs are all on the boundary of the chip. 

Theorem 5.4. Let H={h:I+O) b e a universal family of hash functions. Any VLSI 
implementation that receives as inputs h and x on the boundary of the circuit and outputs 
h(x) requires AT2 = R(mn), where n =log I I I and m = log IO I. 

Proof. Let the circuit be a w x d rectangle, where w 3 d. Assume that the representa- 

tion of the input is 1 bits long. Since all the inputs appear on the boundary of the 

circuit, wT3 l/4. 
Divide the circuit into 21/n subrectangles along the edge w such that every subrect- 

angle has at most n/2 inputs. Following the same line of argument as in Theorem 1.6, 

we show that there is a subrectangle such that if we fix its inputs to zero there is 

a function heH that has 2cmn” distinct outputs in this subrectangle, for some constant 

c. This implies that dT=R(mn/l). Since A=wd, then AT2 =(wT)(dT)=(1/4)(mn/l)= 
SZ(mn). 0 

Using the same argument for a general chip, one can derive an A2T3 =R(m2n) 
lower bound. 

6. Other lower hounds 

Definition 6.1. Let f (x1, . . . , x,) be a boolean function. The influence of Xi on f is 

Infi(f)=ProbCf(xl,...,xi-l,O,xi+l,...,x”)#f(x1,...,xi-l,l,xi+l,...rx,)l, 

where the probability is uniform over all choices of xi, . . . . xi_i,xi+ 1, . . . . x,. The 

average sensitivity off is s(f) = Ci Infi( f ). 

Lemma 6.2. Let H be a universal family of hash function h : { 1. N} -{ 1. . . M}, and 
denote by hi the ith output bit of h. Then there exists a function he H such that for at least 
m/4 bits s(hi) > n/4. 
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Proof. Fix any bit 1 < ibm. By definition of universal hashing it is clear that for any 

1 <j<n EhEHIInfj(hi)] = l/2. We thus have that EheH[s(hi)] =n/2. The Markov in- 

equality implies that for at least a quarter of the functions heH, s(hi)~n/4. An 

averaging argument completes the proof of the lemma. 0 

Using known results, we get several bounds. 

Theorem 6.3. Let H be a universal family of hash function h : { 1. . N} --{ 1. . M}. Then 

there exists a function heH such that 
(1) h requires exponential-size constant-depth circuits, 
(2) h requires O(log n) time to compute on a CREW PRAM, 
(3) Q(m) of the output bits of h requires Q(n2) boolean formula size (over the basis 

consisting of { V, A, i}), 

where n = log N is the input size and m = log M is the output size. 

Proof. Linial et al. [17] show that exp(s( f)“d) is a lower bound on the size of depth-d 

circuits computing f: Cook et al. [I l] show that logs(f) is a lower bound on the 

CREW parallel time. (In fact, they give the bound in terms of the stronger worst-case 

sensitivity.) Krapchenko’s lower bound technique [lS] shows that s(f)’ is a lower 

bound on the boolean formula complexity. (See also [S]). 0 

7. Open problems 

We would like to conjecture about the complexity of universal hash function in the 

circuit and Turing machine models. We conjecture that any implementation of 

universal hashing has superlinear circuit and Turing machine complexity. 

Conjecture 7.1. Let H be a universal family of hash function h : { 1. . . N } -{ 1 . . . N}. Then 

(1) any boolean circuit which on input XE{ 1 . . . N } and hE H outputs h(x) requires 
Q(n log n) size; 

(2) any multitape Turing machine which on input XE{ 1 . . . N} and hE:H outputs h(x) 
requires Q(n log n) time; 
where n=log N is the length of the representation of x. 
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