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SUMMARY

Hematopoietic stem and progenitor cells (HSPCs)
are exposed to low levels of oxygen in the bone
marrow niche, and hypoxia-inducible factors (HIFs)
are the main regulators of cellular responses to
oxygen variation. Recent studies using conditional
knockout mouse models have unveiled a major role
for HIF-1a in the maintenance of murine HSCs; how-
ever, the role of HIF-2a is still unclear. Here, we show
that knockdown of HIF-2a, and to a much lesser
extent HIF-1a, impedes the long-term repopulating
ability of human CD34+ umbilical cord blood cells.
HIF-2a-deficient HSPCs display increased produc-
tion of reactive oxygen species (ROS), which subse-
quently stimulates endoplasmic reticulum (ER)
stress and triggers apoptosis by activation of the
unfolded-protein-response (UPR) pathway. HIF-2a
deregulation also significantly decreased engraft-
ment ability of human acute myeloid leukemia
(AML) cells. Overall, our data demonstrate a key
role for HIF-2a in the maintenance of human HSPCs
and in the survival of primary AML cells.

INTRODUCTION

Multipotent hematopoietic stem cells (HSCs) reside in niches

within the bone marrow (BM) and have a unique capacity to sus-

tain life-long multilineage hematopoiesis (Li and Xie, 2005; Mor-

rison and Spradling, 2008; Orkin and Zon, 2008; Scadden, 2006).

It has been suggested that mammalian BM is relatively hypoxic

compared to other tissues, with recent evidence suggesting

that more primitive HSCs are localized in the most hypoxic

microenvironment of the BM (Giuntoli et al., 2007; Kubota
Cell
et al., 2008; Lévesque et al., 2007; Parmar et al., 2007). Within

the stem cell niche, HSCs are maintained in a quiescent state

with a low level of oxidative stress, which helps to prevent their

differentiation and exhaustion (Jang and Sharkis, 2007).

The hypoxia-inducible factors (HIFs) are the main transcrip-

tional factors responding to oxygen variation (Semenza,

2009a). HIF-1 and HIF-2 are heterodimeric proteins belonging

to the basic helix-loop-helix. Regulation of HIF activity is medi-

ated primarily through the stability of the alpha subunit. In nor-

moxia, hydroxylation of the HIF-a protein leads to a decrease

in the stability of HIF-a through rapid ubiquitination by the E3

ubiquitin ligase von Hippel-Lindau tumor suppressor protein

(VHL) and degradation by the 26S proteosome. Under hypoxic

conditions, HIF-a proteins are elevated as a result of reduced

hydroxylation. The stabilized HIF-a subunit dimerizes with the

HIF-1b subunit and activates the transcription of target genes

involved in glucose metabolism, erythropoiesis, iron homeosta-

sis, angiogenesis, and cell survival (Semenza, 2009a).

Additionally, under normoxic conditions, several factors such

as thrombopoietin (TPO) and stem cell factor (SCF) have been

shown to stabilize HIF-a subunits in hematopoietic cells (Kirito

et al., 2005; Pedersen et al., 2008), suggesting an additional

role for HIFs beyond that of responding to oxygen variations in

the microenvironment.

In mice, the deletion of Hif-1a (Ryan et al., 1998) and Hif-1b

(Adelman et al., 1999) results in embryonic lethality at E10.5,

whereas the embryonic or perinatal lethality resulting from dele-

tion of Hif-2a depends on the mouse microenvironment (Scorte-

gagna et al., 2003a, 2003b). Recently, detailed analyses of the

role of Hif-1a in adult mouse HSCs have been performed (Sim-

sek et al., 2010; Takubo et al., 2010), demonstrating that the

regulation of Hif-1a levels is critical for HSC maintenance in the

hypoxic BM niche. Indeed, in Hif-1a -deficient mice, HSCs are

less quiescent and their numbers decrease when exposed to

various stressors (including BM transplantation, myelo-suppres-

sion, and aging) in a p16Ink4a/p19Arf-dependent manner. Further

to this, the overstabilization of Hif-1a through biallelic loss of Vhl
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induces cell cycle quiescence in HSCs and their progenitors and

shows an impairment in their repopulating capacity, an effect

similar to that observed in conditional knockouts of cited2, a

competitor of Hif-1a for CBP/p300 (Kranc et al., 2009). Interest-

ingly, monoallelic loss of Vhl also induces cell cycle quiescence

yet improves BM engraftment after transplantation, suggesting

that the regulation of the Hif-1a level is essential for mouse

HSCs. Transcriptional activation of Hif-1a by Meis1 is reported

to be involved in the anaerobic phenotype that characterizes

HSCs in hypoxia (Simsek et al., 2010). Also, Miharada et al.

have proposed a model by which Hif-1a induces Cripto/

GRP78 signaling in the hypoxic HSC niche, which itself regulates

the quiescence of HSCs by inducing a high level of glycolytic

activity (Miharada et al., 2011). Overall, these studies have iden-

tified Hif-1a as a major regulator of mouse HSCs. With respect

to Hif-2a, so far it has been shown to regulate Epo expression

in the adult mouse (Gruber et al., 2007), contribute to tumor

aggressiveness (Qing and Simon, 2009), and maintain the undif-

ferentiated state of human neural crest-like neuroblastoma

tumor-initiating cells (Pietras et al., 2009) and glioma-initiating

stem cells (Li et al., 2009). Hif-2a�/� mice have also been

reported to suffer multiple-organ pathology, including pancyto-

penia in the BM. Most importantly, Scortegagna et al. have sug-

gested a central rheostat role for Hif-2a in both the maintenance

of ROS levels and mitochondrial homeostasis (Scortegagna

et al., 2003a, 2003b).

In contrast to the extensive work done in mice, at present what

is known about the role of hypoxia and HIF-a in human HSC

regulation remains limited. It has been reported that HIF-1a is ex-

pressed in Lineage�CD34+CD38� cells from BM (Danet et al.,

2003), as well as in circulating CD34+ and CD133+ cells under

normoxic conditions (Piccoli et al., 2007). Furthermore, hypoxic

ex vivo culture of BMcells or primitive hematopoietic progenitors

has been shown to result in better maintenance of a primitive

phenotype (Danet et al., 2003) and cell cycle quiescence (Her-

mitte et al., 2006). Mutations in VHL, PHD, or HIF-2a have

been reported to lead to polycythemia in Chuvash’s disease

(Semenza, 2009b) through an increase in EPO production by

the kidney and an increased sensitivity to EPO in these patients

(Ang et al., 2002; Hickey et al., 2007).

HIF proteins have been also shown to be involved in cancer

development, where high expression of HIF-a correlates with

poor patient prognosis (Keith et al., 2012). A recent report sug-

gests that HIF-1a is required for human leukemic stem cell

(LSC) function in AML (Wang et al., 2011). However, the role of

HIF-2a protein in human AML remains largely unknown.

In this work, we examine the effect of the knockdown (KD) of

HIF-1a and HIF-2a in human HSPCs. We observe that silencing

HIF-2a, and to a lesser degree HIF-1a, impedes the repopulat-

ing capacity of CD34+-derived umbilical cord blood (UCB) cells

in vivo. We demonstrate that HIF-2a KD HSPCs show signs of

endoplasmic reticulum (ER) stress and activate the unfolded

protein response (UPR) pathway, which ultimately affects the

survival of the HSPCs. Moreover, we observe that the increase

in the ER stress response in HIF-2a KD cells is due to an in-

crease in reactive oxygen species (ROS) production. We also

describe that cells from AML patient samples are dependent

on the level of HIF-2a for their survival. Collectively, the data

in our report provide further evidence of a central role for
550 Cell Stem Cell 13, 549–563, November 7, 2013 ª2013 Elsevier In
HIF-2a in protecting HSPCs and AML cells from apoptosis

induced by ER stress.

RESULTS

The Expression of HIF-a Subunits in Human CD34+Cells
and Their Efficient KD Using shRNA Lentiviral Vectors
It has previously been shown that HIF-1a is expressed in

Lin�CD34+CD38� cells derived from the BM (Danet et al.,

2003) and is present on peripheral blood cells (Piccoli et al.,

2007). We first confirmed the expression of HIF-1a in freshly iso-

lated CD34+ CB-derived cells and additionally demonstrated the

expression of HIF-2a in these cells (Figure 1A). As expected, we

were able to see an increase in HIF-1a and HIF-2a after incu-

bating CD34+ cells with cobalt chloride (CoCl2), which prevents

the prolyl-hydroxylase activity leading to HIF degradation (Fig-

ure 1A) (Figure S1A available online).

To investigate the role of each of the HIF-a subunits in human

HSPCs, we constructed bicistronic lentiviral vectors carrying two

distinct promoters, EF1a and H1, driving green fluorescent pro-

tein (GFP) (reporter) and a small hairpin RNA (shRNA) against the

HIF-1a (sequence published in Rezvani et al., 2007) or HIF-2a

subunit, respectively (Figure S1B). To confirm the specificity

and efficiency of these vectors, CD34+ cells were transduced

(45%–80% transduction efficiency), FACS-sorted 4 days post-

transduction, and cultured for an additional 4 days prior to our

assessment of mRNA levels. A significant reduction in mRNA

levels was observed for both HIF-1a and HIF-2a vectors relative

to controls, with a decrease of 88% and 78%, respectively (Fig-

ure 1B). The KD was also confirmed at the protein level in CD34+

cells (Figure 1C) and in 293T cells (Figure S1C). The shHIF1a

used in this study has been previously validated elsewhere

(Rezvani et al., 2007). However, to confirm the specificity and

exclude off-target effects of the shRNA for HIF-2a, we tested a

second shHIF2a (shHIF2a.2) (Figure S1D). Using this second

vector, we confirmed an efficient KD at the protein level, as

well as similar defects in vivo compared to the first shRNA

used (shHIF2a.1) (Figure S1E). We then used the construct that

gave us the best silencing activity (shHIF2a.1) for the rest of

this study.

To further confirm the specificity of our shRNA vectors, we

looked at the effect of the KD on known target genes of HIF-1a

(VEGFA and LDHA) and HIF-2a (VEGFA and HES-1). We

observed a significant reduction of VEGFA expression after

bothHIF-1a andHIF-2a silencing, a reduction of LDHA following

HIF-1aKD, and a reduction ofHES-1 after HIF-2aKD (Figure 1D),

indicating that our shRNA vectors were specific.

SilencingHIF-2a and, to a Lesser Extent,HIF-1a, Affects
Human Short-Term Repopulating Cells
It has been reported that the formation of myelo-erythroid pro-

genitors from embryonic or yolk sac cells derived from Hif-1a-,

Hif-2a-, and Hif-1b-knockout mice is impaired (Adelman et al.,

1999; Covello et al., 2006; Yoon et al., 2006). However, no major

impediment to the in vitro functions of adult mouse HSCs has

been observed using a conditional knockout model of Hif-1a

(Takubo et al., 2010). We therefore examined the effect of

HIF-a KD in human hematopoietic progenitor cells. The number

of myeloid colonies generated from GFP+ cells was equivalent in
c.



Figure 1. Expression of HIFa Subunits in Human CD34+ Cells and Their Efficient KD Using shRNA Lentivirus Vectors

(A) HIF-1a and HIF-2a protein expression in freshly purified CD34+ cells cultured for 6 hr in the presence or absence of CoCl2.

(B) RT-QPCR for HIF-1a (left) and HIF-2a (right) expression in CD34+ cells. CD34+ cells were transduced with shCtl, shHIF1a, and shHIF2a, and sorted on

day 4 posttransduction based on GFP+. Gene expression was normalized to B-ACTIN gene and then to the shCtl (n = 3). Results are shown as the mean ± SEM.

*p < 0.05.

(C) HIF-1a (upper) and HIF-2a (lower) protein expression in CD34+ cells after transduction. CD34+ cells were transduced with shCtl, shHIF1a, and shHIF2a, and

sorted on day 4 posttransduction based on GFP+ cells and cultured for another 6 hr in the presence of CoCl2 before protein extraction and western blot analysis.

(D) RT-QPCR for VEGFA (common target gene for HIF-1a and HIF-2a), LDHA (HIF-1a target gene), and HES-1 (HIF-2a target genes) expression in CD34+

transduced cells cultured at 20% and 3% of oxygen. RT-PCR was normalized to B-ACTIN and data are expressed relative to shCtl at 3% oxygen (n = 3–5).

Results are shown as the mean ± SEM. *p < 0.05.

See also Figure S1.
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all conditions (Figure 2A). However, the number of erythroid col-

onies was significantly diminished upon HIF-2a KD, where there

was a 61% reduction compared to the control. No effect was

observed in HIF-1a silenced cells (Figure 2A). Further analysis

of the effect of HIF-2a KD on erythropoiesis is being investigated

(data not shown).

To determine whether HIF-a KD has an effect on the prolifera-

tion of CD34+ cells, we performed a short-term liquid culture

assay in the presence of growth factors. Under these conditions,

we showed that silencing HIF-2a significantly reduced the prolif-

eration of CD34+ cells (Figure 2B); however, no change was seen

when HIF-1a was silenced. This effect on proliferation was not
Cell
due to an increase in apoptosis (Figure 2C). Thus, under nor-

moxic conditions, only the downregulation of HIF-2a had an

effect on CD34+ cells, reducing both erythroid colony formation

and proliferation.

We further examined the effect of HIF-a silencing in vivo using

the NOD-SCID/IL2Rgnull (NSG) xenotransplantation model, as

depicted in Figure 2D (left panel). Immediately after transduction,

cells were injected intravenously into mice and human graft was

examined 6 weeks posttransplantation. The percentage of GFP+

cells within the human CD45+ fraction was determined by flow

cytometry. A loss of transduced cells was observed in both

HIF-1a and HIF-2a KD conditions, although this effect was less
Stem Cell 13, 549–563, November 7, 2013 ª2013 Elsevier Inc. 551



Figure 2. HIF-1a and HIF-2a KDs Differently Affect Human Progenitor Compartment

(A) Colony forming unit (CFU) assay of CD34+ cells transduced with shCtl, shHIF1a, or shHIF2a. Five hundred CD34+ GFP+ transduced cells were plated. Two

weeks later the number of colonies was determined (n = 3).

(B) CD34+ transduced and sorted cells were grown in expansion medium and the number of cells was determined every 2–3 days. The growth curve represents

cumulative cell numbers (n = 3).

(C) Early apoptosis was assessed on transduced CD34+ cells after 6 days in liquid culture. Data represents the percentage of Annexin V+ cells in the DAPI�

population (n = 3).

(D) Left panel, schematic of the in vivo short-term repopulation assay. CD34+ cells were transduced with shCtl, shHIF1a, and shHIF2a and then injected into NSG

mice. Human graft was determined 6 weeks posttransplantation. Right panel, percentage of GFP+ cells in the human engraftment. Results are shown as

normalized to 100% GFP+ at day 4. Results represent three to six independent experiments and each dot represents one mouse.

(E) Left panel, schematic of the homing assay. CD34+ cells were transduced with shCtl, shHIF1a, and shHIF2a and then injected into mice. Human graft was

determined 24 hr after transplantation. Right panel, percentage of GFP+ cells. Results are shown as normalized to 100% GFP at day 4. Graph represents two

independent experiments (n = 6 mice per bar).

Results in (A), (B), and (D) are shown as mean ± SEM. *p < 0.05.
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pronounced in HIF-1a KD cells (up to 26% loss compared to the

value at day 4) than that in HIF-2a KD (up to 70%; see Figure 2D,

right panel).

Hypoxia and HIFs have been described as important factors

driving the expression of the chemokine SDF-1a (Ceradini

et al., 2004) and its receptor, CXCR4, in tumors (Liu et al.,

2006). Based on the role of SDF-1a and CXCR4 in human stem

cell homing and repopulation (Lapidot and Kollet, 2002), we hy-

pothesized that the KD of both HIF-a subunits might affect the

homing of transduced cells. To test this hypothesis, we trans-

duced CD34+ cells and kept these cells in liquid culture for

4 days prior to injection into mice (see schematic protocol, Fig-

ure 2E, left panel). Mice were sacrificed 24 hr after injection

and human hematopoietic cell homing was determined by the

percentage of GFP-expressing cells among human cells (Fig-

ure 2E, right panel). The percentage of GFP-expressing cells

within human grafts was not significantly different between the

three groups (shCtl, shHIF1a, and shHIF2a), suggesting that

there is no homing defect that occurs upon the silencing of the

HIF-a subunits.

HIF-2a KD Impairs the Long-Term Reconstitution Ability
of Human HSPCs
Using a conditional knockout mouse model, it was recently

shown thatHif-1a is required to sustain long-term hematopoietic

repopulation capacity under stress conditions (Takubo et al.,

2010), whereas Hif-2a knockout only causes a minor effect in

the primitive hematopoietic compartment (Scortegagna et al.,

2003a). To investigate the role of HIF-a in the long-term mainte-

nance of human HSPCs, we followed the percentage of GFP+

cells in transplanted NSG mice over time by BM aspiration sam-

pling at 3, 6, 12, and 24weeks (at the time of sacrifice) after trans-

plantation, as described in Figure 3A. A progressive decrease in

the percentage of GFP+ cells in the first 12 weeks was observed

in mice transplanted with shHIF1a-transduced cells as com-

pared to the control condition (shCtl) (Figure 3B), an effect that

plateaued after 12 weeks. A more dramatic drop in the first

12 weeks was observed upon transplantation of shHIF2a-trans-

duced cells (Figure 3B), which persisted until 24 weeks. A similar

decrease in the myeloid (CD33+) and lymphoid (CD19+) com-

partments was observed in both shHIF1a and shHIF2a cells

(Figure 3C), suggesting that in both cases, silencing affected

immature HSPCs. To demonstrate that the decrease was not

due to a change in the distribution of the cells in the different

hematopoietic tissues, we checked the engraftment of trans-

duced cells in the BM, peripheral blood (PB), and spleen of these

mice (Figure 3D). We observed the same decrease in engraft-

ment in each of the different tissues, affecting both myeloid

and lymphoid compartments (Figure 3E).

Because HIF-2a KD cells showed a significant decrease in

reconstitution 3 weeks after injection, we wondered whether

this might be due to a defect in the retention and/or anchorage

of the cells in their niche. To assess this question we examined

the effect of HIF-2a silencing on engrafted cells 1 and 2 weeks

after transplantation. One week posttransplantation, we did not

observed any loss of transduced cells in the HIF-2a KD as

compared to controls. However, 1 week later, a mild but signifi-

cant reduction in engraftment was detected (Figure S2A). These

results suggest that HIF-2a does not play a major role in the
Cell
retention of the HSCs in their niches. We confirmed this by

tracking HSCs in their niches using noninvasive intravital micro-

scopy of the calvaria. For this purpose, CD34+CD38� HSPCs

were transduced and sorted 4 days later based on GFP expres-

sion. Cells were then stainedwith CFSE and injected intomice as

schematically depicted (Figure S2B, left panel). Based on un-

published data from our group, we have observed that after

4 days posttransplantation, HSCs have reached their niches

(K. Foster, F. Lassailly, F. Anjos-Afonso, E. Currie, and D.B.,

data not shown). At this stage, we can thusmeasure the distance

of each HSPC to the closest endothelial cells or endosteal re-

gion. Using these measurements, we did not observe any differ-

ence in the positioning of HSPCs between control andHIF-2aKD

(Figure S2B, right panel). These results confirmed that HIF-2a

silencing has no effect on the HSC lodgement/retention in their

niches in the first week posttransplant.

To evaluate the effect on the most primitive compartment, we

compared the percentage of CD34+CD38� cells present in the

BM of thesemice 24weeks posttransplant. We observed a slight

but significant decrease in the CD34+CD38+ HPC fraction and a

nonsignificant decrease in the CD34+CD38� HSPC compart-

ment in shHIF1a transplanted mice. This was in contrast to a

90% reduction in both subfractions in the shHIF2a-silenced

group, suggesting a key role for HIF-2a in the human HSPC

compartment (Figure 3F).

To address the impact that each of the HIF-a subunits could

have on the self-renewal capacity of human HSPCs, we went

on to perform secondary transplantations. Mice were injected

with a pool of BM cells from the primary grafts and sacrificed

24 weeks posttransplant. Based on the low percentage of

GFP+ cells retrieved from the shHIF2a group, we were only

able to inject 6 mice, as compared to 16 mice in the shHIF1a

group. Nevertheless, a further 48% reduction in the percentage

of shHIF-2a transduced cells was observed at 24 weeks

postsecondary transplantation as compared to the level ob-

tained at 24 weeks postprimary transplantation; once again,

in contrast, no further reduction was observed with shHIF1a

cells (Figure 3G). This data strongly demonstrates that

the maintenance of human long-term repopulating cells with

self-renewing ability is dependent on HIF-2a. Recently, Koca-

bas et al. described that Hif-1a�/� long-term HSCs show a

compensatory upregulation of Hif-2a mRNA (Kocabas et al.,

2012). Similarly, we have observed that the KD of HIF-1a in

human CD34+ cells cultured for 4 days under hypoxia

(3% O2) or normoxia (20% O2) (data not shown) results in a

3-fold increase in HIF-2a mRNA levels (Figure S2C). This was

further confirmed by the increase in expression of HES-1, a

downstream target of HIF-2a (Figure 1D). This marked compen-

satory upregulation of HIF-2a in shHIF1a-transduced cells

could explain why no significant long-term effect was observed

on shHIF1a HSPCs.

The HIF pathway is a well-established regulator of the cell

cycle. In order to determine if the dramatic effect that

HIF-2a silencing had on HSPCs was due to a defect in pro-

liferation, we performed cell cycle analysis on engrafted cells

1 and 2 weeks after injection. No differences in any phases of

the cell cycle were observed in the absence of HIF-2a, sug-

gesting that the effect observed is independent of cell cycle

(Figure S2D).
Stem Cell 13, 549–563, November 7, 2013 ª2013 Elsevier Inc. 553



Figure 3. HIF-2a Is Essential for the Long-Term Engraftment Ability of the Human Hematopoietic Cells in NSG Mice

(A) Schematic representation of the in vivo primary and secondary transplantation assay and BM sampling at different time points. Results represent three to six

independent experiments and total number of mice are as follows: shCtl, n = 14; shHIF-1a, n = 19; shHIF-2a, n = 12.

(B) In vivo kinetic of transduced cells in human hematopoietic population. Percentages of GFP+ cells in total human CD45+ cells at the indicated time are shown.

Results are shown as normalized to 100% GFP at day 4 as mean ± SD. *p < 0.05.

(C) In vivo kinetic of transduced myeloid and lymphoid population. Percentages of GFP+ cells in total CD33+ (left panel) and in total CD19+ cells (right panel) at the

indicated time are shown. Results are shown as normalized to 100% GFP at day 4 as mean ± SD. *p < 0.05.

(D and E) Twenty-four weeks after transplantation mice were sacrificed and the percentage of GFP+ cells in bone marrow (BM), spleen, and peripheral blood (PB)

was analyzed. (D) GFP+ cells in total CD45+ human cells. (E) Left panel, as in (D), but in total CD45+CD33+-myeloid cells; right panel, as in (D), but in total

CD45+CD19+-B-lymphoid cells. Results are shown as mean ± SD. *p < 0.05.

(F) Twenty-four weeks after the first transplantation, mice were sacrificed and the percentage of GFP+ cells in CD34+CD38lo/� and CD34+CD38+ populations was

analyzed by FACS. Results are shown as mean ± SEM. *p < 0.05.

(G) BM from primary animals was injected into secondary mice. Twenty-four weeks later, percentages of GFP+ cells within the human graft were analyzed by

FACS. Results are shown as normalized to 100% GFP at week 24 as mean ± SEM. Each dot represents a mouse.

See also Figure S2.
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Figure 4. HIF-1b KD in CD34+ Cells Recapit-

ulates HIF-2a KD Phenotype

(A) Left panel, RT-QPCR for HIF-1b expression in

CD34+ cells transduced with shCtl or shHIF1b

(n = 3). Right panel, HIF-1b protein expression in

CD34+ cells transduced with shCtl or shHIF1b and

cultured for 6 hr in presence of CoCl2.

(B) RT-QPCR for VEGFA expression in CD34+

transduced cells cultured at 20% and 3% of

oxygen. B-ACTIN was used as a housekeeping

gene (n = 3).

(C) CFU assay of CD34+ cells transduced with shCtl

and shHIF1b. Five hundred GFP+ CD34+ were

plated and 2 weeks later numbers of colonies were

determined (n = 3).

(D) CD34+ transduced cells were grown in expan-

sion medium and the number of cells was deter-

mined every 2–3 days. The growth curve represents

cumulative cell numbers (n = 3).

(E) Early apoptosis was assessed on CD34+

transduced cells after 6 days in liquid culture. Data

represents the percentage of Annexin V+ cells in the

DAPI� population (n = 3).

(F) Mice were transplanted with CD34+ cells

transduced with either shCtl or shHIF1b. Six weeks

(left panel) or twelve weeks (right panel) after

transplantation mice were killed and the percent-

age of GFP+ cells in the human engraftment was

analyzed. Results are shown as normalized to

100% GFP at day 4. Results represent two inde-

pendent experiments and each dot represents one

mouse.

Results are shown as mean ± SEM. *p < 0.05.
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HIF-1b KD in CD34+ Cells Recapitulates the HIF-2a KD
Phenotype
To better understand the role of HIF-a in HSPCs, we decided to

knock down the binding partner of the HIF-a subunits, the

constitutively expressed b subunit (HIF-1b). We confirmed the

downregulation of HIF-1b using an shHIF1b at both mRNA and

protein level (Figure 4A, left and right panels), and by noting

the decrease in the downstream target gene VEGFA (Figure 4B).

We examined the effect of the downregulation of HIF-1b

on progenitor formation, cell proliferation, and apoptosis. We

observed a specific decrease in erythroid progenitors (Figure 4C)

and cell proliferation (Figure 4D) without a change in the level of

apoptosis (Figure 4E). These results closely overlap with the

effects seen in HIF-2a KD. The similarity in the effect of HIF-1b

and HIF-2a KD in HSPCs was further confirmed in vivo, at both

6 (Figure 4F, left panel) and 12 weeks (Figure 4F, right panel)

posttransplant, where a significant decrease in engraftment

was seen at both time points, confirming the role of HIF com-

plexes in the maintenance of human HSPCs.

HIF-2a KD Increases ROS Production and Affects
Mitochondrial Homeostasis
Because our results suggested that HIF-2a plays an important

role in the maintenance of human long-term self-renewing repo-

pulating stem cells, we decided to focus our efforts on under-

standing the molecular mechanisms by which HIF-2a regulates
Cell
HSPC biology. To investigate this, human CD34+ cells trans-

duced with shHIF2a were recovered from mouse BM 6 weeks

posttransplantation and subjected to a large-scale gene expres-

sion analysis after we first confirmed the efficiency of HIF-2a

silencing at this time point (61% silencing efficiency at the

mRNA level; Figure S3A). Compared to shCtl-transduced cells,

gene pathway enrichment analysis identified the oxidative

stress, ER stress response, and apoptosis pathways as those

with the largest change in gene signature (Figure 5A, left panel).

Based on the gene expression signature for the oxidative

stress pathway observed in shHIF2a cells, and the known role

of HIF-2a in regulating reactive oxygen levels (Scortegagna

et al., 2003a, 2003b), we examined the level of ROS present in

these cells both in vitro and at 6 weeks posttransplantation. As

hypothesized, ROS levels were significantly increased in liquid

culture (Figure S3B) and in all compartments (CD34+CD38�,
Lin+ cells and a trend in CD34+CD38+ cells) in vivo after trans-

duction with shHIF2a as compared to shCtl (Figure 5B).

Mitochondria are a major source of ROS and mechanisms to

prevent elevated ROS during oxidative phosphorylation require

the activity of antioxidant enzymes. Recently, it was shown

that HIF-2a regulates the expression of genes encoding antiox-

idant enzymes in mice (Bertout et al., 2009; Gordan et al., 2007).

Based on the increase in ROS, we examined the level of expres-

sion of antioxidant genes, such as superoxide dismutase 2

(SOD2), as well as genes involved in mitochondria homeostasis,
Stem Cell 13, 549–563, November 7, 2013 ª2013 Elsevier Inc. 555



Figure 5. HIF-2a KD In Vivo Increases ROS Production and Affects Mitochondria Homeostasis

(A) Large-scale gene expression on human CD34+ GFP+ cells sorted from mice at 6 weeks. Gene pathway enrichment analysis ranked on top position the

oxidative phosphorylation pathway, ER stress response, and apoptosis and survival. A heat-map is presented below for two different mice in each condition

(shCtl and shHIF-2a).

(B) In vivo quantification of ROS in shCtl and shHIF2a in Lin�CD34+CD38lo/�, Lin�CD34+CD38+, and Lin+ cells 6 weeks posttransplantation. Data is presented as

percentage of ROS increase in shHIF2a compared to the shCtl (normalized to 100%). ShCtl, n = 5 mice; shHIF2a, n = 11 mice. Results are shown as the mean ±

SEM. *p < 0.05.

(C) RT-QPCR for SOD2 (left) and FXN (right) expression in CD34+ cells transduced with shCtl or shHIF-2a. Transduced cells were sorted for GFP+ on day four and

cultured for an extra 7 days under 3% of oxygen. B-ACTIN was used as control (n = 3). The results are expressed in comparison to the level in shCtl. Results are

shown as the mean ± SEM. *p < 0.05.

(D) Mean fluorescence intensity (MFI) of MitoTracker-stained CD34+ cells transduced with shCtl or shHIF2a. (n = 3). Results are shown asmean ± SEM. *p < 0.05.

See also Figure S3.
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such as Frataxin (FXN). A significant decrease in both genes was

observed in shHIF2a transduced CD34+ cells compared to

shCtl (Figure 5C). We also looked at the alterations in mitochon-

drial membrane potential and oxidant stress by performing

MitoTracker staining. We observed a significant decrease in

the mean fluorescence intensity of MitoTracker-stained CD34+

cells transduced with shHIF2a compared to control cells. Taken

together, these data suggest that HIF-2a KD increases ROS pro-

duction and affects mitochondria homeostasis (Figure 5D).

Silencing HIF-2a Increases the ER Stress Induced
by ROS
As mentioned above, our large-scale gene expression analysis

also identified the apoptosis-ER stress response pathway as

one of the top ranked pathways differentially expressed in

shHIF2a transduced CD34+ cells compared to shCtl. Upon ER

stress, UPR is activated through three distinct signaling path-

ways that regulate the expression of genes responsible for

the maintenance of cellular homeostasis: the protein kinase R
556 Cell Stem Cell 13, 549–563, November 7, 2013 ª2013 Elsevier In
(PKR)-like ER kinase (PERK), the activating transcription factor

6 (ATF6), and the inositol-requiring protein 1a (IRE1a) signaling

transducer pathways (Figure 6A). If ER stress persists and

homeostasis is not restored, UPR signaling induces apoptosis

(Walter and Ron, 2011). Interestingly, factors such as oxidative

stress can induce ER stress (Malhotra and Kaufman, 2007).

To confirm the involvement of the ER stress response and the

induction of the UPR pathway in HIF-2a KD HSPCs, we exam-

ined the expression levels of two ER chaperones, HSPA5 (also

known as 78 kDa glucose regulated protein, GRP78) and

94 KDa glucose regulated protein (GRP94). These genes have

been widely used as sentinel markers of ER stress and UPR

pathway activation. Human transduced GFP+CD34+ cells were

sorted at day 4 posttransduction and cultured for an additional

day before RNA was extracted and RT-PCR was performed.

Upon HIF-2a KD, we observed an increase in both HSPA5 and

GRP94 as compared to control (Figure 6B). We also observed

a mild increase in C/EBP homologous protein (CHOP), a tar-

get gene of the PERK pathway that is expressed under ER
c.
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stress-induced cell apoptosis (Figure 6B). To further confirm the

initiation of the UPR pathway by ER stress, we treated our cells

with tunicamycin (TM), a well-known inducer of the UPR

pathway. After their treatment with TM,we observed a significant

increase in HSPA5, growth arrest and DNA damage inducible 34

gene (GADD34), and CHOP, which are key players of the PERK

branch of the UPR pathway, in shHIF2a cells compared to the

shCtl (Figure 6C, left panel). We also observed that the treatment

with TM increased the percentage of apoptotic cells in shHIF2a

cells compared to shCtl (Figure 6C, right panel). Taken together,

these data suggest that HIF-2a-silenced HSPCs have signifi-

cantly increased levels of ER stress and are more susceptible

to apoptosis as a result. We further confirmed the activation of

the PERK signaling pathway in these cells by looking at the

eIF2a phosphorylation. Indeed P-eIF2a was higher in the

HIF-2a KD cells compared to the control while the total eIF2a

protein level remained the same (Figure 6D, left panel, and Fig-

ure S4A). We also assessed the activation status of the other

two branches of the UPR pathway. No activation of the ATF6

branch was observed in HIF-2a KD cells as evidenced by the

low or nondetectable expression of the activated, nuclear form

of ATF6 (ATF650) in both shCtl and shHIF2a cells (Figure S4B).

Additionally, we checked the activation of the IRE-1 pathway

by measuring the mRNA splicing of the XBP-1 transcription

factor, which is a substrate of the IRE-1 activated form. We

observed similar expression levels of the spliced XBP1 mRNA

in both control and HIF-2a KD cells (Figure S4C), suggesting

that this branch is constitutively activated regardless of HIF-2a

levels. These data suggest that HIF-2a silencing in HSPCs trig-

gers ER stress mainly through the activation of the PERK branch

of the UPR signaling cascade.

Finally, we confirmed the activation of the pathway in cells

retrieved from mice 6 weeks posttransplant. We observed an

upregulation of the downstream targets of p-eIF2a, such as

HSPA5, CHOP, and GADD34 (the latter two activated in

response to prolonged ER stress), and a downregulation of

BCL-2 (an antiapoptotic gene that acts downstream of CHOP)

in HIF-2a KD cells compared to shCtl cells (Figure 6E).

To further confirm the presence of ER stress, we performed

electron microscopy onHIF-2a KD CD34+ cells after they under-

went 6 days in liquid culture. Electron microscopy identifies fea-

tures of ER stress, shown by ER dilatation in the HIF-2a KD cells

compared to control cells (Figure 6D, right panel).

Considering the increase in both ROS production and ER

stress levels in HIF-2a KD cells, we wondered whether the in-

crease in ROS could trigger the activation of the UPR pathway,

ultimately leading to a decrease in the survival of the HSPCs

and therefore a decrease in engraftment in vivo. To answer this

question, we use GFP+ hCD45+ cells obtained from the BM of

transplantedmice (6 weeks posttransplant) and pretreated these

cells ex vivo with N-Acetyl-L-cysteine (NAC) or 4-Hydroxy-

TEMPO (TEMPOL), two potent antioxidants, for 24 hr, followed

by an additional treatment with TM for 24 hr (Figure 6F). We

measured the level of apoptosis using Annexin V/DAPI staining

before and after TM treatment. We observed that shHIF2a trans-

duced cells were more susceptible to apoptosis under TM treat-

ment compared to shCtl cells (Figure 6G). Furthermore, we were

able to rescue the apoptosis caused by TM by pretreating the

cells with either NAC or TEMPOL, after which significantly fewer
Cell
apoptotic cells were observed (Figure 6H). To further confirm

the activation of the UPR pathway through the loss of control of

ROS production, we attempted to rescue the engraftment defect

observed inHIF-2a-silenced cells by treatingmice engraftedwith

shCtl- or shHIF2a-transduced cells with either NAC or TEMPOL

every other day for 6 weeks. As shown in Figure 6I, treatment

with TEMPOL, and to a lesser extent, NAC, was successful at

rescuing the engraftment defect caused by HIF-2a silencing.

From this, our data suggest a pathway by which HIF-2a

protects human HSPCs from ROS-induced ER stress and UPR

pathway activation.

HIF-2a KD Impedes the Growth of Human Primary Acute
Myeloid Leukemia
In solid tumors, the expression of HIF-2a has been associated

with poor prognosis (Qing and Simon, 2009). We therefore

decided to investigate the effect of the KD of HIF-2a on human

primary acute myeloid leukemia (AML). First, we compared the

level of expression of HIF-2a between CD34+ cells from normal

adult BM and 35 primary AML samples (33 samples at diagnosis

and 2 samples at both diagnosis and relapse). We observed a

large variability inHIF-2a levels in the AML samples tested,which

could be related to AML subtypes and genomic abnormalities.

Nevertheless, mean expression levels in AML were not signifi-

cantly different as compared to normal BM (Figure 7A). We

went on to evaluate the effect of HIF-2a KD on six AML samples

(Patient 3 being tested at diagnosis and relapse) in ex vivo long-

term culture. We saw a significant decrease in the percentage of

GFP+ cells over 3 weeks compared to shCtl in all samples tested

(p < 0.007) (Figure 7B).We confirmed thatHIF-2amRNAwas effi-

ciently silenced (75%) in the HIF-2a KD AML samples compared

to that in controls after 3 weeks in ex vivo cultures (Figure S5A).

Next, we went on to test the effect of this silencing in vivo in six

AML patient samples (Patient 3 being tested at diagnostic and

relapse). We observed an overall significant reduction (p <

0.001) in the engraftment of shHIF2a transduced cells, and in

two cases, a complete abolition of the engraftment of the leuke-

mia (Figure 7C). Of note, for Patient 3, we observed a more

potent inhibition of the engraftment from the relapse sample,

suggesting no acquisition of resistancemechanisms. To demon-

strate that this effect on engraftment involves the UPR pathway,

we treated AML cells ex vivo with TM and observed an increase

in apoptosis in shHIF2a transduced cells compared to shCtl (Fig-

ure S5B). This suggests that HIF-2a KD cells were more suscep-

tible to apoptosis as a result of ER stress. We also examined the

expression levels of HSPA5, CHOP, and GADD34 on these AML

patient samples and observed a clear upregulation of these

target genes under ER stress (Figure 7D).

Finally, to investigate if ROS was triggering apoptosis through

the UPR pathway, we pretreated the AML cells ex vivo with NAC

for 24 hr, followed this with an additional treatment with TM for

24 hr, and measured the level of apoptosis after treatment

(Figure 7E). Similar to what we observed in HSPCs, we were

able to rescue the apoptosis caused by TM by pretreating the

cells with NAC, as significantly fewer apoptotic cells were

observed (Figure 7F).

These data further indicate that HIF-2a is not only important for

the maintenance of human normal HSPCs, but is also active in

primary AML cells.
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DISCUSSION

HSPCs reside in hypoxic niches in the BM where low oxygen

levels play a key role in their maintenance. In the current report,

we investigated the role of HIF transcription factors in human

HSPCs. By knocking down HIF-1a and HIF-2a, we report that

HIF-2a, and to a lesser extend HIF-1a, plays a major role in the

regulation and maintenance of human HSPCs.

In vitro assays show that HIF-1a and HIF-2a are not required

for the production of human progenitors engaged in the myeloid

lineage since both HIF-1a- and HIF-2a-deficient myeloid cells

were able to form colonies (Figure 2A). This is in agreement

with the observations made in the Hif-1a-deficient mouse

models, whereHif-1a-deficient cells are still competent at gener-

ating CFU-Cs in vitro and CFU-Ss (12 days) after transplantation

(Takubo et al., 2010). Likewise, Hif-2a KO mouse BM cells pro-

duce normal CFU-Ss (8 days) (Scortegagna et al., 2003b).

In short-term repopulating assays (6weeksposttransplant), we

saw a significant decrease in hCD45+GFP+ cells engrafted in the

shHIF1a group and an even sharper drop in the shHIF2a group

(Figures 2D and 3B). This decrease was not due to a defect in

homing (Figure 2E). Based on the facts that at 1 week posttrans-

plant no difference in engraftment between control and shHIF2a

cells could be detected, and that our intravital imaging does not

show any difference in positioning 4 days posttransplant, we

ruled out a possible effect on the ‘‘niche anchorage’’ of at least

the shHIF2a cells in their microenvironment. Looking at long-

termengraftment, therewas aclear difference between the effect

of HIF1a and HIF2a KD, where no further reduction of human

engraftment was seen after 12 weeks in the shHIF1a group.

This was further confirmed by the percentage of CD34+CD38�

present in the mice 24 weeks posttransplant, which was un-

changed in shHIF1a as compared to the control group (Figure 3F)

and the nonsignificant reduction in the engraftment after second-

ary transplantation (Figure 3G). Contrary to the conditionalHif-1a

KOmousemodel,where theonly significant defectwasobserved

in long-term repopulating capacity after serial transplantation,we

established that the downregulation of HIF-1a in human HSPCs
Figure 6. Increase in ROS in HIF-2a KD Induces ER Stress, Triggering

(A) Schematic overview of the UPR pathway.

(B) RT-QPCR of HSPA5, CHOP, and GADD34 expression in CD34+ cells transduc

expressed in comparison to the level of shCtl.

(C) Left panel, same as (B) but cells were treated for 24 hr with TM prior tomRNA ex

for 6 days and received 24 hr of TM treatment before apoptosis was assessed. Dat

are shown as the mean ± SEM. *p < 0.05.

(D) Left panel, eIF2a, p-eIF2a, and B-ACTIN protein expression in CD34+ cells 8 da

day 4 based onGFP+, and cultured for another 4 days. Six hours before protein ex

KD CD34+ after 6 days in short-term liquid culture. Electron microscopy identifies

compared to control cells.

(E) RT-QPCR for HSPA5, CHOP, GADD34, and BCL-2 expression in CD45+GFP

posttransplantation. Gene expression was normalized to B-ACTIN and then to th

(F) Schematic representation of the experiment. Six weeks after transplantation,

24 hr in the presence or absence of NAC or TEMPOL before mice were treated wi

treatment. (shCtl, n = 5; shHIF-2a, n = 11.)

(G) Data represents the percentage of AnnexinV+ cells in the DAPI� population.

(H) TM-induced apoptosis was rescued in presence of NAC (left panel) or TEMP

(I) Mice were transplanted with CD34+ cells transduced with either shCtl or shHIF2

percentage of GFP+ cells in the human engraftment normalized to 100%GFP at d

TEMPOL, n = 5; shHIF2a-PBS, n = 4; shHIF2a-NAC, n = 5; shHIF2a-TEMPOL, n

See also Figure S4.
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does not significantly affect the long-term self-renewing multili-

neage repopulating cells. However, it is possible that this is

due to the compensatory upregulation of HIF-2a observed in

shHIF1a-transduced cells (Figure S2C). This is also supported

by theobservation thatHES-1, a target geneofHIF-2a, is upregu-

lated in HIF-1a KD cells (Figure 1D).

It appears, however, that HIF-2a has a major effect in the

maintenance of human HSPCs. Both short-term and long-term

repopulating cells were significantly decreased, with a particu-

larly sharp decrease in the HSPC compartment 24 weeks post-

transplant and a reduction in the secondary transplantation

capacity. We further show that this effect was due, at least in

part, to an increase in ROS production, which correlates with a

decrease in the expression of SOD2 and FXN, genes involved

in the cellular response to oxidative stress and in the mainte-

nance of mitochondrial homeostasis. High levels of oxidative

stress and increased levels of ROS have been previously

reported in Hif-2a�/� mice (Scortegagna et al., 2003a) and in

Meis1�/� HSCs, known to downregulate Hif-2a (Kocabas

et al., 2012; Scortegagna et al., 2003a). HIF-2a has also been

shown to regulate the expression of both Fxn and Sod2 in mouse

liver, where deletion of these genes results in mitochondrial dis-

ease (Oktay et al., 2007; Scortegagna et al., 2003a).

We show that in the BM, HSPCs silenced for HIF-2a have an

increase in ROS production, which increases ER stress and

activates the UPR pathway, the machinery that mediates the

regulation of ER stress. Indeed, we could detect the upregulation

of two downstream effectors, CHOP and GADD34 of the PERK

signal transducer pathway, as well as upregulation of GRP94

and HSPA5. The UPR is a survival response to reduce the accu-

mulation of unfolded proteins and to restore ER function. This

adaptive response of the cells is characterized by a decrease

in proliferation and protein synthesis. When ER stress cannot

be mitigated and homeostasis cannot be reestablished, pro-

longed activation of the UPR pathway (here under continuous

HIF-2a KD) results in the activation of cell death (review in Tabas

and Ron, 2011; Rutkowski and Hegde, 2010; Walter and Ron,

2011). Our experiments show that HIF-2a KD HSPCs cultured
Apoptosis

ed with shCtl or shHIF2a. B-ACTIN was used as control (n = 3). The results are

traction. Right panel, transduced shCtl and shHIF2aCD34+ cells were cultured

a represent the percentage of Annexin V+ cells in the DAPI� population. Results

ys after transduction. CD34+were transduced with shCtl or shHIF2a, sorted on

traction cells were treated with TM. Right panel, electronmicroscopy on HIF-2a

features of ER stress, showed by the dilatation of the ER in the HIF-2a KD cells

+ human cells. Transduced CD45+/GFP+ cells were sorted from mice 6 weeks

e shCtl (n = 4). Results are shown as the mean ± SEM. *p < 0.05.

mice were sacrificed and BM from shCtl and shHIF2a mice was incubated for

th BM TM for another 24 hr. Early apoptosis was assessed before and after TM

Results are shown as the mean ± SEM. *p < 0.05.

OL (right panel). Results are shown as the mean ± SEM. *p < 0.05.

a and treated for 6 weeks with PBS, NAC, or TEMPOL. Results are shown as a

ay 4 and then to PBS-treated mice. ShCtl-PBS, n = 5; ShCtl-NAC, n = 4; ShCtl-

= 6. Results are shown as mean ± SEM. *p < 0.05.
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Figure 7. HIF-2a KD Impairs the Proliferation of Human Primary AML Cells

(A) Expression levels of HIF-2a in AML cells compared to normal adult BM CD34+ cells. B-ACTIN was used as control (BM CD34+ cells, n = 2; AML samples,

n = 33). Results are shown as mean ± SEM.

(B) Cell growth of five AML samples transduced with shCtl or shHIF-2a and cocultured on MS5 cells for 3 weeks. Data represent the percentage of GFP+ cells in

hCD45-AML cells during the culture period. Results are shown as normalized to day 4 (100%GFP+). Blue and red lines represent themean of the five AML patient

samples transduced with shCtl or shHIF2a, respectively. Overall p < 0.007.

(C) AML cells were transduced with shCtl or shHIF-2a and then injected into mice. Human graft was determined 12 weeks posttransplantation. Percentage of

GFP+ cells in the human graft normalized to day 4 (100%GFP+) is presented. Results represent one or two independent experiments and each dot represents one

mouse. Results are shown as mean ± SEM. Overall p < 0.001.

(D) RT-QPCR ofHSPA5,CHOP, andGADD34 expression in CD45+/GFP+ AML cells transducedwith shCtl or shHIF2a and treated for 24 hr with TM prior tomRNA

extraction. B-ACTIN was used as control. n = 4 AML patient samples. Results are shown as mean ± SEM. *p < 0.05.

(E) Schematic representation of the experiment. Twoweeks after transduction, AML cells were incubated for 24 hr in the presence or absence of NAC and then for

24 hr with TM.

(F) Apoptosis was assessed on shCtl and shHIF2a transduced AML samples 24 hr before and after TM treatment. Data represents the percentage of AnnexinV+

cells in the DAPI� population.

See also Figure S5.
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in vitro present defects in proliferation. These defects cannot be

explained by an increase in apoptosis, suggesting that cells may

be in the adaptive phase of the UPR pathway where they try to

restore ER functioning. However, in vivo, HIF-2a KD impairs

long-term engraftment of HSPCs, suggesting a defect in cell sur-

vival probably due to high levels of ER stress. In agreement with

that, our data demonstrate that HIF-2a-silenced cells (both

in vitro and ex vivo) are more susceptible to apoptosis when

they are under high levels of stress (i.e., when cells are treated

with a potent ER stress inducer like TM). This suggests that

HSPCs in the BM may be exposed to different stressors that,

in conjunction with the increase in ROS production caused by

HIF-2a KD, increase ER stress and make the cells undergo

apoptosis through the UPR pathway. Based on the multifactorial

effect of HIF-2a, it is possible that other pathways not described

here are also involved.

We show that the increase in apoptosis after TM treatment was

rescued by pretreating the cells with an antioxidant agent, like

NAC or TEMPOL, both ex vivo and in vivo, demonstrating that

ROS is upstream of the ER stress and UPR pathway in HSPCs.

The same activation of the ER stress by ROS has been reported

before inepithelial cellswherecadmiumcausedERstressviagen-

eration of ROS and ultimately apoptosis (Yokouchi et al., 2008).

We further demonstrate that the role of HIF-2a is not limited to

the normal regulation of HSPCs and show that the KD of HIF-2a

is also able to impede primary AML cells both ex vivo and in vivo

by using the same UPR pathway. In glioblastoma, it has been

shown recently that HIF-2a and multiple HIF-regulated genes

are preferentially expressed in glioma stem cells (GSCs) in com-

parison to nonstem tumor cells and normal neural progenitors.

Targeting both HIF-a subunits in GSCs inhibits self-renewal, pro-

liferation, and survival in vitro and attenuates tumor-initiating

potential of GSCs in vivo (Li et al., 2009). In AML, Wang et al.

(2011) have reported that HIF-1a seems to be restricted to the

CD34+CD38� fraction enriched in leukemic stem cells (LSCs)

and not in non-LSCs. Importantly, using the HIF-inhibitor echino-

mycin, they showed an efficient eradication of serially transplant-

able human AML in xenogenic models by preferential elimination

of LSCs. Based on the data reported here, it is arguable that at

least part of the effect of echinomycin treatment might have

been through HIF-2a downregulation. Although further studies

are needed, it is tempting to speculate that LSCs in AML might

use enhanced expression of HIF-2a to protect them from oxida-

tive stress. Therefore HIF-2a inhibition could still be proposed as

a therapeutic target in the context of AML patients with

enhanced ER stress, which would make them more prone to

apoptosis. This could only work within a specific time window

if the effect of silencing HIF-2a is more pronounced in AML

LSCs than in normal HSCs, which will need to be further evalu-

ated using potential HIF inhibitors.

All together, our data demonstrate the important regulatory

role of HIF-2a in human hematopoiesis, in both normal and

malignant conditions.
EXPERIMENTAL PROCEDURES

Generation of Lentiviral Vectors and Viral Particles

Twenty-one bp sense and antisense oligonucleotides were designed in the

30-coding region of the human HIF-1a and HIF-2a genes. HIF-1b siRNA
Cell
sequence was purchased from Thermo Scientific, UK (Figure S1). DNA frag-

ments (Eurogentec, Angers, France) were cloned in the pic20-plasmid behind

the polymerase III H1 promoter. H1-shRNA sequences were subcloned in the

lentivirus (pTripDU3Ef1a-EGFPMCSDU3) that contains the enhanced GFP

(eGFP) gene under the control of the EF1a promoter. An shRNA directed

against the dsRed fluorescent protein (RFP) was used as a control (shCtl).

Lentiviral supernatants were produced by transient CaCl2 transfection of

HEK293T cells. The viral titers measured on HEK293T cells by FACS (on

eGFP expression),were 0.5 3 109 to 2 3 109 infectious particles/ml.

Source of Primary Human HSPCs and AML

UCB samples were obtained from normal full-term deliveries after signed

informed consent. AML samples were obtained after informed consent at

St Bartholomew’s Hospital (London, UK). Both protocols were approved by

the East London Ethical Committee and in accordance with the Declaration

of Helsinki. AML samples were collected at diagnosis (n = 37) or relapse

(n = 1). Details of patient samples are listed in Table S1.

Please refer to Supplemental Experimental Procedures for the remaining

methodologies, materials, and reagents used with this manuscript.
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Microarray data are available at GEO database under accession number

GSE49897.
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