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Abstract

A weighted pointed curve consists of a nodal curve and a sequence of marked smooth

points, each assigned a number between zero and one. A subset of the marked points may

coincide if the sum of the corresponding weights is no greater than one. We construct moduli

spaces for these objects using methods of the log minimal model program, and describe the

induced birational morphisms between moduli spaces as the weights are varied. In the genus

zero case, we explain the connection to Geometric Invariant Theory quotients of points in the

projective line, and to compactifications of moduli spaces studied by Kapranov, Keel, and

Losev-Manin.
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1. Introduction

It has long been understood that a moduli space may admit a plethora of different
compactifications, each corresponding to a choice of combinatorial data. Two
outstanding examples are the toroidal compactifications of quotients of bounded
symmetric domains [AMRT] and the theory of variation of geometric invariant
theory (GIT) quotients [BP,DH,Th]. However, in both of these situations a modular
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interpretation of the points added at the boundary can be elusive. By a modular
interpretation, we mean the description of a moduli functor whose points are
represented by the compactification. Such moduli functors should naturally
incorporate the combinatorial data associated with the compactification.

The purpose of this paper is to explore in depth one case where functorial
interpretations are readily available: configurations of nonsingular points on a
curve. Our standpoint is to consider pointed curves as ‘log varieties’, pairs ðX ;DÞ
where X is a variety and D ¼

P
i aiDi is an effective Q-divisor on X : The minimal

model program suggests a construction for the moduli space of such pairs provided
they are stable, i.e., ðX ;DÞ should have relatively mild singularities and the divisor
KX þ D should be ample. Of course, when dimðXÞ ¼ 1 and D is reduced the resulting
moduli space is the Mumford–Knudsen moduli space of pointed stable curves
[KnMu,Kn,Kn2]. In Section 3 we give a construction for arbitrary D: When
dimðXÞ ¼ 2; a proof for the existence of such moduli spaces was given by Kollár,
Shepherd-Barron, and Alexeev [Ko1,Al1] when D ¼ 0; and was sketched by Alexeev
[Al2] for Da0: The case of higher dimensions is still open, but would follow from
standard conjectures of the minimal model program [Karu].

We embark on a systematic study of the dependence of these moduli spaces on the
coefficients of the divisor D: We find natural transformations among the various
moduli functors which induce birational reduction morphisms among the associated
compactifications (see Section 4). These morphisms can often be made very explicit.
We recover the alternate compactifications studied by Kapranov [Kap1,Kap2], Keel
[Ke], and Losev-Manin [LM] as special cases of our theory (see Section 6). The blow-
up constructions they describe are closely intertwined with our functorial reduction
maps. The resulting contractions may sometimes be understood as log minimal
models of the moduli space itself, where the log divisor is supported in the boundary
(see Section 7).

The moduli spaces we consider do not obviously admit a uniform construction as
the quotients arising from varying the linearization of an invariant theory problem.
However, ideas of Kapranov (see [Kap1, 0.4.10]) suggest indirect GIT approaches to
our spaces. Furthermore, we indicate how certain GIT quotients may be interpreted
as ‘small parameter limits’ of our moduli spaces, and the flips between these GIT
quotients factor naturally through our spaces (see Section 8).

One motivation for this work is the desire for a better understanding of
compactifications of moduli spaces of log surfaces. These have been studied in
special cases [Has] and it was found that the moduli space depends on the coefficients
of the boundary in a complicated way. For example, in the case of quintic plane
curves (i.e., X ¼ P2 and D ¼ aC with C a plane quintic) even the irreducible
component structure and dimension of the moduli space depends on a: For special
values of a the moduli space sprouts superfluous irreducible components attached at
infinity. This pathology is avoided when the coefficient is chosen generically.
Furthermore, recent exciting work of Hacking [Hac] shows that for small values of
the coefficient a the moduli space is often nonsingular and its boundary admits an
explicit description. Roughly, Hacking considers the moduli space parametrizing
pairs ðP2; aCÞ where C is a plane curve of degree d as a-3=d: In a future paper, we
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shall consider birational transformations of moduli spaces of log surfaces induced by
varying a:

2. The moduli problem

Fix nonnegative integers g and n and let B be a noetherian scheme. A family of
nodal curves of genus g with n marked points over B consists of

1. a flat proper morphism p : C-B whose geometric fibers are nodal connected
curves of arithmetic genus g; and

2. sections s1; s2;y; sn of p:

A morphism of two such families

f : ðC; s1;y; snÞ-ðC0; s01;y; s0nÞ

consists of a B-morphism f : C-C0 such that fðsjÞCs0j for j ¼ 1;y; n: The set of

isomorphisms of two such families is denoted

IsomððC; s1;y; snÞ; ðC0; s01;y; s0nÞÞ;

or simply IsomðC;C0Þ when there is no risk of confusion.
A collection of input data ðg;AÞ :¼ ðg; a1;y; anÞ consists of an integer gX0 and

the weight data, an element ða1;y; anÞAQn such that 0oajp1 for j ¼ 1;y; n and

2g � 2 þ a1 þ a2 þ?þ an40:

A family of nodal curves with marked points ðC; s1;y; snÞ-
p

B is stable of type

ðg;AÞ if

1. the sections s1;y; sn lie in the smooth locus of p; and for any subset fsi1 ;y; sirg
with nonempty intersection we have ai1 þ?þ airp1;

2. Kp þ a1s1 þ a2s2 þ?þ ansn is p-relatively ample.

This coincides with the traditional notion of pointed stable curves when a1 ¼ a2 ¼
? ¼ an ¼ 1:

Theorem 2.1. Let ðg;AÞ be a collection of input data. There exists a connected

Deligne–Mumford stack Mg;A; smooth and proper over Z; representing the moduli

problem of pointed stable curves of type ðg;AÞ: The corresponding coarse moduli

scheme Mg;A is projective over Z:

The universal curve is denoted Cg;A-Mg;A: Theorem 2.1 is proved in Section 3.
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2.1. Variations on the moduli problem

2.1.1. Zero weights

One natural variant on our moduli problem is to allow some of the sections to

have weight zero. We consider ðg;fAAÞ :¼ ðg; a1;y; anÞ where ða1;y; anÞAQn with
0pajp1 and

2g � 2 þ a1 þ a2 þ?þ an40:

A family of nodal curves with marked points ðC; s1;y; snÞ-
p

B is stable of type

ðg;fAAÞ if

1. the sections si with positive weights lie in the smooth locus of p; and for any subset
fsi1 ;y; sirg with nonempty intersection we have ai1 þ?þ airp1;

2. Kp þ a1s1 þ a2s2 þ?þ ansn is p-relatively ample.

There is no difficulty making sense of the divisor Kp þ a1s1 þ a2s2 þ?þ ansn as
any section meeting the singularities has coefficient zero. We emphasize that the
stability condition is the natural one arising from the log minimal model program
(cf. the proof of Proposition 3.7).

The resulting moduli spaces M
g;eAA are easily described. Let A be the subsequence

of fAA containing all the positive weights and assume that jAj þ N ¼ jfAAj: Each fAA-
stable pointed curve consists of a A-stable curve with N additional arbitrary marked
points, i.e., the points with weight zero. Hence we may identify

M
g;eAA ¼ Cg;A 
Mg;A

y
Mg;A
Cg;A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N times

;

so M
g;eAA is the N-fold fiber product of the universal curve over Mg;A:

The moduli spaces with zero weights differ from the original spaces in one crucial
respect: they are generally singular. For example, the local analytic equation of a
generic one-parameter deformation of a nodal curve may be written xy ¼ t; where t

is the coordinate on the base. The second fiber product of this family takes the form

x1y1 ¼ x2y2 ¼ t;

which is a threefold with ordinary double point.

2.1.2. Weights summing to two

We restrict to the case g ¼ 0 and consider weight data Â ¼ ða1;y; anÞ where the
weights are positive rational numbers with a1 þ?þ an ¼ 2: Weighted pointed
curves of this type have previously been considered by Kawamata, Keel, and
McKernan in the context of the codimension-two subadjunction formulas (see
[Kaw2,KeMc2]). One can construct an explicit family of such weighted curves over
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the moduli space

CðÂÞ-M0;n;

this family is realized as an explicit blow-down of the universal curve over M0;n:

In this paper we do not give a direct modular interpretation of spaces M0;Â:

However, when each ajo1 we may interpret the geometric invariant theory quotient

ðP1Þn==SL2

with linearization Oða1; a2;y; anÞ as M0;Â (see Theorems 8.2 and 8.3). These spaces

are often singular (see Remark 8.5).

2.1.3. Weighted divisors

We can also consider curves with weighted divisors rather than weighted points. A
stable curve with weighted divisors consists of a nodal connected curve C of genus g;
a collection of effective divisors supported in its smooth locus

D1;y;Dm;

and positive weights a1;y; am; so that the sum D :¼ a1D1 þ?þ amDm has
coefficient p1 at each point and KC þ D is ample. Writing dj ¼ degðDjÞ; we can

construct a moduli space

Mg;ðða1;d1Þ;y;ðam;dmÞÞ

as follows. We associate to this problem the weight data

B :¼ a1;y; a1|fflfflfflfflffl{zfflfflfflfflffl}
d1 times

;y; am;y; am|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dm times

0B@
1CA

and the corresponding coarse moduli scheme of weighted pointed curves Mg;B: We

take

Mg;ðða1;d1Þ;y;ðam;dmÞ ¼ Mg;B=ðSd1

?
 Sdm

Þ;

where the product of symmetric groups acts componentwise on the m sets of
sections. We will not discuss the propriety of writing the moduli space as such a
quotient, except to refer the reader to Chapter 1 of [GIT].
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3. Construction of the moduli space

3.1. Preliminaries on linear series

In this section we work over an algebraically closed field F : Given a curve C and a

smooth point s; note that the ideal sheaf Is is invertible. We write LðsÞ for L#I�1
s :

Proposition 3.1. Let C be a connected nodal proper curve. Let M be an invertible sheaf

such that M�1 is nef. Then h0ðMÞa0 if and only if M is trivial.

The nef assumption means degðMjCjÞp0 for each irreducible component CjCC:

Proof. This is elementary if C is smooth. For the general case, consider the
normalization n : Cn-C; with irreducible components Cn

1;y;Cn
N : We have the

formula

paðCÞ ¼
XN

j¼1

paðCn
j Þ þ D� N þ 1

relating the arithmetic genera and D; the number of singularities of C: Recall the
exact sequence

0-T-PicðCÞ-n
n

PicðCnÞ;

where T is a torus of rank D� N þ 1: To reconstruct M from nnM; for each singular
point pAC and points p1; p2ACn lying over p we specify an isomorphism

ðnnMÞp1
CðnnMÞp2

; unique up to scalar multiplication on nnM: In particular, we

obtain an exact sequence

0-Gm-GN
m-GD

m-T-0:

If M has a nontrivial section then nnMCOCn and the section pulls back to a section
of OCn constant and nonzero on each component. Thus the corresponding element of
T is trivial and MCOC : &

Proposition 3.2. Let C be an irreducible nodal curve with arithmetic genus g, B and D

effective divisor of degrees b and d supported in the smooth locus of C. Let M be an

ample invertible sheaf that may be written

M ¼ ok
CðkB þ DÞ k40;

and SCC a subscheme of length s contained in the smooth locus of C.
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Assume that sp2 and NX4 (resp. sp1 and NX3). Then H0ðoCðB þ
SÞ#M�NÞ ¼ 0: This holds for N ¼ 3 (resp. N ¼ 2) except in the cases

1. d ¼ 0; k ¼ 1; g ¼ 0; and b ¼ 3; or

2. d ¼ 0; k ¼ 1; g ¼ 1; b ¼ 1; and OCðSÞCOCðsBÞ:

In these cases, all the sections are constant. Finally, H0ðoCðBÞ#M�NÞ ¼ 0 when

NX2:

Proof. Setting F ¼ oCðB þ SÞ#M�N ; we compute

degðFÞ ¼ ð2g � 2 þ bÞ þ s� N degðMÞ ¼ ð1 � NkÞð2g � 2 þ bÞ þ s� Nd:

We determine when these are nonnegative. First assume NX3 and sp2: Using the
first expression for degðFÞ and degðMÞX1; we obtain 2g � 2 þ bX1: The second
expression implies that 2g � 2 þ bp1: Thus 2g � 2 þ b ¼ 1; and the first expression
gives N ¼ 3; s ¼ 2; and degðMÞ ¼ 1; the second expression yields k ¼ 1 and d ¼ 0:
These are the exceptional cases above.

Now assume NX2 and sp1: Repeating the argument above, we find 2g�2þb¼ 1
and therefore N ¼ 2; s ¼ 1; degðMÞ ¼ 1; k ¼ 1; and d ¼ 0: Again, we are in one of
the two exceptional cases. Finally, if NX2 and s ¼ 0; we obtain ð2g � 2 þ bÞ40
from the first expression and ð2g � 2 þ bÞo0 from the second. This proves the final
assertion. &

Proposition 3.3. Let C be a connected nodal curve of genus g, D an effective divi-

sor supported in the smooth locus of C, L an invertible sheaf with LCok
CðDÞ for k40:

1. If L is nef and LaoC then L has vanishing higher cohomology.

2. If L is nef and has positive degree then LN is basepoint free for NX2:

3. If L is ample then LN is very ample when NX3:

4. Assume L is nef and has positive degree and let C0 denote the image of C under LN

with NX3: Then C0 is a nodal curve with the same arithmetic genus as C; obtained

by collapsing the irreducible components of C on which L has degree zero.

Components on which L has positive degree are mapped birationally onto their

images.

Our argument owes a debt to Deligne and Mumford [DM, Section 1].

Proof. For the first statement, we use Serre duality h1ðLÞ ¼ h0ðoC#L�1Þ and

Proposition 3.1 applied to M ¼ oC#L�1: One verifies easily that

M�1 ¼ L#o�1
C ¼ ok�1

C ðDÞ

is the sum of a nef and an effective divisor.
We prove the basepoint freeness statement. Decompose

C ¼ Z,T Cþ
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where Z contains the components on which L has degree zero, Cþ the components
on which L is ample, and T is their intersection. Each connected component ZjCZ is

a chain of P1’s and has arithmetic genus zero. A component Zj is type I (resp. type II)

if it contains one point tjAT (resp. two points t0j ; t00j AT).

It suffices to show that for each pAC

h0ðLN#IpÞ ¼ h0ðLNÞ � 1;

where NX2: The vanishing assertion guarantees that LN has no higher cohomology.

It suffices then to show that LN#Ip has no higher cohomology, or dually,

HomðIp;oC#L�NÞ ¼ 0: If p is a smooth point then Ip is locally free and

HomðIp;oC#L�NÞ ¼ H0ðoCðpÞ#L�NÞ:

We analyze the restriction of F :¼ oCðpÞ#L�N to the components of C: We first
restrict to Z:

h0ðZj ;F jZjÞ ¼

0 if peZj and Zj is of type I;

1 if pAZj and Zj is of type I;

1 if peZj and Zj is of type II;

2 if pAZj and Zj is of type II:

8>>><>>>:
In each case the sections are zero if they are zero at T-Zj: For components in Cþ we

apply Proposition 3.2, where M is restriction of L to some irreducible component,
s ¼ p; and B is the conductor. (In what follows, on applying Proposition 3.2 we
always assume B contains the conductor.) The proposition gives that the restriction
to each component has no nontrivial sections, except perhaps when p lies on a
component E listed in the exceptional cases. Then the sections of F jE are constant

and ECP1 because peB: Thus provided p is not contained in a component

ECP1CCþ with jBj ¼ 3; we obtain that h0ðC;FÞ ¼ 0: Indeed, clearly h0ðF jCþÞ ¼ 0

and the analysis of cases above yields h0ðC;FÞ ¼ 0: If p does sit on such a component
E; then C contains a component of type I or a second irreducible component of Cþ;
the conductor BCE has three elements, so there must be at least one other nontype
II component. The restriction of F to such a component has only trivial sections, and
since the restrictions to all the other components have at most constant sections, we

conclude h0ðC;FÞ ¼ 0:

If p is singular, let b : Ĉ-C be the blow-up of C at p and p1; p2AĈ the points lying
over p; so that

HomðIp;oC#L�NÞ ¼ H0ðbnðoC#L�NÞÞ ¼ H0ðo
Ĉ
ðp1 þ p2ÞbnL�NÞ:

We write F̂ ¼ o
Ĉ
ðp1 þ p2ÞbnL�N : As before, we decompose

Ĉ ¼ Ĉþ,T̂ Ẑ; ð1Þ
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where L is positive on Ĉþ; and use Ẑj to denote a connected component of Z: Note

that bðẐÞ ¼ Z and the pi are not both contained on some Ẑj ; otherwise, bðẐjÞ would

have positive arithmetic genus. Similarly, neither of the pi lie on a type II component

(with respect to decomposition (1)). It follows that h0ðF̂jẐjÞ has dimension at most

one, and any section vanishes if it vanishes along T̂-Ẑj : For components of Ĉþ; we

apply Proposition 3.2, with p1; p2AB and s ¼ 0; to show that h0ðF̂jĈþÞ ¼ 0: Again,

we conclude that h0ðĈ; F̂Þ ¼ 0:
For ampleness, take p and q to be points of C; not necessarily smooth or distinct,

with ideal sheaves Ip and Iq: Again, it suffices to prove h0ðIpIqLNÞ ¼ 0 for NX3; or

dually, HomðIpIq;oC#L�NÞ ¼ 0: When p and q are smooth points the assertion

follows as above from Proposition 3.2, again with B as the conductor. The only case
requiring additional argument is when p and q both lie on a component
corresponding to one of the exceptional cases. Again, the nontrivial sections on
this component are constants, whereas we have only zero sections on the other
components.

We may assume that p is singular and write b : Ĉ-C for the blow-up at p: Then
for each invertible sheaf R on C we have

HomðI2
p ;RÞ ¼ H0ðbnRðp1 þ p2ÞÞ;

where p1 and p2 are the points of Ĉ lying over p: When q is smooth we obtain

HomðIpIq;oC#L�NÞ ¼ H0ðĈ;o
Ĉ
ðp1 þ p2 þ qÞ#bnL�NÞ:

Note that the restriction of bnL to each component still satisfies the hypothesis of
Proposition 3.2; we take p1; p2AB and q ¼ S: When q is singular and disjoint from p

we obtain

HomðIpIq;oC#L�NÞ ¼ H0ðĈ;o
Ĉ
ðp1 þ p2 þ q1 þ q2Þ#bnL�NÞ;

where Ĉ-C is the blow-up at p and q: We apply Proposition 3.2 with

p1; p2; q1; q2AB and S ¼ |: When p ¼ q we obtain

HomðI2
p ;oC#L�NÞ ¼ H0ðĈ;o

Ĉ
ð2p1 þ 2p2Þ#bnL�NÞ;

and we apply Proposition 3.2 with p1; p2AB and S ¼ fp1; p2g; accounting for the
exceptional cases as before.

We prove the last assertion. We have an exact sequence

0-H0ðC;LNÞ-H0ðCþ;LN jCþÞ"H0ðZ;LN jZÞ-H0ðT ;LN jTÞ:

Choose N large so that ðLN jCþÞð�TÞ is very ample. Since LN jZ is trivial, the image

of C under LN is obtained from Cþ by identifying pairs of points in T corresponding
to t0j; t00j in some Zj; i.e., by ‘collapsing’ each Zj to a point. Let C0 denote the resulting
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curve, which has the same arithmetic genus as C; and r : C-C0 the resulting map.

Writing D0 ¼ rðDÞ; we have rnok
C0 ðD0Þ ¼ L: Thus the sections of LN (NX3) induce r;

as ðok
C0 ðD0ÞÞN is very ample on C0: &

Remark 3.4. The adjunction formula gives precise information about the points of D

lying in Z: Each connected component Zj of type II is disjoint from D: Recall that

components Zj of type I are chains Zj1,?,Zjm of P1’s, intersecting Cþ in a point

of one of the ends of the chain (say Zj1). Then DjZj is supported in the irreducible

component Zjm at the opposite end and degðDjZjmÞ ¼ k:

Applying Proposition 3.3 and Remark 3.4 with D ¼ kðb1s1 þ?þ bnsnÞ; we
obtain the following:

Corollary 3.5. Let ðC; s1;y; snÞ be a nodal pointed curve of genus g, b1;y; bn

nonnegative rational numbers, and k a positive integer such that each kbi is integral.

Assume that L :¼ ok
Cðb1s1 þ?þ bnsnÞ is nef and has positive degree.

For NX3 the sections of LN induce a dominant morphism r : C-C0 to a nodal curve

of genus g: This morphism collapses irreducible components of C on which L has degree

zero, and maps the remaining components birationally onto their images. If B ¼
ðbi1 ;y; birÞ; i1oi2o?oir; denotes the set of all nonzero weights and s0i ¼ rðsiÞ; then

ðC0; s0i1 ;y; s0irÞ is a stable pointed curve of type ðB; gÞ:

Proof. The only claim left to verify is the singularity condition. Each si lying in a
component of type II necessarily has weight bi ¼ 0: Thus no points with positive
weight are mapped to singularities of the image C0: The points fsj1 ;y; sjag lying on a

single component of type I have weights summing to one, i.e.,
bj1 þ?þ bja ¼ 1: &

We also obtain the following relative statement:

Theorem 3.6. Let p : ðC; s1;y; snÞ-B be a family of nodal pointed curves of genus g,
b1;y; bn nonnegative rational numbers, and k a positive integer such that each kbi is

integral. Set L ¼ ok
pðkb1s1 þ?þ kbnsnÞ and assume that L is p-nef and has positive

degree. For NX3; Projð"mX0 p*
LmNÞ defines a flat family of nodal curves C0 with

sections s01;y; s0n: If B ¼ ðbi1 ;y; birÞ; i1oi2o?oir; denotes the set of all nonzero

weights, then ðC0; s0i1 ;y; s0irÞ is a family of stable pointed curves of type ðB; gÞ:

The new family may be considered as the log canonical model of C relative to
Kp þ a1s1 þ?þ ansn:

Proof. The vanishing assertion of Proposition 3.3 implies the formation of p
*

LN

commutes with base extensions B0-B: Hence we may apply the fiberwise assertions
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of Corollary 3.5 to ðC0; s01;y; s0nÞ-B: We therefore obtain a family of pointed stable

curves of type ðB; gÞ: &

3.2. The log minimal model program and the valuative criterion

To prove that our moduli problem is proper, we shall apply the valuative criterion
for properness (cf. [LaMo, 7.5]). The most important step is the following:

Proposition 3.7. Let R be a DVR with quotient field K, D ¼ Spec R; Dn ¼ Spec K ;

ðg;AÞ a collection of input data, pn : ðCn; sn1;y; snnÞ-Dn a family of stable pointed

curves of type ðg;AÞ: Then there exists the spectrum of a DVR eDD; a finite ramified

morphism eDD-D; and a family pc : ðCc; sc
1;y; sc

nÞ-eDD of stable pointed curves of type

ðg;AÞ; isomorphic to

ðCn 
D eDD; sn1 
D eDD;y; snn 
D eDDÞ
over eDDn: The family ðCc; sc

1;y; sc
nÞ is unique with these properties.

Proof. We first reduce to the case where Cn is geometrically normal with disjoint
sections. If sections si1 ;y; sir coincide over the generic point, we replace these by a
single section with weight ai1 þ?þ air : Choose a finite extension of K over which

each irreducible component of Cn is defined, as well as each singular point. Let CnðnÞ
be the normalization, snðnÞ1;y; snðnÞn the proper transforms of the sections, and

snðnÞnþ1;y; snðnÞnþb the points of the conductor. Then ðCnðnÞ; snðnÞ1;y; snðnÞnþbÞ is

stable with respect to the weights ðA; 1;y; 1Þ: Once we have the stable reduction of

CnðnÞ; the stable reduction of Cn is obtained by identifying corresponding pairs of
points of the conductor.

Applying the valuative criterion for properness for Mg;n (which might entail a

base-change eDD-D), we reduce to the case where ðCn; sn1 ;y; snnÞ extends to a family

p : ðC; s1;y; snÞ-D of stable curves in Mg;n: If this family is stable with respect to

the weight data A (i.e., Kp þ a1s1 þ?þ ansn is ample relative to p) then there is
nothing to prove. We therefore assume this is not the case.

Our argument uses the log minimal model program to obtain a model on
which our log canonical divisor is ample. This is well-known for surfaces
over fields of arbitrary characteristic (see [Fu, Theorem 1.4] or [KK]), but perhaps
less well known in the mixed characteristic case. For completeness, we sketch a
proof.

Let l be the largest number for which

D :¼ lðKp þ s1 þ?þ snÞ þ ð1 � lÞðKp þ a1s1 þ?þ ansnÞ

fails to be ample. Our assumptions imply 0plo1; l is rational because there are
only finitely many (integral projective) curves lying in fibers of p: Our argument is by
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induction on the number of such curves. The Q-divisor D is nef and has
positive degree, and we choose L to be the locally free sheaf associated to a
suitable multiple of D: Applying Theorem 3.6, we obtain a new family of

pointed curves p0 : ðC0; s01 þ?þ s0nÞ-eDD; agreeing with the original family

away from the central fiber, and stable with respect to the weight data
Bð1Þ :¼ lð1; 1;y; 1Þ þ ð1 � lÞA: Note that in passing from C to C0; we
have necessarily contracted some curve in the central fiber p: Now if Bð1Þ ¼ A
(i.e., if l ¼ 0) the proof is complete. Otherwise, we repeat the procedure above
using a suitable log divisor

D0 :¼ lðKp0 þ b1ð1Þs01 þ?þ bnð1Þs0nÞ þ ð1 � lÞðKp0 þ a1s01 þ?þ ans0nÞ:

We continue in this way until BðjÞ ¼ A; this process terminates because there are
only finitely many curves in the central fiber to contract. &

3.3. Deformation theory

Let ðC; s1;y; snÞ be a weighted pointed stable curve of genus g with weight data
A; defined over a field F : We compute its infinitesimal automorphisms and
deformations. We regard the pointed curve as a map

s : S-C;

where S consists of n points, each mapped to the corresponding sjAC:

The infinitesimal deformation theory of maps was analyzed by Ziv Ran [Ra]; he
worked with holomorphic maps of reduced analytic spaces, but his approach also
applies in an algebraic context. We recall the general formalism. Infinitesimal

automorphisms, deformations, and obstructions of s : S-C are denoted by T0
s ;T1

s ;

and T2
s ; respectively. Similarly, we use Ti

C ¼ Exti
CðO1

C ;OCÞ and Ti
S ¼ Exti

SðO1
S;OSÞ

for the analogous groups associated to C and S: Finally, we consider the mixed
group

HomsðO1
C ;OSÞ ¼ HomCðO1

C ; s
*
OSÞ ¼ HomSðsnO1

C ;OSÞ

and the associated Ext-groups, denoted Exti
sðO1

C ;OSÞ and computed by either of the

spectral sequences

E
p;q
2 ¼ Ext

p
CðO

1
C ;R

qs
*
OSÞ E

p;q
2 ¼ Ext

p
SðLqsnO1

C ;OSÞ:

We obtain long exact sequences

0-T0
s -TC

0 "T0
S-HomsðO1

C ;OSÞ-T1
s -T1

C"T1
S

-Ext1s ðO1
C ;OSÞ-T2

s -T2
C"T2

S-Ext2s ðO1
C ;OSÞ:
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In our situation Ti
S ¼ 0 (S is reduced zero-dimensional), T2

C ¼ 0 (C is a nodal

curve), Exti
sðOC ;OSÞ ¼ Exti

SðsnOC ;OSÞ ðO1
C is free along sðSÞ), and thus

Exti
sðOC ;OSÞ ¼ 0 for i40: Hence the exact sequence boils down to

0-T0
s -HomCðO1

C ;OCÞ-HomSðsnO1
C ;OSÞ

-T1
s -Ext1CðO1

C ;OCÞ-0

and T2
s ¼ 0:

Let DCC denote the support of a1s1 þ?þ ansn: Note that

D � ða1s1 þ?þ ansnÞ

is an effective Q-divisor and so the positivity condition guarantees that oCðDÞ is
ample. The map s factors

s :S-D+C

which gives a factorization

HomCðO1
C ;OCÞ-HomCðO1

C ;ODÞ-HomSðsnO1
C ;OSÞ:

The second step is clearly injective. The kernel of the first step is

HomCðO1
C ;OCð�DÞÞCH0ððoCðDÞÞ�1Þ ¼ 0:

Thus T0
s ¼ 0 and T1

s has dimension 3g � 3 þ n: We summarize this in the following

proposition:

Proposition 3.8. Let ðC; s1;y; snÞ be a weighted pointed stable curve of genus g with

weight data A: Then this curve admits no infinitesimal automorphisms and its

infinitesimal deformation space is unobstructed of dimension 3g � 3 þ n:

3.3.1. The canonical class

We digress to point out consequences of this analysis for the moduli stack. The

tangent space to Mg;A at ðC; s1;y; snÞ sits in the exact sequence

0-HomCðO1
C ;OCÞ-"

n

j¼1
HomCðO1

C ;Osj
Þ

-TðC;s1;y;snÞMg;A-Ext1CðO1
C ;OCÞ-0:

The cotangent space sits in the dual exact sequence

0-H0ðO1
C#oCÞ-Tn

ðC;s1;y;snÞMg;A-"
n

j¼1
O1

C jsj-H1ðO1
C#oCÞ-0:

Now let

p :Cg;A-Mg;A
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be the universal curve and sj the corresponding sections. The exact sequences above

cannot be interpreted as exact sequences of vector bundles on the moduli stack

because h0ðO1
C#oCÞ and h1ðO1

C#oCÞ are nonconstant. However, there is a relation

in the derived category which, on combination with the Grothendieck–Riemann–
Roch Theorem, yields a formula for the canonical class of the moduli stack (cf. [HM,
p. 159]). This takes the form

KMg;A
¼ 13

12
k0ðAÞ � 11

12
nðAÞ þ

Xn

j¼1

cjðAÞ;

where k0ðAÞ ¼ p
*
½c1ðopÞ2�; nðAÞ the divisor parametrizing nodal curves, and

cjðAÞ ¼ c1ðsnj opÞ:

3.3.2. An alternate formulation

We sketch an alternate formalism for the deformation theory of pointed stable
curves. This was developed by Kawamata [Kaw1] in an analytic context for
logarithmic pairs ðX ;DÞ consisting of a proper nonsingular variety X and a normal
crossings divisor DCX : This approach is more appropriate when we regard the
boundary as a divisor rather than the union of a sequence of sections. In particular,
this approach should be useful for higher-dimensional generalizations of weighted
pointed stable curves, like stable log surfaces.

We work over an algebraically closed field F : Let X be a scheme and D1;y;Dn a
sequence of distinct effective Cartier divisors (playing the role of the irreducible

components of the normal crossings divisor). We define the sheaf O1
X/D1;y;DnS

of differentials on X with logarithmic poles along the collection D1;y;Dn: Choose
an open affine subset UCX so that each Dj is defined by an equation fjAOU :

Consider the module

O1
U/D1;y;DnS :¼ ðO1

U"O1
U ef1"?"O1

U efn
Þ=/dfj � fjefj

S:

Up to isomorphism, this is independent of the choice of the fj; indeed, if fj ¼ ugj with

uAOn

U then we have the substitution egj
¼ efj

� du=u: The inclusion by the first factor

induces a natural injection

O1
U+O1

U/D1;y;DnS

with cokernel "n
j¼1 ODj

; where each summand is generated by the corresponding efj
:

We therefore obtain the following natural exact sequence of OX -modules:

0-O1
X-O1

X/D1;y;DnS-"
n

j¼1
ODj

-0:

In the case where X is smooth and the Dj are smooth, reduced, and meet in normal

crossings, we recover the standard definition of differentials with logarithmic poles
and the exact sequence is the ordinary residuation exact sequence. When Dj has
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multiplicity 41; the sheaf O1
X/D1;y;DnS has torsion along Dj: Note that the

residuation exact sequence is split when the multiplicities are divisible by the
characteristic.

Assume for simplicity that X is projective and smooth along the support of the Dj :

We claim that first-order deformations of ðX ;D1;y;DnÞ correspond to elements of

Ext1X ðO1
X/D1;y;DnS;OX Þ:

The resolution

0-OX ð�DjÞ-OX-ODj
-0

implies Ext1X ðODj
;OX Þ ¼ H0ðODj

ðDjÞÞ; so the residuation exact sequence yields

"
n

j¼1
H0ðODj

ðDjÞÞ-Ext1X ðO1
X/D1;y;DnS;OX Þ-Ext1X ðO1

X ;OX Þ:

Of course, H0ðODj
ðDjÞÞ parametrizes first-order deformations of Dj in X and

Ext1X ðO1
X ;OX Þ parametrizes first-order deformations of the ambient variety X :

3.4. Construction of the moduli stack

In this section, we prove all the assertions of Theorem 2.1 except the projectivity of
the coarse moduli space, which will be proved in Section 3.5. For a good general
discussion of how moduli spaces are constructed, we refer the reader to [DM] or [Vi].

We refer to [LaMo, Sections 3.1 and 4.1], for the definition of a stack. The
existence of the moduli space as a stack follows from standard properties of descent:
families of stable pointed curves of type ðg;AÞ satisfy effective descent and Isom is a
sheaf in the étale topology.

We introduce an ‘exhausting family’ for our moduli problem, i.e., a scheme which
is an atlas for our stack in the smooth topology. Set

L ¼ ok
pðka1s1 þ?þ kansnÞ;

where k is the smallest positive integer such that each kaj is integral. Let d ¼
degðL3Þ ¼ 3kð2g � 2 þ a1 þ?þ anÞ and consider the scheme H0 parametrizing n-

tuples ðs1;y; snÞ in Pd ; and the scheme H1 parametrizing genus g; degree d curves

CCPd : Let

UCH0 
 H1

be the locally closed subscheme satisfying the following conditions:

1. C is reduced and nodal;
2. s1;y; snCC and is contained in the smooth locus;

3. OCðþ1Þ ¼ L3:
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We are using the fact that two line bundles (i.e., OCðþ1Þ and L#3) coincide on a
locally closed subset.

We shall now prove that our moduli stack is algebraic using Artin’s criterion

(see [LaMo, Section 10]) Proposition 3.3 implies that each curve in Mg;A is

represented in U : Furthermore, isomorphisms between pointed curves in U

are induced by projective equivalences in Pd : It follows that U-Mg;A is smooth

and surjective, and that the diagonal Mg;A-Mg;A 
Mg;A is representable,

quasi-compact, and separated. We conclude that Mg;A is an algebraic stack of

finite type.
To show that the stack is Deligne–Mumford, it suffices to show that our

pointed curves have ‘no infinitesimal automorphisms,’ i.e., that the diagonal is
unramified [LaMo, 8.1]. This follows from Proposition 3.8. The moduli stack is
proper over Z by the valuative criterion for properness (cf. [LaMo, 7.5]) and
Proposition 3.7. The moduli stack is smooth over Z if, for each curve defined over a
field, the infinitesimal deformation space is unobstructed. This also follows from
Proposition 3.8. &

3.5. Existence of polarizations

We now construct polarizations for the moduli spaces of weighted pointed stable
curves, following methods of Kollár [Ko1] (see also [KoMc]). We work over an
algebraically closed field F : The first key concept is the notion of a semipositive
sheaf. Given a scheme (or algebraic space) X and a vector bundle E on X ; we say E

is semipositive if for each complete curve C and map f : C-X ; any quotient bundle

of f nE has nonnegative degree. Second, we formulate precisely what it means to say
that the ‘classifying map is finite’. Given an algebraic group G; a G-vector bundle W

on X of rank w and a quotient vector bundle Q of rank q; the classifying map should
take the form

u : X-Grðw; qÞ=G;

where the Grassmannian denotes the q-dimensional quotients of fixed w-dimensional
space. Since the orbit space need not exist as a scheme, we regard u as a set-theoretic
map on closed points XðFÞ-Grðw; qÞðFÞ=GðFÞ: We say that the classifying
map u is finite when it has finite fibers and each point of the image has finite
stabilizer.

The following result, a slight modification of the Ampleness Lemma of [Ko1],
allows us to use semipositive sheaves to construct polarizations:

Proposition 3.9. Let X be a proper algebraic space, W a semipositive vector bundle

with structure group G and rank w. Let Q1;y;Qm be quotient vector bundles of W with

ranks q1;y; qm: Assume that

1. W ¼ SymdðVÞ for some vector bundle V of rank v and G ¼ GLv;
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2. the classifying map

u : X-
Ym
j¼1

Grðw; qjÞ
 !,

G

is finite.

Then for any positive integers c1;y; cm the line bundle

detðQ1Þc1#detðQ2Þc2#?#detðQmÞcm

is ample.

In the original result m ¼ 1; so the classifying map takes values in the quotient of a
single Grassmannian rather than a product of Grassmannians. However, the
argument of [Ko1] generalizes easily to our situation, so we refer to this paper for the
details.

To apply this result we need to produce semipositive vector bundles on the moduli

space Mg;A: Choose an integer kX2 so that each kai is an integer. Given a family

p : ðC; s1;y; snÞ-B we take

V :¼ p
*
½ok

pðka1s1 þ?þ kansnÞ�;

which is locally free. Indeed, a degree computation (using the assumption kX2)
yields

ok
Cb
ðka1s1ðbÞ þ?þ kansnðbÞÞaoCb

;

so Proposition 3.3 guarantees the vanishing of higher cohomology. The sheaf V is
semipositive on B by Proposition 4.7 of [Ko1]. It follows that each symmetric

product SymdðVÞ is also semipositive [Ko1, 3.2].

We may choose k uniformly large so that ok
pðka1s1 þ?þ kansnÞ is very ample

relative to p for any family p (see Proposition 3.3). We shall consider the
multiplication maps

md : SymdðVÞ-p
*
½odk

p ðdka1s1 þ?þ dkansnÞ�

and the induced restrictions

SymdðVÞ-Qj; Qj :¼ snj ½odk
p ðdka1s1 þ?þ dkansnÞ�:

These are necessarily surjective and each has kernel consisting of the polynomials
vanishing at the corresponding section. We also choose d uniformly large so
that

W :¼ SymdðVÞ-Qnþ1; Qnþ1 :¼ p
*
½okd

p ðkda1s1 þ?þ kdansnÞ�
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is surjective and the fibers of p are cut out by elements of the kernel (i.e., they are
defined by equations of degree d). In particular, the pointed curve
ðCb; s1ðbÞ;y; snðbÞÞ can be recovered from the image of b under the classifying
map associated to W and its quotients Q1;y;Qnþ1: The stabilizer of the image
corresponds to the automorphisms of

PðH0ðok
Cb
ðka1s1ðbÞ þ?þ kansnðbÞÞÞÞ

preserving the equations of Cb and the sections. This is finite since our curve has no
infinitesimal automorphisms (Proposition 3.8).

If Mg;A admits a universal family the existence of a polarization follows from

Proposition 3.9. In general, we obtain only a line bundle L on the moduli stack

Mg;A; but some positive power LN descends to the scheme Mg;A: This power is

ample. Indeed, there exists a family p : ðC; s1;y; snÞ-B of curves in Mg;A so that

the induced moduli map B-Mg;A is finite surjective (cf. [Ko1, Sections 2.6–2.8]).

The bundle LN is functorial in the sense that it pulls back to the corresponding
product

detðQ1ÞNc1#detðQ2ÞNc2#?#detðQnþ1ÞNcnþ1

associated with our family. This is ample by Proposition 3.9. Our proof of Theorem
2.1 is complete. &

4. Natural transformations

4.1. Reduction and forgetting morphisms

Theorem 4.1 (Reduction). Fix g and n and let A ¼ ða1;y; anÞ and B ¼ ðb1;y; bnÞ
be collections of weight data so that bjpaj for each j ¼ 1;y; n: Then there exists a

natural birational reduction morphism

rB;A : Mg;A-Mg;B:

Given an element ðC; s1;y; snÞAMg;A; rB;AðC; s1;y; snÞ is obtained by successively

collapsing components of C along which KC þ b1s1 þ?þ bnsn fails to be ample.

Remark 4.2. The proof of Theorem 4.1 also applies when some of the weights of B
are zero (see Section 2.1.1).

Theorem 4.3 (Forgetting). Fix g and let A be a collection of weight data and A0 :¼
fai1 ;y; airgCA a subset so that 2g � 2 þ ai1 þ?þ air40: Then there exists a

natural forgetting morphism

fA;A0 :Mg;A-Mg;A0 :
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Given an element ðC; s1;y; snÞAMg;A; fA;A0 ðC; s1;y; snÞ is obtained by successively

collapsing components of C along which KC þ ai1si1 þ?þ air sir fails to be ample.

We refer the reader to Knudsen and Mumford [KnMu,Kn,Kn2] for the original
results on the moduli space of unweighted pointed stable curves.

Proof. We shall prove these theorems simultaneously, using cA;B to denote

either a reduction or a forgetting map, depending on the context. Let ðg;AÞ
be a collection of input data, #B ¼ ðb1;y; bnÞAQn so that 0pbjpaj for each j and

2g � 2 þ b1 þ?þ bn40: Let B ¼ ðbi1 ;y; birÞ; i1oi2o?oir; be obtained by

removing the entries of #B which are zero. We shall define a natural transformation
of functors

cB;A :Mg;A-Mg;B:

Our construction will yield a morphism in the category of stacks, which therefore
induces a morphism of the underlying coarse moduli schemes.

Consider #BðlÞ ¼ lAþ ð1 � lÞ #B for lAQ; 0olo1; and write #BðlÞ ¼
ðb1ðlÞ;y; bnðlÞÞ: We may assume there exists no subset fi1;y; irgCf1;y; ng such
that bi1ðlÞ þ?þ birðlÞ ¼ 1: If A and B do not satisfy this assumption, then there is

a finite sequence 14l04l14?4lN ¼ 0 so that each ð #BðljÞ; #Bðljþ1ÞÞ does satisfy

our assumption. Then we may inductively define

cB;A ¼ cBðlN Þ;BðlN�1Þ 3? 3 cBðl1Þ;Bðl0Þ:

Let ðC; s1;y; snÞ-
p

B be a family of stable curves of type ðg;AÞ: Under our

simplifying assumption, we define cB;AðC; s1;y; snÞ as follows. Consider the Q-

divisors KpðAÞ :¼ Kp þ a1s1 þ?þ ansn; KpðBÞ :¼ Kp þ b1s1 þ?þ bnsn; and
KpðBðlÞÞ :¼ lKpðAÞ þ ð1 � lÞKpðBÞ for lAQ; 0plp1: We claim this is ample for
each la0: This follows from Remark 3.4. If L is nef but not ample, then there either
exist sections weight zero (on type II components) or sets of sections with weights
summing to one (on type I components), both of which are excluded by our
assumptions.

We now apply Corollary 3.5 and Theorem 3.6 to obtain a new family of pointed
nodal curves p0 : C0-B with smooth sections s0i1 ;y; s0ir corresponding to the nonzero

weights of #B: We define cB;AðC; s1;y; snÞ to be the family p0 : C0-B; with image

sections s0i1 ;y; s0ir and weights bi1 ;y; bir ; a family of weighted pointed curves with

fibers in Mg;B: The vanishing statement in Proposition 3.3 guarantees our

construction commutes with base extension. Thus we obtain a natural transforma-
tion of moduli functors

cB;A :Mg;A-Mg;B:
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Assume that B ¼ #B; so that cB;A is interpreted as a reduction map rB;A: Then

rB;A is an isomorphism over the locus of configurations of points, it is a birational

morphism. &

Reduction satisfies the following compatibility condition:

Proposition 4.4. Fix g and let A;B; and C be collections of weight data so that the

reductions rB;A; rC;B; and rC;A are well defined. Then

rC;A ¼ rC;B 3 rB;A:

Proof. Since the maps are birational morphisms of nonsingular varieties, it suffices
to check that the maps coincide set-theoretically. &

4.2. Exceptional loci

The exceptional locus of the reduction morphism is easily computed using
Corollary 3.5:

Proposition 4.5. The reduction morphism rB;A contracts the boundary divisors

DI ;J :¼ M0;A0
I

 Mg;A0

J
; A0

I ¼ ðai1 ;y; air ; 1Þ; A0
J ¼ ðaj1 ;y; ajn�r

; 1Þ

corresponding to partitions

f1;y; ng ¼ I,J; I ¼ fi1;y; irg; J ¼ fj1;y; jn�rg

with bI :¼ bi1 þ?þ birp1 and 2orpn: We have a factorization of rB;AjDI ;J :

M0;A0
I

 Mg;A0

J
-
p

Mg;A0
J
-
r

Mg;B0
J
; B0

J ¼ ðbj1 ;y; bjn�r
; bI Þ;

where r ¼ rB0
J ;A

0
J

and p is the projection.

Remark 4.6. Consider a set of weights ðai1 ;y; airÞ so that

ai1 þ?þ air41

but any proper subset has sum at most one. Then M0;A0
I
is isomorphic to Pr�2 (cf.

Section 6.2) and rB;A is the blow-up of Mg;B along the image of DI ;J :

Corollary 4.7. Retain the notation and assumptions of Proposition 4.5. Assume in

addition that for each ICf1;y; ng such that

ai1 þ?þ air41 and bi1 þ?þ birp1

we have r ¼ 2: Then rA;B is an isomorphism.
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5. Chambers and walls

Let Dg;n denote the domain of admissible weight data

Dg;n :¼ fða1;y; anÞARn : 0oajp1 and a1 þ a2 þ?þ an42 � 2gg:

A chamber decomposition of Dg;n consists of a finite set W of hyperplanes wSCDg;n;

the walls of the chamber decomposition; the connected components of the
complement to the union of the walls

S
SAW wS are called the open chambers.

There are two natural chamber decompositions for Dg;n: The coarse chamber

decomposition is

Wc ¼
X
jAS

aj ¼ 1 : SCf1;y; ng; 2ojSjon � 2

( )

and the fine chamber decomposition is

Wf ¼
X
jAS

aj ¼ 1 : SCf1;y; ng; 2pjSjpn � 2

( )
:

Given a nonempty wall wS; the set Dg;nWw has two connected components defined

by the inequalities
P

jAS aj41 and
P

jAS ajo1:

Proposition 5.1. The coarse chamber decomposition is the coarsest decomposition of

Dg;n such that Mg;A is constant on each chamber. The fine chamber decomposition is

the coarsest decomposition of Dg;n such that Cg;A is constant on each chamber.

Proof. It is clear that Mg;A (resp. Cg;A) changes as we pass from one coarse (resp.

fine) chamber to another. It suffices then to show that Mg;A (resp. Cg;A) is constant

on each chamber.
Let A and B be contained in the interior of a fine chamber and let

p : ðC; s1;y; snÞ-B be a family in Mg;AðBÞ: Repeating the argument for Theorem

4.1, we find that Kp þ b1s1 þ?þ bnsn is ample. An application of Theorem 3.6

implies that ðC; s1;y; snÞ is also B-stable. Thus we get an identification of Mg;AðBÞ
and Mg;BðBÞ so Cg;ACCg;B:

Consider the fine chambers contained in a given coarse chamber Ch: We shall say
that two such fine chambers are adjacent if there exists a wall w which is a
codimension-one face of each. Any two fine chambers in Ch are related by a finite
sequence of adjacencies, so it suffices to show that adjacent fine chambers yield the
same moduli space. Fix two fine chambers in Ch adjacent along w; which we may
assume is defined by a1 þ a2 ¼ 1: Let ðw1;y;wnÞAw be an element contained in the
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closure of the chambers but not in any walls besides w: For small e40; the weight
data

A ¼ ðw1 þ e;w2 þ e;w3;y;wnÞ; B ¼ ðw1 � e;w2 � e;w3;y;wnÞ

lie in our two fine chambers. Corollary 4.7 implies that rA;B is an automorph-

ism. &

Problem 5.2. Find formulas for the number of nonempty walls and chambers for Dg;n:

Proposition 5.3. Let A be a collection of weight data. There exists a collection of

weight data B; contained in a fine open chamber, such that Cg;A ¼ Cg;B:

The fine open chamber produced in Proposition 5.3 is called the fine chamber
associated to A:

Proof. Consider the collection T1 (resp. To1; resp. T41) of all subsets SCf1;y; ng
with 2pjSjpn � 2 such that

P
jAS aj ¼ 1 (resp.

P
jAS ajo1; resp.

P
jAS aj41).

There exists a positive constant e such that for each SATo1 we have
P

jAS ajo1 � e;
for each SAT41 we have

P
jAS aj41 þ e; a1 þ?þ an42 þ e; and an4e: Setting

B ¼ ða1 � e=n; a2 � e=n;y; an � e=nÞ

and using results of Section 4.2, we obtain the desired result. &

Proposition 5.4. Let A be weight data contained in a fine open chamber. Then Cg;A is

isomorphic to Mg;A,feg for some sufficiently small e40:

Proof. We retain the notation of the proof of Proposition 5.3. Under our
assumptions the set T1 is empty, so for each TCf1;y; ng with 2pjSjpn � 2 we
have

X
jAS

aj � 1

�����
�����4e: &

6. Examples

6.1. Kapranov’s approach to M0;n

The key classical observation is that through each set of n points of Pn�3 in linear
general position, there passes a unique rational normal curve of degree n � 3: It is
therefore natural to realize elements of M0;n as rational normal curves in projective
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space. This motivates Kapranov’s blow-up construction of M0;n [Kap1,Kap2,

Section 4.3].

Start with W1;1½n� :¼ Pn�3 and choose n � 1 points q1;y; qn�1 in linear general

position. These are unique up to a projectivity. We blow up as follows:

1. blow up the points q1;y; qn�2; then the lines passing through pairs of these
points, followed by the planes passing through triples of triples of these points,
etc.;

2. blow up the point qn�1; then the lines spanned by the pairs of points including
qn�1 but not qn�2; then the planes spanned by triples including qn�1 but not
qn�2; etc.; y

r. blow up the linear spaces spanned by subsets

fqn�1; qn�2y; qn�rþ1gCSCfq1;y; qn�r�1; qn�rþ1;y; qn�1g

so that the order of the blow-ups is compatible with the partial order on the
subsets by inclusion;y

Let Wr;1½n�;y;Wr;n�r�2½n�ð:¼ Wr½n�Þ denote the varieties produced at the rth step.

Precisely, Wr;s½n� is obtained once we finish blowing up subspaces spanned by subsets

S with jSjps þ r � 2: Kapranov proves M0;nCWn�3½n�:
This may be interpreted with the reduction formalism of Section 4. The

exceptional divisors of the blow-downs Wr;s½n�-Wr;s�1½n� are proper transforms of

the boundary divisors DI ;J corresponding to partitions

f1;y; ng ¼ I-J where J ¼ fng,S:

Using the weight data

Ar;s½n� :¼ 1=ðn � r � 1Þ;y; 1=ðn � r � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�r�1 times

; s=ðn � r � 1Þ; 1;y; 1|fflfflffl{zfflfflffl}
r times

0B@
1CA;

r ¼ 1;y; n � 3; s ¼ 1;y; n � r � 2;

we realize Wr;s½n� as M0;Ar;s½n�: The blow-downs defined above are the reduction

morphisms

rAr;s�1½n�;Ar;s½n� : M0;Ar;s½n�-M0;Ar;s�1½n�; s ¼ 2;y; n � r � 2;

rAr;n�r�2½n�;Arþ1;1½n� : M0;Arþ1;1½n�-M0;Ar;n�r�2½n�:

In particular, Kapranov’s factorization of M0;n-Pn�3 as a sequence of blow-downs

is naturally a composition of reduction morphisms.
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6.2. An alternate approach to Kapranov’s moduli space

There are many factorizations of the map M0;n-Pn�3 as a composition of

reductions. We give another example here. First, we compute the fine chamber
containing the weight data A1;1½n� introduced in Section 6.1:

a1 þ?þ âi þ?þ an�1p1 ðand thus ai þ an41Þ for i ¼ 1;y; n � 1;

a1 þ?þ an�141:

The corresponding moduli space M0;A is denoted X0½n� and is isomorphic to Pn�3:

Similarly, we define Xk½n� :¼ M0;A provided A satisfies

ai þ an41 for i ¼ 1;y; n � 1;

al1 þ?þ alrp1 ðresp: 41Þ for each fl1;y; lrgCf1;y; n � 1g with

rpn � k � 2 ðresp: r4n � k � 2Þ:

When an ¼ 1 and a1 ¼ ? ¼ an�1 ¼ aðn; kÞ we have

1=ðn � 1 � kÞoaðn; kÞp1=ðn � 2 � kÞ

and

Aðn; kÞ ¼ aðn; kÞ;y; aðn; kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�1 times

; 1

0B@
1CA:

Thus there exist reduction maps

rAðn;k�1Þ;Aðn;kÞ : M0;Aðn;kÞ - M0;Aðn;k�1Þ

jj jj k ¼ 1;y; n � 4:

Xk½n� - Xk�1½n�

We interpret the exceptional divisors of the induced maps. For each partition

f1;y; ng ¼ I,J; I ¼ fi1 ¼ n; i2;y; irg;

J ¼ fj1;y; jn�rg; 2prpn � 2

consider the corresponding boundary divisor in M0;n

DI ;JCM0;rþ1 
 M0;n�rþ1:

The divisors with jI j ¼ ron � 2 are the exceptional divisors of Xr�1½n�-Xr�2½n�: The
blow-down X1½n�-X0½n� maps DI ;J with I ¼ fn; ig to the distinguished point
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qiAPn�3 mentioned in Section 6.1. Applying Proposition 4.5 and

aðn; 1Þ;y; aðn; 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�2 times

; 1

0B@
1CAC aðn � 1; 0Þ;y; aðn � 1; 0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�2 times

; 1

0B@
1CA ¼ Aðn � 1; 0Þ;

we obtain that the fiber over qi is M0;Aðn�1;0ÞCPn�4: More generally, M0;n ¼
Xn�4½n�-X0½n� maps DI ;J to the linear subspace spanned by qi2 ;y; qir ; the fibers are

isomorphic to Pn�r�2: The divisors DI ;J with jI j ¼ n � 2 are proper transforms of the

hyperplanes of X0½n�CPn�3 spanned by qi2 ;y; qin�2
:

Thus our reduction maps give the following realization of M0;n as a blow-up of

Pn�3:

1. blow up the points q1;y; qn�1 to obtain X1½n�;
2. blow up proper transforms of lines spanned by pairs of the points q1;y; qn�1

to obtain X2½n�;
3. blow up proper transforms of 2-planes spanned by triples of the points to

obtain X3½n�; y

n-4. blow up proper transforms of ðn � 5Þ-planes spanned by ðn � 4Þ-tuples of the
points to obtain Xn�4½n�:

6.3. Keel’s approach to M0;n

Let UCðP1Þn denote the set of all configurations of n distinct points in P1; and Q

the resulting quotient under the diagonal action of PGL2: For each configuration
ðp1;y; pnÞ; there exists a unique projectivity f with

f : ðp1; p2; p3Þ-ð0; 1;NÞ:

The image of the configuration in Q is determined completely by the points
ðfðp4Þ;y;fðpnÞÞ and we obtain an imbedding

Q+ðP1Þn�3:

We may interpret ðP1Þn�3 as M0;A where A ¼ ða1;y; anÞ satisfies the following

inequalities:

ai1 þ ai241 where fi1; i2gCf1; 2; 3g;

ai þ aj1 þ?þ ajrp1 for i ¼ 1; 2; 3 and fj1;y; jrgCf4; 5;y; ng

with r40:

These conditions guarantee that none of the first three sections coincide, but any of
the subsequent sections may coincide with any of the first three or with one another.
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When a1 ¼ a2 ¼ a3 ¼ a and a4 ¼ a5 ¼ ? ¼ an ¼ e we have 1=2oap1 and 0oðn �
3Þep1 � a: Taking

AðnÞ ¼ a; a; a; e;y; e|fflfflffl{zfflfflffl}
n�3 times

0@ 1A;

we obtain that the compactification of Q by ðP1Þn�3 is isomorphic to M0;AðnÞ:

We factor r : M0;n-ðP1Þn�3 as a product of reduction morphisms. Let Dd denote

the union of the dimension d diagonals, i.e., the locus where at least n � 2 � d of the

points coincide. We will use this notation for both the locus in ðP1Þn�3 and its proper
transforms. Let

F0 ¼ p�1
1 ð0Þ,p�1

2 ð0Þ,?,p�1
n�3ð0Þ

be the locus of points mapping to 0 under one of the projections pj; we define F1 and

FN analogously. Again, we use the same notation for proper transforms.

Write Y0½n� ¼ ðP1Þn�3 and define the first sequence of blow-ups as follows:

1. Y1½n� is the blow-up along the intersection D1-ðF0,F1,FNÞ;
2. Y2½n� is the blow-up along the intersection D2-ðF0,F1,FNÞ; y

n-4. Yn�4½n� is the blow-up along the intersection Dn�4-ðF0,F1,FNÞ:

The variety Yk½n� is realized by M0;A where

ai1 þ ai241 where fi1; i2gCf1; 2; 3g;

ai þ aj1 þ?þ ajrp1 ðresp: 41Þ for i ¼ 1; 2; 3 and fj1;y; jrgC

f4; 5;y; ng with 0orpn � 3 � k ðresp: r4n � 3 � kÞ:

The second sequence of blow-ups is

n-3. Yn�3½n� is the blow-up along D1;
n-2. Yn�2½n� is the blow-up along D2; y

2n-9. Y2n�9½n� is the blow-up along Dn�5:

The variety Ykþn�4½n� is realized by M0;A where

ai1 þ ai241 where fi1; i2gCf1; 2; 3g;

aj1 þ?þ ajrp1 ðresp: 41Þ for fj1;y; jrgCf4; 5;y; ng with

0orpn � 3 � k ðresp: r4n � 3 � kÞ:

Remark 6.1. Keel [Ke] has factored r as a sequence of blow-ups along smooth

codimension-two centers in the course of computing the Chow groups of M0;n:
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However, the intermediate steps of his factorization do not admit interpretations as

M0;A: For example, consider

M0;6-M0;4 
 M0;5-M0;4 
 M0;4 
 M0;4CðP1Þ3;

where the maps M0;N-M0;4 
 M0;N�1 are products of the forgetting morphisms

arising from the subsets

f1; 2; 3;Ng; f1; 2; 3;y;N � 1gCf1; 2;y;Ng:

The intermediate space M0;4 
 M0;5 is not of the form M0;A for any A:

6.4. Losev–Manin moduli spaces

We refer to the paper [LM], where the following generalization of stable pointed
curves is defined. This space was also studied by Kapranov [Kap1, Section 4.3] as the

closure of a generic orbit of ðCnÞn�3 in the space of complete flags in Cn�2:
Let S and T be two finite disjoint sets with jSj ¼ r and jT j ¼ n � r; B a

scheme, and gX0: An ðS;TÞ-pointed stable curve of genus g over B consists of the
data:

1. a flat family p : C-B of nodal geometrically connected curves of arithmetic genus
g;

2. sections s1;y; sr; t1;y; tn�r of p contained in the smooth locus of p; satisfying the
following stability conditions:

1. Kp þ suppðs1 þ?þ sr þ t1 þ?þ tn�rÞ is p-relatively ample;
2. each of the sections s1;y; sr are disjoint from all the other sections, but t1;y; tn�r

may coincide.

Now assume that r ¼ 2 and g ¼ 0; and consider only pointed curves satisfying the
following properties:

1. the dual graph is linear;
2. the sections s1 and s2 are contained in components corresponding to the endpoints

of the graph.

Then there is a smooth, separated, irreducible, proper moduli space %Ln�2

representing such ðS;TÞ-pointed stable curves [LM, Theorem 2.2].

This space is isomorphic to M0;A where A satisfies the following conditions

a1 þ ai41 and a2 þ ai41 for each i ¼ 1;y; n;

aj1 þ?þ ajrp1 for each fj1;y; jrgCf3;y; ng with r40:
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We emphasize that these conditions force the dual graphs of the associated curves to
have the properties postulated by Losev and Manin. Specializing the weights, we

obtain that %Ln�2CM0;A where

A ¼ 1; 1; 1=ðn � 2Þ;y; 1=ðn � 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�2 times

0B@
1CA:

Using the reduction maps we obtain explicit blow-up realizations of the Losev–
Manin moduli spaces. Setting B ¼ ð1; 1=ðn � 2Þ;y; 1=ðn � 2ÞÞ we obtain a
morphism

rB;A : M0;A-M0;B;

where M0;BCPn�3 is Kapranov’s compactification. The Losev–Manin moduli space

is the first step of the factorization described in Section 6.1.

7. Interpretations as log minimal models of moduli spaces

Recently, Keel and his collaborators [KeMc1,GKM,G,Ru] have undertaken a
study of the birational geometry of the moduli space of curves, with an emphasis on
the geometry of the cones of effective curves and divisors. In many cases, they find
natural modular interpretations for contractions and modifications arising from the
minimal model program. Therefore, one might expect that natural birational

modifications of a moduli space M should admit interpretations as log minimal

models with respect to a boundary supported on natural divisors of M: The most
accessible divisors are those parametrizing degenerate curves, so we focus on these
here.

Fix M ¼ M0;n; the moduli space of genus zero curves with n marked points. For

each unordered partition

f1; 2;y; ng ¼ I,J where jI j; jJj41;

let DI ;JCM denote the divisor corresponding to the closure of the locus of pointed

curves with two irreducible components, with the sections indexed by I on one
component and by J on the other. Let d be the sum of these divisors, with each DI ;J

appearing with multiplicity one. We can also describe degenerate curves on M0;A

(see Section 4.2). There are two types to consider. First, consider a partition as above
satisfying

ai1 þ?þ air41; aj1 þ?þ ajn�r
41; I ¼ fi1;?; irg; J ¼ fj1;y; jn�rg:

Let DI ;JðAÞ denote the image of DI ;J in M0;A under the reduction map; this is a

divisor and parametrizes nodal curves as above. The union of such divisors is
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denoted n: Second, any partition with I ¼ fi1; i2g and ai1 þ ai2p1 also corresponds

to a divisor DI ;JðAÞ in M0;A; parametrizing curves where the sections si1 and si2

coincide. These curves need not be nodal. The union of such divisors is denoted g and

the union of g and n is denoted d: The remaining partitions yield subvarieties of M0;A

with codimension 41:

Problem 7.1. Consider the moduli space M0;A of weighted pointed stable curves of

genus zero. Do there exist rational numbers dI ;J so that

KM0;A
þ
X
I ;J

dI ;JDI ;JðAÞ

is ample and log canonical? The sum is taken over partitions

f1; 2;y; ng ¼ I,J where jI j; jJjX2;

where either

ai1 þ?þ air41 and aj1 þ?þ ajn�r
41

or

r ¼ 2 and ai1 þ ai2p1:

The assertion that the singularities are log canonical implies that the coefficients
are nonnegative and p1:

We shall verify the assertion of Problem 7.1 in examples by computing the
discrepancies of the associated reduction morphisms. We also refer the reader to
Remark 8.5 for another instance where it is verified.

7.1. Mumford–Knudsen moduli spaces

It is well known that KM0;n
þ d is ample and log canonical. We briefly sketch the

proof. For ampleness, we use the identity

klog :¼ p
*
½c1ðopðs1 þ?þ snÞÞ2� ¼ KM0;n

þ d;

where

p : ðC0;n; s1;y; snÞ-M0;n

is the universal curve. Fix pointed elliptic curves ðEi; piÞ; i ¼ 1;y; n; which we attach
to an n-pointed rational curve to obtain a stable curve of genus n: This yields an
imbedding

j : M0;n-Mn:
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The divisor

k ¼ u
*
½c1ðouÞ2�;

where u :Cn-Mn is the universal curve, is ample [HM, 3.110 and 6.40] and pulls
back to klog: As for the singularity condition, it suffices to observe that through each

point of M0;n there pass at most n � 3 boundary divisors which intersect in normal

crossings.

7.2. Kapranov’s examples

We retain the notation of Section 6.2. The boundary divisors on

X0½n� ¼ M0;ACPn�3

are indexed by partitions

f1; 2;y; ng ¼ fi1; i2g,fj1;y; jn�3; ng

and correspond to the hyperplanes spanned by the points qj1 ;y; qjn�3
: Consider the

log canonical divisor

KX0½n� þ aD½n�; where D½n� :¼
X

I¼fi1;i2g
DI ;JðAÞ;

which is ample if and only if

a
n � 1

2

 !
4n � 2; i:e:; a42=ðn � 1Þ: ð2Þ

Let Ek½n� denote the exceptional divisor of the blow-up Xk½n�-Xk�1½n� and

rk : Xk½n�-X0½n�

the induced birational morphism. Each component of Ek½n� is obtained by blowing
up a nonsingular subvariety of codimension n � 2 � k; so we obtain

KXk ½n� ¼ rn

kKX0½n� þ
Xk

r¼1

ðn � 3 � rÞEr½n�:

Through each component of the center of Ek½n�; there are
n � 1 � k

n � 3 � k

� �
nonsingular

irreducible components of D½n�: It follows that

rn

kD½n� ¼ D½n�k þ
Xk

r¼1

n � 1 � r

n � 3 � r

 !
Er½n�;
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where D½n�k is the proper transform of D½n�: The discrepancy equation takes the form

KXk ½n� þ aD½n�k ¼ rn

kðKX0½n� þ aD½n�Þ þ
Xk

r¼1

n � 3 � r � a
n � 1 � r

n � 3 � r

 ! !
Er½n�;

which is log canonical provided

�1Xðn � 3 � rÞ � a
n � 1 � r

n � 3 � r

 !
r ¼ 1;y; k:

This yields the condition

ap2=ðn � 2Þ;

which is compatible with inequality (2).
This computation yields a positive answer to Problem 7.1 for X0½n � 4� but not

necessarily for Xk½n � 4� with k40: The exceptional divisors Er½n� may have large
positive discrepancies.

7.3. Keel’s example

We retain the notation of Section 6.3 and use Ek½n� for the exceptional divisor of
Yk½n�-Yk�1½n� and rk for the birational morphism Yk½n�-Y0½n�: Let F ½n� ¼
F0 þ F1 þ FN and D½n� the union of the diagonals in ðP1Þn�3: Their proper
transforms are denoted F ½n�k and D½n�k: The divisor KðP1Þn�3 þ aF ½n� þ bD½n� is ample

if and only if

3aþ ðn � 4Þb42: ð3Þ

We have the following discrepancy equations:

KY2n�9½n� ¼ rn

2n�9KY0½n� þ
Xn�4

r¼1

ðn � 3 � rÞEr½n� þ
Xn�5

r¼1

ðn � 4 � rÞEn�4þr½n�;

rn

2n�9F ½n� ¼ F ½n�2n�9 þ
Xn�4

r¼1

ðn � 2 � rÞEr½n�;

rn

2n�9D½n� ¼ D½n�2n�9 þ
Xn�4

r¼1

n � 2 � r

2

 !
Er½n� þ

Xn�5

r¼1

n � 2 � r

2

 !
En�4þr½n�;
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which yield inequalities

� 1pðn � 3 � rÞ � aðn � 2 � rÞ � b
n � 2 � r

2

 !
; r ¼ 1;y; n � 4;

� 1pðn � 4 � rÞ � b
n � 2 � r

2

 !
; r ¼ 1;y; n � 5:

These in turn yield

bp2=ðn � 3Þ aþ bððn � 4Þ=2Þp1:

To satisfy these conditions and inequality (3), we may choose

a ¼ 1=ðn � 3Þ b ¼ 2=ðn � 3Þ:

8. Variations of GIT quotients of ðP1Þn

In this section, we show how geometric invariant theory quotients of ðP1Þn may be

interpreted as ‘small-parameter limits’ of the moduli schemes M0;A as
Pn

j¼1 aj-2:

We review the description of the stable locus for the diagonal action of PGL2 on

ðP1Þn (see [Th, Section 6]; [GIT, Chapter 3]). The group PGL2 admits no characters,

so ample fractional linearizations correspond to line bundles Oðt1;y; tnÞ on ðP1Þn;

where the ti are positive rational numbers. A point ðx1;y; xnÞAðP1Þn is stable (resp.

semistable) if, for each xAP1;

Xn

j¼1

tjdðx; xjÞoðpÞ 1
2

Xn

j¼1

tj

 !
;

where dðx; xjÞ ¼ 1 when x ¼ xj and 0 otherwise.

Remark 8.1. The linearizations T ¼ ðt1;y; tnÞ for which a given point of ðP1Þn is
stable (resp. semistable) form an open (resp. closed) subset.

To strengthen the analogy with our moduli spaces, we renormalize so that t1 þ
t2 þ?þ tn ¼ 2: Then the stability condition takes the following form: for any
fi1;y; irgCf1;y; ng; xi1 ;y; xir may coincide only when

ti1 þ?þ tiro1:

In particular, the stable locus is nonempty only when each tjo1: In this case, the

corresponding GIT quotient is denoted Qðt1;y; tnÞ or QðTÞ: We define the
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boundary of D0;n as

@D0;n :¼ fðt1;y; tnÞ : t1 þ?þ tn ¼ 2; 0otio1 for each i ¼ 1;y; ng:

We shall say that T is typical if all semistable points are stable and atypical

otherwise. Of course, T is typical exactly when ti1 þ?þ tira1 for any
fi1;y; irgCf1;y; ng:

Theorem 8.2. Let T be a typical linearization in @D0;n: Then there exists an open

neighborhood U of T so that U-D0;n is contained in an open fine chamber of D0;n: For

each set of weight data AAU-D0;n; there is a natural isomorphism

M0;A -
C

QðTÞ:

Proof. We choose

U ¼fðu1;y; unÞAQn : 0ouio1 and

ui1 þ?þ uira1 for any fi1;y; irgCf1;y; ngg:

It follows that U-D0;n is contained in a fine chamber. In particular, Proposition 5.1

implies that for any weight data A1;A2AU-D0;n; we have M0;A1
CM0;A2

:

We construct the morphism QðTÞ-M0;A; where AAU-D0;n: Points of QðTÞ
classify ðx1;y; xnÞAðP1Þn up to projectivities, where xi1 ;y; xir do not coincide
unless ti1 þ?þ tiro1: In our situation, ti1 þ?þ tiro1 if and only if ai1 þ?þ
airo1: Since KP1 þ

P
ajxj has positive degree, we may conclude that ðP1; x1;y; xnÞ

represents a point of M0;A: As QðTÞ parametrizes a family of pointed curves in

M0;A; we obtain a natural morphism QðTÞ-M0;A: This is a bijective birational

projective morphism from a normal variety to a regular variety, and thus an
isomorphism. &

For an atypical point T of the boundary the description is more complicated.
From a modular standpoint, each neighborhood of T intersects a number of fine
chambers arising from different moduli problems. See Fig. 1 for a crude schematic

diagram. From an invariant-theoretic standpoint, for each linearization T0 in a
sufficiently small neighborhood of T we have a birational morphism

QðT0Þ-QðTÞ;

induced by the inclusion of the T0-semistable points into the T-semistable points
(cf. Remark 8.1). A more general discussion of this morphism may be found in [Th,
Section 2].
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Theorem 8.3. Let TA@D0;n be an atypical linearization. Suppose that T is in the

closure of the coarse chamber associated with the weight data A: Then there exists a

natural birational morphism

r : M0;A-QðTÞ:

Proof. Consider the map t :D0
0;n-@D0;n given by the rule

tðb1;y; bnÞ ¼ ðb1B�1;y; bnB�1Þ;

where B ¼ ðb1 þ?þ bnÞ=2 and

D0
0;n ¼ fðb1;y; bnÞ : b1 þ?þ bnX2; 0obio1g:

For each BAD0
0;n such that tðBÞ is typical, we obtain a birational morphism

rtðBÞ;B : M0;B-QðtðBÞÞ:

This is defined as the composition of the reduction morphism rB1;B
: M0;B-M0;B1

;

where B1 ¼ eBþ ð1 � eÞtðBÞ for small e40; and the isomorphism M0;B1
-QðtðBÞÞ

given by Theorem 8.2.
The closure of each coarse chamber is the union of the closures of the finite

collection of fine chambers contained in it. By Proposition 5.1, we may assume A is

in a fine open chamber Ch with closure Ch0CD0
0;n containing T: Clearly, tðCh0Þ

contains T and tðChÞ contains typical points arbitrarily close to T: Choose AACh

so that tðAÞ is typical and close to T; so there exists a generalized reduction
morphism

rtðAÞ;A : M0;A-QðtðAÞÞ

and an induced birational morphism of GIT quotients

QðtðAÞÞ-QðTÞ:

Composing, we obtain the birational morphism claimed in the theorem. &

a4+a5+a6<1

a4+a5+a6>1
a1+a2+a3>1

a4+a5+a6>1
a1+a2+a3>1

a1+a2+a3+a4+a5+a6<2

a1+a2+a3<1

Fig. 1. Chamber structure at the boundary.
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In light of Theorems 8.2 and 8.3, when TA@D0;n we may reasonably interpret the

GIT quotient QðTÞ as M0;T: This gives one possible definition for moduli spaces

with weights summing to two (cf. Section 2.1.2.)

Remark 8.4 (Suggested by I. Dolgachev). Theorem 8.2 implies that M0;A is realized

as a GIT quotient QðTÞ when the closure of the coarse chamber associated with A
contains a typical linearization. For example, if

A ¼ 2=3; 2=3; 2=3; e;y; e|fflfflffl{zfflfflffl}
n�3 times

0@ 1A; e40 small;

then the moduli space M0;ACðP1Þn�3; studied in Section 6.3, arises as a GIT

quotient (see [KLW]).

Remark 8.5. We explicitly construct

M0;T :¼ QðTÞ T ¼ ð1=3; 1=3; 1=3; 1=3; 1=3; 1=3Þ

using a concrete description of the map

r : M0;ð1;1=3;1=3;1=3;1=3;1=3Þ-M0;T

produced in Theorem 8.3. Recall that the first space is the space X1½6� (see Section

6.2), isomorphic to P3 blown-up at five points p1;y; p5 in linear general position.
The map r is obtained by contracting the proper transforms cij of the ten lines

joining pairs of the points. It follows that M0;T is singular at these ten points.

Concretely, r is given by the linear series of quadrics on P3 passing through

p1;y; p5: Thus, we obtain a realization of M0;T as a cubic hypersurface in P4 with

10 ordinary double points. Finally, we observe that KM0;T
þ ad is ample and log

canonical provided 2=5oap1=2; thus yielding a positive answer to Problem 7.1 in
this case.
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