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Abstract

Classical integrable impurities associated with high rank (glN ) algebras are investigated. A particular
prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic con-
struction of local integrals of motion as well as the time components of the corresponding Lax pairs is
presented based on the underlying classical algebra. Suitable gluing conditions compatible with integra-
bility are also extracted. The defect contribution is also examined in the case where non-trivial integrable
conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behav-
ior, and in particular the defect contribution.
© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Classical integrable field theories and quantum integrable lattice systems in the presence of
point-like defects have been the subject of increasing research interest in recent years [1–22]
with particular emphasis on the identification of the associated integrals of motion (conserved
charges) as well as the derivation of the physical transmission matrices. The central purpose of
the present article is the study of a classical vector NLS model in the presence of a point-like
defect. This model is associated with the glN algebra, and the corresponding defect matrix is
a generic representation of the aforementioned algebra.
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This investigation is based on the underlying algebra as well as the corresponding linear aux-
iliary problem along the lines introduced in [18]. Using these fundamental notions we are able
to extract the associated integrals of motion, as well as the corresponding Lax pairs. Analyticity
conditions on the time components of the Lax pair are also required in order to eliminate singu-
lar behavior in the zero curvature condition. This provides sewing conditions across the defect
point that relate the left and right values of the fields and their derivatives. These are necessary
conditions that allow identification of the Hamiltonian equations of motion.

A particularly interesting issue, which is also addressed in this study, is how the presence
of non-trivial, but still integrable, conditions affects the bulk behavior of the system and more
specifically the defect contribution. Two sets of distinct boundary conditions [23] are introduced,
i.e. the soliton preserving (SP) and the soliton non-preserving (SNP) associated to the reflection
algebra and the twisted Yangian respectively. Based on the relevant boundary algebras we extract
the first integrals of motion in each case, and we identify the corresponding defect contributions.
Non-trivial bulk behavior is observed in particular in the case of the reflection algebra.

The outline of this paper is as follows. In the next section we review the general algebraic
setting, which will be used in the present study. In Section 3 we briefly review the vector NLS
model, we recall the Lax pair as well as the construction of the first integrals of motion. In
Section 4 the model is investigated in the presence of a point-like defect. Explicit expressions
of the first local integrals of motion, as well as the corresponding time components of the Lax
pair are extracted. Suitable analyticity conditions are imposed and sewing conditions across the
defect point are derived. The equations of motion for the bulk theories as well as the defect point
are also identified. In Section 5 non-trivial integrable boundary conditions are implemented, and
the defect contributions are extracted based on the respective algebras. In the last section a brief
discussion of our findings is presented together with some possible future research directions.

2. The general setting

Before we present the main results of this investigation about the vector NLS model in the
presence of a point-like defect let us first briefly review some of the basic notions that will be
used below. The formulation will be adopted for the study of the glN NLS model with defect is
based on the solution of the so-called auxiliary linear problem [24]. It is therefore necessary to
recall at least the basics regarding this formulation. Let Ψ be a solution of the following set of
equations

∂Ψ

∂x
=U(x, t, λ)Ψ (2.1)

∂Ψ

∂t
=V(x, t, λ)Ψ (2.2)

with U,V being in general n × n matrices with entries functions of complex valued fields, their
derivatives, and the spectral parameter λ. The monodromy matrix from (2.1) may be then written
as:

T (x, y,λ) =P exp

{ x∫
y

U
(
x′, t, λ

)
dx′

}
. (2.3)

The fact that T is a solution of Eq. (2.1) will be extensively used subsequently for obtaining
the relevant integrals of motion. Compatibility conditions of the two differential equations (2.1),
(2.2) lead to the zero curvature condition
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U̇−V
′ + [U, V] = 0, (2.4)

giving rise to the corresponding classical equations of motion of the system under consideration.
There exists an alternative description, known as the r matrix approach (Hamiltonian formu-

lation). In this picture the underlying classical algebra is manifest in analogy to the quantum case
as will become quite transparent later. Let us first recall this method for a general classical inte-
grable system on the full line. The existence of the classical r-matrix [25], satisfying the classical
Yang–Baxter equation[

r12(λ1 − λ2), r13(λ1) + r23(λ2)
] + [

r13(λ1), r23(λ2)
] = 0, (2.5)

guarantees the integrability of the classical system. Indeed, consider that U satisfies the linear
algebra:{

U1(λ, x),U2(μ,y)
} = [

r12(λ − μ),U1(λ, x) +U2(μ,y)
]
δ(x − y). (2.6)

Then is straightforward to show that the operator T (x, y,λ) satisfies the classical quadratic
algebra{

T1(x, y, t, λ1), T2(x, y, t, λ2)
} = [

r12(λ1 − λ2), T1(x, y, t, λ1)T2(x, y, t, λ2)
]
. (2.7)

Making use of the latter equation one may readily show for a system on the full line:{
ln tr

{
T (x, y,λ1)

}
, ln tr

{
T (x, y,λ2)

}} = 0 (2.8)

i.e. the system is integrable, and the charges in involution – local integrals of motion – may be
obtained via the expansion of the object ln tr{T (x, y,λ)}, based essentially on the fact that T also
satisfies (2.1).

3. The vector NLS theory

We shall hereafter focus on the glN NLS model. Consider the corresponding classical
r-matrix [26]

r(λ) = κP

λ
where P =

N∑
i,j=1

eij ⊗ eji (3.1)

P is the glN permutation operator, and eij are N ×N matrices such that: (eij )kl = δikδjl . The
Lax pair for the generalized NLS model is given by the following expressions [24]:

U=U0 + λU1, V=V0 + λV1 + λ2
V2, (3.2)

where

U1 = 1

2i

(
N−1∑
i=1

eii − eNN

)
, U0 = √

κ

N−1∑
i=1

(ψ̄ieiN + ψieNi)

V0 = iκ

N−1∑
i, j=1

(
ψ̄iψj eij − |ψi |2eNN

) − i
√

κ

N−1∑
i=1

(
ψ̄ ′

i eiN − ψ ′
i eNi

)
,

V1 = −U0, V2 = −U1 (3.3)
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and ψi, ψ̄j satisfy1:{
ψi(x), ψj (y)

} = {
ψ̄i(x), ψ̄j (y)

} = 0,
{
ψi(x), ψ̄j (y)

} = −iδij δ(x − y). (3.5)

From the zero curvature condition (2.4) the classical equations of motion for the generalized
NLS model are entailed, i.e.

i
∂ψi(x, t)

∂t
= −∂2ψi(x, t)

∂2x
+ 2κ

∑
j

∣∣ψj (x, t)
∣∣2

ψi(x, t), i, j ∈ {1, . . . ,N − 1}. (3.6)

It is clear that for N = 2 the equations of motion of the usual NLS model are recovered.
As already mentioned to obtain the local integrals of motion of the NLS model one has to

expand T (2.3) in powers of λ−1 [24]. Let us consider the following ansatz for T as |λ| → ∞
T (x, y,λ) = (

I+ W(x,λ)
)

exp
[
Z(x, y,λ)

] (
I+ W(y,λ)

)−1 (3.7)

where W is off diagonal matrix, i.e. W = ∑
i �=j Wij eij , and Z is purely diagonal Z =∑N

i=1 Ziieii . Also

Zii(λ) =
∞∑

n=−1

Z
(n)
ii

λn
, Wij =

∞∑
n=1

W
(n)
ij

λn
. (3.8)

Inserting the latter expressions (3.8) in (2.1) one may identify the coefficients W
(n)
ij and Z

(n)
ii

(see also [24,27]). Notice that as iλ → ∞ the only non-negligible contribution from Z(n) comes
from the Z

(n)
NN term, and is given by:

Z
(n)
NN(L,−L) = iLδn,−1 + √

κ

N−1∑
i=1

L∫
−L

dx ψi(x) W
(n)
iN (x). (3.9)

It is thus sufficient to determine the coefficients W
(n)
iN in order to extract the relevant local

integrals of motion. Indeed solving (2.1) one may easily obtain [27]:

W
(1)
iN (x) = −i

√
κψ̄i(x), W

(2)
iN (x) = √

κψ̄ ′
i (x)

W
(3)
iN (x) = i

√
κψ̄ ′′

i (x) − iκ
3
2
∑

k

∣∣ψk(x)
∣∣2

ψ̄i(x), . . . . (3.10)

From the latter formulae (3.10) and taking into account (3.7), (3.9) the local integrals of motion
of NLS may be readily extracted from ln trT (L,−L,λ), i.e.

I1 = −iκ

L∫
−L

dx

N−1∑
i=1

ψi(x)ψ̄i(x),

1 The Poisson structure for the generalized NLS model is defined as:

{A, B} = −i
∑
i

L∫
−L

dx

(
δA

δψi(x)

δB

δψ̄i (x)
− δA

δψ̄i (x)

δB

δψi(x)

)
(3.4)
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I2 = −κ

2

L∫
−L

dx

N−1∑
i=1

(
ψ̄i(x)ψ ′

i (x) − ψi(x)ψ̄ ′
i (x)

)
,

I3 = −iκ

L∫
−L

dx

N−1∑
i=1

(
κ
∣∣ψi(x)

∣∣2 ∑
k

∣∣ψk(x)
∣∣2 + ψ ′

i (x)ψ̄ ′
i (x)

)
. (3.11)

The corresponding familiar quantities for the generalized NLS are given by:

N = − I1

iκ
, P = − I2

iκ
, H = − I3

iκ
, (3.12)

and apparently

{H,P} = {H,N } = {N ,P} = 0. (3.13)

Again in the special case where N = 2 the well known local integrals of motion for the usual
NLS model on the full line are recovered.

In the case of integrable boundary conditions, which will be treated later in the text, we shall
need in addition to (3.10) the following objects:

W
(1)
Ni = i

√
κψi,

W
(2)
Ni = −iW

′ (1)
Ni +

∑
i �=j, i �=N, j �=N

W
(1)
Nj W

(1)
j i , W

′ (1)
j i = iW

(1)
jNW

(1)
Ni

W
(3)
Ni = −iW

′ (2)
Ni + W

(1)
iN W

(1)
Ni W

(1)
Ni +

∑
i �=j, i �=N,j �=N

W
(1)
Nj W

(2)
j i

W
′ (2)
ij = iW

(1)
iN W

(2)
Nj − iW

(1)
jNW

(1)
Nj W

(1)
ij . (3.14)

We shall also need for our computations here the following:

(
1 + W(λ)

)−1 = 1 + F(λ) where F(λ) =
∞∑

n=1

f(n)

λn
,

where f(1) = −W(1), f(2) = (
W(1)

)2 − W(2),

f(3) = −W(3) + W(1)W(2) + W(2)W(1) − (
W(1)

)3
, . . . (3.15)

4. The vector NLS model in the presence of defect

In this section the local integrals of motion as well as the associated Lax pairs for the NLS
model in the presence of a point-like integrable defect at x = x0 will be derived. To achieve
this we first need to introduce the key element in our study, which is the modified monodromy
matrix [18]

T (λ) = T +(L,x0;λ) L(x0;λ) T −(x0,−L;λ), (4.1)

where we define
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T +(L,x0;λ) = P exp

[ L∫
x0

dx U
+(x)

]
, T −(x0,−L;λ) = P exp

[ x0∫
−L

dx U
−(x)

]
,

L(x0;λ) = λ + κP(x0), P =
∑
i,j

Pij eij . (4.2)

The matrices U± together with the corresponding time components V± satisfy the familiar linear
auxiliary problem and they naturally satisfy the zero curvature condition:

∂Ψ

∂x
=U

±(x, t, λ)Ψ (4.3)

∂Ψ

∂t
=V

±(x, t, λ)Ψ, x �= x0. (4.4)

Compatibility conditions of the two differential equations (4.3), (4.4) lead to the zero curvature
condition

U̇
± −V

±′ + [
U

±, V
±] = 0, x �= x0, (4.5)

giving rise to the corresponding classical equations of motion for the corresponding bulk theories.
However, special care should be taken regarding the defect point. On the defect point the zero
curvature condition is quite modified (see relevant discussion, e.g. in [18]) and takes the form:

L̇(λ) = Ṽ
+(λ) L(λ) −L(λ) Ṽ−(λ). (4.6)

The latter naturally leads to the equations of motion on the defect point. Ṽ± are the time
components of the Lax pair on the defect point from the left and from the right (see also [18]).

The matrices U± satisfy the ultra-local linear algebra:{
U

±
1 (x,λ),U±

2 (y,μ)
} = [

r12(λ − μ),U±
1 (x,λ) +U

±
2 (y,μ)

]
δ(x − y), (4.7)

giving rise to the following exchange relations:{
ψ±

i (x), ψ±
j (y)

} = 0,
{
ψ̄±

i (x), ψ̄±
j (y)

} = 0,{
ψ±

i (x), ψ̄±
j (y)

} = −iδij δ(x − y). (4.8)

The defect L-matrix satisfies the same quadratic algebra with the bulk monodromy matrices
T ±, i.e.{

L1(λ), L2(μ)
} = [

r12(λ − μ), L1(λ) L2(μ)
]
. (4.9)

In fact, this is the key requirement that ensures the integrability of the model [18]. It is clear
that due to the quadratic algebraic relation (4.9) the following exchange relations regarding the
defect degrees of freedom arise

{Pij , Pmn} = Pinδjm − Pmjδin, (4.10)

which are the exchange relations of the classical glN algebra (see, e.g. [24]).
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4.1. The local integrals of motion

The local integrals of motion Im will be obtained subsequently via the familiar generating
function, i.e. the corresponding transfer matrix – the trace of the modified monodromy matrix –

ln t (λ) =
∑
m

Im

λm
. (4.11)

Taking into account the discussion of Section 3 we conclude:

ln t (λ) = Z+
NN(λ) + Z−

NN(λ) + ln
[(

1 + W+(x0)
)−1

L(x0)
(
1 + W−(x0)

)]
NN

. (4.12)

The last term of the latter expression provides the defect contribution, whereas clearly the first
two terms give the left and right bulk theory contributions.

Taking also into account the information provided in Section 3, and carefully expanding the
generating function we conclude that:

I1 = −iκ

x0∫
−L

dx

N−1∑
i=1

ψ−
i (x)ψ̄−

i (x) − iκ

L∫
x0

dx

N−1∑
i=1

ψ+
i (x)ψ̄+

i (x) +D1, (4.13)

I2 = −κ

2

x0∫
−L

dx

N−1∑
i=1

(
ψ̄−

i (x)ψ−′
i (x) − ψ−

i (x)ψ̄−′
i (x)

) + κ

2

∑
i

ψ−
i (x0)ψ̄

−
i (x0)

− κ

2

L∫
x0

dx

N−1∑
i=1

(
ψ̄+

i (x)ψ+′
i (x) − ψ+

i (x)ψ̄
′+
i (x)

) − κ

2

∑
i

ψ+
i (x0)ψ̄

+
i (x0) +D2

(4.14)

I3 = −iκ

x0∫
−L

dx

N−1∑
i=1

(
κ
∣∣ψ−

i (x)
∣∣2 ∑

k

∣∣ψ−
k (x)

∣∣2 + ψ−′
i (x)ψ̄−′

i (x)

)
+ iκ

∑
i

ψ−
i (x0)ψ̄

−′
i (x0)

− iκ

L∫
x0

dx

N−1∑
i=1

(
κ
∣∣ψ+

i (x)
∣∣2 ∑

k

∣∣ψ+
k (x)

∣∣2 + ψ+′
i (x)ψ̄+′

i (x)

)
− iκ

∑
i

ψ+
i (x0)ψ̄

+′
i (x0) +D3, (4.15)

where the defect contributions are defined as

D1 = D1

D2 = D2 − D2
1

2

D3 = D3 − D1D2 + D3
1

3
(4.16)

and:
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D1 = κPNN

D2 =
∑
j �=N

W
+(1)
Nj W

+(1)
jN − κ

∑
j �=N

W
+(1)
Nj PjN + κ

∑
j �=N

PNjW
−(1)
jN −

∑
j �=N

W
+(1)
Nj W

−(1)
jN

D3 =
∑
j �=N

W
+(1)
Nj W

+(2)
jN +

∑
j �=N

W
+(2)
Nj W

+(1)
jN −

∑
i �=Ni,j �=N

W
+(1)
Ni W

+(1)
ij W

+(1)
jN

−
∑
j �=N

W
+(1)
Nj W

−(2)
jN + κ

∑
j �=N

PNjW
−(2)
jN +

∑
i �=N,j �=N

W
+(1)
Ni W

+(1)
ij W

−(1)
jN

−
∑
j �=N

W
+(2)
Nj W

−(1)
jN −

∑
i �=N,j �=N

W
+(1)
Nj PijW

−(1)
jN − κ

∑
j �=N

W
+(2)
Nj PjN

+ κ
∑

i �=N, j

W
+(1)
Ni W

+(1)
ij PjN (4.17)

W
±(n)
kl are expressed in terms of the fields ψ±, ψ̄± and their derivatives as in (3.10).
As in the periodic case reviewed in Section 3, the first three integrals of motion are respec-

tively: the numbers of particles, the momentum and the Hamiltonian:

N = −I1

iκ
, P = −I2

iκ
, H = −I3

iκ
, (4.18)

and apparently

{H, P} = {H, N } = {N , P} = 0. (4.19)

The results of this subsection are clearly reduced to the ones of [18] in the case where N = 2.
To this point no gluing conditions have been determined; to achieve this we shall explicitly derive
the Lax pair time component associated to each integral of motion, and then impose suitable
analyticity conditions (see also [18]). This will be the subject of the subsequent subsection.

4.2. The Lax pair

Based on the underlying classical algebra one can extract the time component V of the Lax
pair. In the case where defects are taken into account, one has to compute V in the bulk, as well
as at the defect point. If the r-matrix of the model is the Yangian, as it happens in the vector NLS
model, the corresponding time components are simplified and for a single point-like defect are
expressed as [18]

V
+(x,λ,μ) = t−1(λ)

λ − μ
T +(x, x0)L(x0)T

−(x0,−L)T +(L,x)

V
−(x,λ,μ) = t−1(λ)

λ − μ
T −(x,−L)T +(L,x0)L(x0)T

−(x0, x)

Ṽ
+(x0, λ,μ) = t−1(λ)

λ − μ
L(x0)T

−(x0,−L)T +(L,x0)

Ṽ
−(x0, λ,μ) = t−1(λ)

λ − μ
T −(x0,−L)T +(L,x0)L(x0), (4.20)

where V± are the bulk left and right quantities, and Ṽ
± are the quantities associated to the defect

point from the left and the right. Substituting the expressions of T ± in the formulas above we
obtain the usual V±(i) bulk matrices, and the defect point Lax pair time components:
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Ṽ
−(1) = eNN

Ṽ
−(2)(λ) = λ eNN −

∑
j �=N

(
W

+(1)
Nj − κPNj

)
eNj +

∑
j �=N

W
−(1)
jN ejN

Ṽ
−(3)(λ) = λ Ṽ

−(2)(λ) +V− (4.21)

and we define,

V− =
∑
j �=N

(
W

+(1)
Nj W

−(1)
jN − κPNjW

−(1)
jN

)
eNN

−
∑

i �=N,j �=N

(−κPNjW
−(1)
iN + W

+(1)
Nj W

−(1)
iN

)
eij

+
∑
j �=N

(
−κ

∑
i �=N

W
+(1)
Ni Pij + iW

+(1)′
Nj − κ2

PNNPNj + κPNNW
+(1)
Nj

)
eNj

+ i
∑
j �=N

W
−(1)′
jN ejN . (4.22)

Similarly, for the Ṽ
+ we find the following expressions:

Ṽ
+(1) = eNN

Ṽ
+(2)(λ) = λ eNN +

∑
j �=N

(
κPjN + W

−(1)
jN

)
ejN −

∑
j �=N

W
+(1)
Nj eNj

Ṽ
+(3)(λ) = λṼ+(2)(λ) +V+ (4.23)

where

V+ =
(∑

j �=N

W
+(1)
Nj W

−(1)
jN + κ

∑
j �=j

W
+(1)
Nj PjN

)
eNN

−
∑

i �=N,j �=N

(
W

+(1)
Nj W

−(1)
iN + κW

+(1)
Nj PiN

)
eij + i

∑
j �=N

W
+(1)′
Nj eNj

+
∑
j �=N

(
κ

∑
i �=N

PjiW
−(1)
iN + iW

−(1)′
jN − κ2

PNNPjN − κPNNW
−(1)
jN

)
ejN . (4.24)

As explained in detail in [18] analyticity conditions around the defect point lead to:

V
±(

x±
0

) → Ṽ
±(x0), (4.25)

which in turn give rise to the related sewing conditions. Indeed, the second order sewing condi-
tions are given as

W
+(1)
Nj − W

−(1)
Nj = κPNj

W
+(1)
jN − W

−(1)
jN = κPjN , (4.26)

whereas the third order sewing conditions from the left and from the right are:



A. Doikou / Nuclear Physics B 884 (2014) 142–156 151
W
+(1)′
Nj − W

−(1)′
Nj = iκ

(
−

∑
i �=N

W
+(1)
Ni Pij − κPNNPNj + PNNW

+(1)
Nj

)

W
+(1)′
jN − W

−(1)′
jN = iκ

(
−

∑
i �=N

PjiW
−(1)
iN + κPjNPNN + W

−(1)
jN PNN

)
. (4.27)

It is important to note that the sewing conditions above are compatible with the Hamiltonian
action as has already been proven in [18] for any system associated to the classical Yangian
r-matrix.

Next we shall derive the equations of motion of the model under study in the bulk a well as
on the defect point. These equations may be extracted from the Hamiltonian or the zero curva-
ture conditions in the bulk and on the defect point (4.6), and provide the time evolution of the
dynamical degrees of freedom associated to the defect. The equations of motion in the bulk are
the familiar equations of the vector NLS model.

Let us now focus on the derivation of the equations of motion on the defect point. In this case
in order to cancel out the λ dependence in (4.6), we make use of the sewing conditions (4.26),
(4.27). The contribution of the λ-independent part of the zero curvature condition on the defect
point leads to the following set of equations, expressed in a compact form:

Ṗij =
N∑

l=1

V
+
il Plj −

N∑
l=1

Pil V
−
lj , i, j ∈ {1, . . . ,N}. (4.28)

In general, we define:

V± =
∑
k,l

V
±
kl ekl, (4.29)

and the elements V±
kl are defined in (4.22), (4.24). Note that for the moment no sewing conditions

have been implemented in the latter equations. Similar sets of equations associated to the defect
have been extracted for a variety of integrable models (see e.g. [18–20]), thus the natural next
step is to solve these equations using apparently the associated sewing conditions. This is an
intriguing issue, which will be hopefully addressed in future investigations. In the special case
where N = 2 the results as expected reduce to the ones derived in [18].

5. Defects in the presence of non-trivial boundaries

In this section we shall examine the behavior of the point-like defect in the presence of non-
trivial integrable boundaries. For this purpose Sklyanin’s modified monodromy matrix [23] will
be considered to suitably incorporate the boundary effects. We shall also distinguish two types of
boundary conditions the soliton non-preserving (SNP) associated to the so-called twisted Yan-
gian and the soliton preserving (SP) ones associated to the reflection algebra.

5.1. The SNP case

This case is associated to the classical twisted Yangian [23] defined as{
T1(λ1), T2(λ2)

} = [
r12(λ1 − λ2), T1(λ1) T2(λ2)

]
+ T1(λ1)r

t1 (−λ1 − λ2)T2(λ2) − T2(λ2)r
t1 (−λ1 − λ2)T1(λ1). (5.1)
12 12
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The modified monodromy matrix, representation of the classical quadratic algebra (5.1), accord-
ing to Sklyanin [23] is:

T = T (λ) K−(λ) T t (−λ), (5.2)

where the bulk monodromy matrix T contains the point-like defect, and is given by (4.1). The
generating function of the integrals of motion then becomes

G(λ) = ln tr
(
K+(λ) T (λ)

) =
∑
m

Im

λm
. (5.3)

The K±-matrices are c-number matrices, satisfying the respective algebra, with{
K±

1 (λ1), K±
2 (λ2)

} = 0. (5.4)

In what follows we shall consider for simplicity, but without loss of generality, K± ∝ I.
It is technically more tractable to study the vector NLS model first and then take the suitable

continuum limit (see also e.g. [27]). Let us briefly review the model. The discrete monodromy
matrix in the presence of a single defect on the n-th cite:

T0(L,1;λ) = L0L(λ) . . . L̃0n(λ) . . .L01(λ) (5.5)

Both L and L̃, and consequently T satisfy the classical quadratic algebra (2.7). Where the L

matrix of the discrete vector NLS model is given as

L(λ) = (iλ + κN) eNN +
N−1∑
l=1

ell +
N−1∑
l=1

(φl elN + ψl eNl). (5.6)

Due to the fact that L satisfies the quadratic algebra we obtain:

{φk, ψl} = iδkl . (5.7)

The defect Lax operator is

L̃n(λ) = λ + κP(n) (5.8)

the entries of the P matrix Pij satisfy the classical glN algebra (4.10).
As already mentioned we focus on the SNP case that is we consider the representation of the

classical twisted Yangian (5.1). Expansion of trT (λ), – T defined in (5.2), but now T is the
discrete monodromy matrix – will lead to the local integrals of motion (see also [27] for relevant
results). In this case only the even integrals of motion survive, the first non-trivial integral of
motion turns out to be the discrete momentum:

I(2)
d = κ

N−1∑
l=1

∑
j �=n,n−1

ψ
(j+1)
l φ

(j)
l + iκ

√
κ

N−1∑
l=1

(
ψ

(n+1)
l P

(n)
lN + P

(n)
Nl φ

(n−1)
l

) − κ2
N−1∑
j=1

(
N

(j)
)2

+ κ

N−1∑
l=1

ψ
(n+1)
l φ

(n−1)
l − κ

N−1∑
l=1

(
φ

(L)
l φ

(L)
l + ψ

(1)
l ψ

(1)
l

)
. (5.9)

By taking the continuum limit (see also [18], and references therein)
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(
ψ

(j)
l , φ

(j)
l

) → (
ψ+

l (x), ψ̄+
l (x)

)
, j > n, x > x0(

ψ
(j)
l , φ

(j)
l

) → (
ψ−

l (x), ψ̄−
l (x)

)
, j < n, x < x0

f (j+1) → f (x + δ) (5.10)

we obtain

I2 = −κ

x0∫
0

dx

N−1∑
i=1

(
ψ̄−

i (x)ψ−′
i (x) − ψ−

i (x)ψ̄−′
i (x)

) + κ
∑

i

ψ−
i (x0)ψ̄

−
i (x0)

− κ

L∫
x0

dx

N−1∑
i=1

(
ψ̄+

i (x)ψ+′
i (x) − ψ+

i (x)ψ̄
′+
i (x)

) − κ
∑

i

ψ+
i (x0)ψ̄

+
i (x0)

+ κ
∑

i

ψ−
i (0)ψ̄−

i (0) + κ
∑

i

ψ−
i (0)ψ−

i (0) + 2D2 (5.11)

D2 is defined in (5.18). The charge I2 gives the momentum of the system:

P = − I2

2iκ
. (5.12)

Note that in the SNP case although only the even charges are conserved the form of the
momentum for instance is not drastically altered compared to the periodic case studied in the
previous section. This however does not hold in the SP case, where significant modifications in
the defect behavior are manifest as will be transparent subsequently.

5.2. The SP case

The SP case is associated to the classical reflection algebra [23]{
T1(λ1), T2(λ2)

} = [
r12(λ1 − λ2), T1(λ1) T2(λ2)

]
+ T1(λ1)r12(λ1 + λ2)T2(λ2) − T2(λ2)r12(λ1 + λ2)T1(λ1). (5.13)

The generic representation of the reflection algebra [23]

T = T (λ) K−(λ) T −1(−λ). (5.14)

The generating function of the integrals of motion in the SP case is then expressed as (5.3),
where now T is given above.

As in the SNP cases the K±-matrices are c-number matrices, satisfying the respective algebra,
we shall also consider here for simplicity, K± ∝ I. As will be clear below the particular choice
of K± does not affect the defect contribution, thus it is convenient to consider the simplest
K-matrices. We shall also assume for brevity Schwartz boundary conditions at x = L, i.e. the
fields and their derivatives are zero. For generic boundary conditions especially in the SP case
see [27].

In this case the odd charges survive, we provide below the first non-trivial charges, i.e. the
number of particles and the Hamiltonian. We expand the generating function in powers of 1

λ
to

obtain the relevant charges in involution. The leading contribution comes from the ZNN, ẐNN

terms (see also relevant discussion in Section 3), thus:
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ln tr
(
K+(λ) T (λ)

) = Z+
NN(L,x0) + Z−

NN(x0,0) − Ẑ+
NN(L,x0) − Ẑ−

NN(x0,0)

+ ln
[(

1 + W−(0)
)−1

K−(λ)
(
1 + Ŵ−(0)

)]
NN

+ ln
[(

1 + Ŵ+(L)
)−1

K+(λ)
(
1 + W−(L)

)]
NN

+ ln
[(

1 + W+(x0)
)−1

L(x0)
(
1 + W−(x0)

)]
NN

+ ln
[(

1 + Ŵ−(x0)
)−1

L̂
−1(x0)

(
1 + Ŵ+(x0)

)]
NN

(5.15)

we introduce the notation: f̂ (λ) = f (−λ). The associated conserved quantities are then given as:

I1 = −2iκ

x0∫
0

dx

N−1∑
i=1

ψ−
i (x)ψ̄−

i (x) − 2iκ

L∫
x0

dx

N−1∑
i=1

ψ+
i (x)ψ̄+

i (x) + 2D1, (5.16)

I3 = −2iκ

x0∫
0

dx

N−1∑
i=1

(
κ
∣∣ψ−

i (x)
∣∣2 ∑

k

∣∣ψ−
k (x)

∣∣2 + ψ−′
i (x)ψ̄−′

i (x)

)
+ 2iκ

∑
i

ψ−
i (x0)ψ̄

−′
i (x0)

− 2iκ

L∫
x0

dx

N−1∑
i=1

(
κ
∣∣ψ+

i (x)
∣∣2 ∑

k

∣∣ψ+
k (x)

∣∣2 + ψ+′
i (x)ψ̄+′

i (x)

)
− 2iκ

∑
i

ψ+
i (x0)ψ̄

+′
i (x0) − 2iκ

∑
j

(
ψj (0)ψ̄(0)

)′ +D3 + D̄3 (5.17)

where D1,3 are defined in (5.18), we also define: D̄3 = D̄3 − D̄1D̄2 + D̄3
1

3 and

D̄1 = κPNN

D̄2 =
∑
j �=N

W
−(1)
Nj W

−(1)
jN + κ

∑
j �=N

W
−(1)
Nj PjN − κ

∑
j �=N

PNjW
+(1)
jN −

∑
j �=N

W
−(1)
Nj W

+(1)
jN

+ κ2
∑
j

PNjPjN

D̄3 = −
∑
j �=N

W
−(1)
Nj W

−(2)
jN −

∑
j �=N

W
−(2)
Nj W

−(1)
jN +

∑
i �=Ni,j �=N

W
−(1)
Ni W

−(1)
ij W

−(1)
jN

+
∑
j �=N

W
−(1)
Nj W

+(2)
jN + κ

∑
j �=N

PNjW
+(2)
jN −

∑
i �=N,j �=N

W
−(1)
Ni W

−(1)
ij W

+(1)
jN

+
∑
j �=N

W
−(2)
Nj W

+(1)
jN −

∑
i �=N,j �=N

W
−(1)
Nj PijW

+(1)
jN − κ

∑
j �=N

W
−(2)
Nj PjN

+ κ
∑

i �=N, j

W
−(1)
Ni W

−(1)
ij PjN + κ2

∑
i �=N,j

W
−(1)
Ni PijPjN + κ3

∑
i,j

PNiPijPjN

− κ2
∑

j �=N,i

PNiPijW
+(1)
jN . (5.18)

We get from the latter the number of particles of the system and the Hamiltonian:
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N = − I1

2iκ
, H = − I3

2iκ
. (5.19)

It is clear that the presence of non-trivial boundaries yields drastic effects in the bulk behaviour
(see the defect contribution in each case, in particular in the SP case note the appearance of the
non-trivial D̄3 term!). And although in the SNP case the defect contribution in the momentum is
the same as in the periodic case, in the SP case the defect contribution in addition to the D3 term
includes the D̄3, which is somehow obtained from D3 through “reflection”, compatible with the
underlying classical reflection algebra, plus some extra terms associated to the defect degrees of
freedom, due to the L

−1 contributions.

6. Discussion

The study of point-like defects in the context of the glN NLS model via the algebraic de-
scription was presented. In addition to the local integrals of motion and the Lax pair, the relevant
sewing conditions across the defect point are also derived as analyticity conditions on the time
component of the Lax pair. The equations of motion in the bulk and on the defect point are also
identified. This is a model associated to the glN algebra, and the intriguing point, in addition to
the defect behavior per se, is that one can implement two distinct sets of boundary conditions and
investigate the corresponding modifications in the bulk behavior of the system. Indeed, it turns
out that these boundary conditions may drastically alter the bulk behavior, and in particular the
defect contribution.

Similar investigations in the context of affine Toda field theories would be also of particular
interest. More precisely, identification of the defect contribution in the local integrals of motion
as well as the construction of the time component of the Lax pair in the presence of point-like
integrable defects would be the main aims of a relevant future study. Again these structures are
expected to be modified compared to the periodic case due to the presence of the non-trivial
boundaries (see e.g. [28,29]).

A similar construction of the time Lax pair component would also provide a significant con-
sistency check in the case of the vector NLS model. It is quite that the presence of the boundary
conditions will alter the structure of the time component of the Lax pair in particular in the SP
case as is manifest from the form of the associated integrals of motion. The time component
defect contribution will be somehow “doubled” compared to the periodic case. The two distinct
terms contributing to the defect part are expected to be associated via “reflection” as is already
transparent when computing the Hamiltonian of the system. Hopefully, all the aforementioned
issues will be addressed in forthcoming publications.
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