Protein Structure and Conformation IV

2571-Pos Board B1
Biochemical State of the Aryl Carrier Protein Directs Sequential Domain-Domain Interactions in the Verrucabactin Synthetase System
Andrew C. Goodrich, Dominique P. Fruchh. Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nonribosomal peptide synthetases (NRPSs) are modular enzymatic systems responsible for the production of complex secondary metabolites in bacteria and fungi. Each module is comprised of (at least) three core domains whose combined action leads to the selection, activation, and incorporation of a single small molecule into a growing peptide. Central to each module is the carrier protein (CP), which is first primed via attachment of a 4'-phosphopantetheine moiety (pant arm) to a conserved serine to generate the active holo form. The pant arm then covalently harbors activated monomers and growing peptides and shuttles them between the active sites of catalytic domains in both the same and adjacent modules. During CP priming and peptide elongation, a CP thus exists in multiple different post-translational states and must interact with multiple catalytic domains. Understanding how NRPSs are able to efficiently orchestrate this series of sequential protein-protein interactions between a CP and its partner catalytic domains is key to understanding the molecular mechanism of NRP synthesis. In functionally analogous fatty acid synthases (FAS) and polyketide synthases (PKS), the post-translational state of a CP (holo vs. substate loaded) has been implicated in directing the sequence of interactions in these systems. However, the role these modifications play in modulating protein-protein interactions in a NRPS has not previously been explored. Here, we provide evidence that the biochemical state of a CP (apo vs. holo vs. monomer loaded) alters the affinity of the CP for its partner catalytic domains in a NRPS system. Our results demonstrate that each partner catalytic domain preferentially binds to a different biochemical state of the CP and suggests a means by which directionality in protein-protein interactions is achieved in NRPSs.

2572-Pos Board B2
Systematic Perturbation of Protein:Protein Interfaces may Aid in Functional Classification
Cameron J. Jones, Ambreen Qureshi, Sanjana Sudarshan, Brian Beck. Biology, Texas Woman’s University, Denton, TX, USA.
Protein:protein interactions play vital roles in many biological reactions. In a previous study we constructed a database of protein:protein interfaces (FLIPdb) and have shown that calculations of the computational alanine scanning (CAS) energy of residues along the interface can distinguish functional categories of proteins. Here, to further understand the underlying principles of protein interactions, we examine the effects of systematically translating one interfacial subunit over a grid in relation to the other stationary subunit for the structures in FLIPdb. A three-dimensional potential energy surface was generated from the change in grid in relation to the other stationary subunit for the structures in FLIPdb. Here, we provide evidence that the biochemical state of a CP (apo vs. holo vs. monomer loaded) alters the affinity of the CP for its partner catalytic domains in a NRPS system. Our results demonstrate that each partner catalytic domain preferentially binds to a different biochemical state of the CP and suggests a means by which directionality in protein-protein interactions is achieved in NRPSs.

2573-Pos Board B3
Structural Analysis of Lipocalin-Type Prostaglandin D Synthase Complexed with Prostaglandin J2
Yuta Nakahata1, Shigeru Shimamoto1, Tadayasu Ohkubo2, Kosuke Aritake3, Yoshihiro Urade1, Yoji Hidaka1.
1Science and Engineering, Kinki University, Higashi-osaka, Japan, 2Pharmaceutical Science, Osaka University, Suita, Japan, 3Institute For Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS), is a member of the lipocalin superfamily, is found and exists in the brain. L-PGDS catalyzes the isomerization of PGH2, a common precursor molecule of various prostanooids, to produce PGD2, a potent endogenous somnomone. L-PGDS-produced PGD2 is sleep-inducing and to accumulate in the brain during prolonged periods of wakefulness. In addition, We have recently found that the enzyme activity of L-PGDS was inhibited by PGJ2, a metabolite of PGD2 metabolite. Therefore, the structural information regarding the of L-PGDS/PGJ2 complex should provide the structural information for the drug development of drugs for treating sleep disorders. In this study, we investigated the three-dimensional structure of recombinant mouse L-PGDS complexed with PGJ2 by means of NMR and evaluated the binding mechanism from the deduced molecular structure. The Chemical shift assignments for the backbone and side-chain protons of the L-PGDS/PGJ2 complex was made carried out using two-dimensional 1H,15N HSQC, three-dimensional HNCA,CB, CBCA(CO)NH, HBHA(CO)NH, CHCA(CO)NH, CCHC, TOSY, and HCCH-TOSY. NOEs were collected from three-dimensional 13C-edited NOESY data. In addition, to investigate the binding site of PGJ2, we compared the HSQC of L-PGDS/PGJ2 complex with that of apo-LPGDS. Significant changes in the chemical shifts of the catalytic Cys65 and other residues which are located distant in the bottom area of the binding pocket of L-PGDS were observed upon PGJ2 binding, indicating that PGJ2 competitively binds to the substrate binding site.

2574-Pos Board B4
The Origin of CDR H3 Structural Diversity
Brian D. Weitzner1, Roland L. Dunbrack2, Jeffrey J. Gray1. 1Department of Chemistry and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA, 2Department for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA.
Antibody CDR H3 loops are critical for adaptive immunological functions. Although the other five CDR loops adopt predictable canonical structures, H3 conformations have proven unclassifiable, other than an unusual C-terminal “kink” present in most antibodies. To determine why the majority of H3 loops are kinked and to learn whether non-antibody proteins have loop structures similar to H3, we searched a set of 15,679 high-quality non-antibody structures for regions geometrically similar to the residues immediately surrounding the loop. By incorporating the kink into our search, we identified 1,030 H3-like loops from 632 protein families. Some protein families, including PDZ domains, appear to use the identified region for recognition and binding. Our results suggest the kink is conserved in the immunoglobulin heavy chain fold because it disrupts the β-strand pairing at the base of the loop. Thus, the kink is a critical driver of the observed structural diversity in CDR H3.

2575-Pos Board B5
Biophysical, Biochemical and Functional Studies of a Novel Fungal Tec1 Paralog
Lenka Slachtova1, Matthew Lohse2, Sandy Johnson2, Sudha Veeraraghavan1. 1Dept. of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA, 2Departments of Microbiology, Immunology, Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
Tec1 is a member of TEA/ATTS transcription factors family and a key regulator of cell development and adhesion in fungi. In Candida albicans, Tec1 is required for yeast to filamentation switch and virulence. It also plays a role in biofilm formation. Here, we report the identification of a novel Tec1 paralog, Tec2, which has been implicated in white/opaque switching. First, using the NMR and X-ray crystallographic structures of the DNA-binding TEA domain, solved in the Veeraraghavan laboratory, we constructed three-dimensional structural models of the Tec1 and Tec2 proteins to gain insights into their activities. We then investigated the DNA binding activity of Tec2 and compare it with that of Tec1. Finally, we report on the potential biological role for Tec2, determined using knockout and overexpression studies in C. albicans. We are currently investigating the three-dimensional structure of Tec2.